Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Membranes (Basel) ; 13(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37103812

ABSTRACT

A bibliometric analysis, using the Scopus database as a source, was carried out in order to study the scientific documents published up to 2021 regarding the use of electrodialysis, membrane distillation, and forward osmosis for the removal of heavy metals from wastewater. A total of 362 documents that fulfilled the search criteria were found, and the results from the corresponding analysis revealed that the number of documents greatly increased after the year 2010, although the first document was published in 1956. The exponential evolution of the scientific production related to these innovative membrane technologies confirmed an increasing interest from the scientific community. The most prolific country was Denmark, which contributed 19.3% of the published documents, followed by the two main current scientific superpowers: China and the USA (with 17.4% and 7.5% contributions, respectively). Environmental Science was the most common subject (55.0% of contributions), followed by Chemical Engineering (37.3% of contributions) and Chemistry (36.5% of contribution). The prevalence of electrodialysis over the other two technologies was clear in terms of relative frequency of the keywords. An analysis of the main hot topics identified the main advantages and drawbacks of each technology, and revealed that examples of their successful implementation beyond the lab scale are still scarce. Therefore, complete techno-economic evaluation of the treatment of wastewater polluted with heavy metals via these innovative membrane technologies must be encouraged.

2.
Membranes (Basel) ; 12(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36557089

ABSTRACT

For absorption cooling cycles using water as a refrigerant, H2O/LiCl mixtures are suitable for replacing conventional H2O/LiBr mixtures. In addition, membrane devices can be used to develop compact and lighter absorption systems, and they can operate with H2O/LiCl mixtures. The present paper describes an experimental evaluation of a membrane desorber/condenser operating at atmospheric pressure. Two operation modes were analyzed: continuous cycle operation and intermittent operation. For the first operation mode, the maximum desorption rate was 3.49 kg/h·m2, with a solution temperature of 90.3 °C and a condensation temperature of 25.1 °C. The lowest desorption rate value was 0.26 kg/h·m2, with a solution temperature of 75.4 °C and a condensation temperature of 40.1 °C. In the second mode, after three operating hours, the refrigerant fluid produced, per 1 m2 of membrane area, 7.7, 5.6, 4.3, and 2.2 kg, at solution temperatures of 90.3, 85.3, 80.4, and 75.4 °C, respectively. A one-dimension heat and mass transfer model is presented. The calculated values of desorption rate and outlet temperatures were compared with the experimental data; a square correlation coefficient of 0.9929 was reached for the desorption rate; meanwhile, for the outlet solution temperatures and the outlet cooling-water temperatures, a square correlation coefficient up to 0.9991 was achieved. The membrane desorber has the advantages of operating at atmospheric-pressure conditions, high condensation temperature, the ability to use different saline solution working mixtures, and different operation methods. These advantages can lead to new absorption systems.

3.
Polymers (Basel) ; 14(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36501558

ABSTRACT

Desalinization of seawater can be achieved by membrane distillation techniques (MD). In MD, the membranes should be resistant to fouling, robust for extended operating time, and preferably provide a superhydrophobic surface. In this work, we report the preparation and characterization of a robust and superhydrophobic polyvinylidene fluoride membrane containing fluoroalkyl-capped CuONPs (CuONPs@CF) in the inner and fluorinated capped silicon oxide nanoparticles (SiO2NPs@CF) on its surface. SiO2NPs@CF with a mean diameter of 225 ± 20 nm were prepared by the sol method using 1H,1H,2H,2H-perfluorodecyltriethoxysilane as a capping agent. Surface modification of the membrane was carried out by spraying SiO2NPs@CF (5% wt.) dispersed in a mixture of dimethyl formamide (DMF) and ethanol (EtOH) at different DMF/EtOH % v/v ratios (0, 5, 10, 20, and 50). While ethanol dispersed the nanoparticles in the spraying solution, DMF dissolved the PVDF on the surface and retained the sprayed nanoparticles. According to SEM micrographs and water contact angle measurements, the best results were achieved by depositing the nanoparticles at 10% v/v of DMF/EtOH. Under these conditions, a SiO2NPs covered surface was observed with a water contact angle of 168.5°. The water contact angle was retained after the sonication of the membrane, indicating that the modification was successfully achieved. The membrane with SiO2NPs@CF showed a flux of 14.3 kg(m2·h)-1, 3.4 times higher than the unmodified version. The method presented herein avoids the complicated modification procedure offered by chemical step modification and, due to its simplicity, could be scalable to a commercial membrane.

4.
Membranes (Basel) ; 12(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35207078

ABSTRACT

Freshwater is a limited resource, which has driven the development of new purification and water-reuse technologies. One promising technology for water treatment is membrane distillation (MD). One of the main problems of MD, and of many desalination technologies, is membrane fouling, which reduces the performance of the membrane. This work presents a mathematical model that aims to predict distillate fluxes in direct-contact MD when fouling occurs as salts are deposited onto the membrane surface, forming an inorganic fouling layer. The mathematical model uses a heat- and mass-transfer formulation for prediction of the distillate flux under steady state conditions, and it is combined with the cake-filtration theory to represent the distillate fluxes after the onset of membrane fouling. Model results agree well with experimental observation of distillate fluxes, both before (~12-14 kg m-2 h-1) and after the onset of membrane fouling, with root-mean-square errors smaller than 1.4 kg m-2 h-1 in all the experiments. These results suggest that the cake-filtration theory can be used to represent water flux decline in MD membranes prone to inorganic fouling. From our experiments and from the modelling exercise, we found that the onset of membrane failure was relatively constant; the precipitation reaction constant is conditioned by the physicochemical interaction between the feed solution and the membrane; and the rate of flux decline after membrane fouling depends on flow conditions as well as on the precipitation compound. However, the proposed model has limitations that must be addressed in future investigations to validate it under a wider range of operating conditions, for membranes composed by other materials and with different feed solutions to address organic, biological, and/or colloidal fouling, which typically occur under real conditions.

5.
Membranes (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34940459

ABSTRACT

In the research reported in this paper, membrane distillation was employed to recover water from a concentrated saline petrochemical effluent. According to the results, the use of membrane distillation is technically feasible when pre-treatments are employed to mitigate fouling. A mathematical model was used to evaluate the fouling mechanism, showing that the deposition of particulate and precipitated material occurred in all tests; however, the fouling dynamic depends on the pre-treatment employed (filtration, or filtration associated with a pH adjustment). The deposit layer formed by particles is not cohesive, allowing its entrainment to the bulk flow. The precipitate fouling showed a minimal tendency to entrainment. Also, precipitate fouling served as a coupling agent among adjacent particles, increasing the fouling layer cohesion.

6.
Membranes (Basel) ; 11(7)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206822

ABSTRACT

In absorption systems using the aqueous lithium bromide mixture, the Coefficient of Performance is affected by the desorber. The main function of this component is to separate the refrigerant fluid from the working mixture. In conventional boiling desorbers, constant heat flux and vacuum pressure conditions are necessary to carry out the desorption process, and usually, the absorbers are heavy and bulky; thus, they are not suitable in compact systems. In this study, a membrane desorber was evaluated, operating at atmospheric pressure conditions with a water/lithium bromide solution with a concentration of 49.6% w/w. The effects of the solution temperature, solution mass flow, and condensation temperature on the desorption rate were analyzed. The maximum desorption rate value was 6.1 kg/m2h with the following operation conditions: the solution temperature at 95.2 °C, the solution mass flow at 4.00 × 10-2 kg/s, and the cooling water temperature at 30.1 °C. On the other hand, the minimum value was 1.1 kg/m2h with the solution temperature at 80.2 °C, the solution mass flow at 2.50 × 10-2 kg/s, and the cooling water temperature at 45.1 °C. The thermal energy efficiency, defined as the ratio between the thermal energy used to evaporate the refrigerant fluid with respect to the total thermal energy entering the membrane desorber, varied from 0.08 to 0.30. According to the results, a high solution mass flow, a high solution temperature, and a low condensation temperature lead to an increase in the desorption rate; however, a low solution mass flow enhanced the thermal energy efficiency. The proposed membrane desorber could replace a conventional boiling desorber, especially in absorption cooling systems that operate at high condensation temperatures as in warm weather regions.

7.
Nanomaterials (Basel) ; 11(6)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198766

ABSTRACT

Water scarcity is an imminent problem that humanity is beginning to attempt to solve. Among the several technologies that have been developed to mitigate water scarcity, membrane distillation is of particular note. In the present work, CuO nanoparticles capped with 1-octanethiol (CuONPs@CH) or 1H,1H,2H,2H-perfluorodecanethiol (CuONPs@CF) are prepared. The nanoparticles are characterized by FT-IR and TGA methods. Two weight losses are observed in both cases, with the decomposition of the organic fragments beginning at 158 °C and 230 °C for CuONPs@CF and CuONPs@CH, respectively. Flat sheet PVDF composite membranes containing nanoparticles are prepared by the casting solution method using nanoparticle concentrations that ranged between 2-20% with a non-woven polyester fabric as support. The obtained membranes showed a thickness of 240 ± 40 µm. According to water contact angle (87° for CuONPs@CH and 95° for CuONPs@CF, both at 10% w.t) and roughness (12 pixel for CuONPs@CH and 14 pixels for CuONPs@CF, both at 10% w.t) determinations, the hydrophobicity of membranes changed due to a decrease in surface energy, while, for naked CuONPs, the roughness factor represents the main role. Membranes prepared with capped nanoparticles showed similar porosity (60-64%). SEM micrographs show asymmetric porous membranes with a 200-nm surface pore diameter. The largest finger-like pores in the membranes prepared with CuONPs, CuONPs@CH and CuONPs@CF had values of 63 ± 10 µm, 32 ± 8 µm, and 45 ± 10 µm, respectively. These membranes were submitted to a direct contact membrane distillation module and flux values of 1.8, 2.7, and 3.9 kg(m2·h)-1 at ΔT = 30 °C were obtained for the CuONPs, CuONPs@CH, and CuONPs@CF, respectively. The membranes showed 100% salt rejection during the testing time (240 min).

SELECTION OF CITATIONS
SEARCH DETAIL