Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.862
Filter
1.
PeerJ ; 12: e18168, 2024.
Article in English | MEDLINE | ID: mdl-39351373

ABSTRACT

Although climate change is predicted to have a substantial effect on the energetic requirements of organisms, the longer-term implications are often unclear. Sloths are limited by the rate at which they can acquire energy and are unable to regulate core body temperature (Tb) to the extent seen in most mammals. Therefore, the metabolic impacts of climate change on sloths are expected to be profound. Here we use indirect calorimetry to measure the oxygen consumption (VO2) and Tb of highland and lowland two-fingered sloths (Choloepus hoffmanni) when exposed to a range of different ambient temperatures (Ta) (18 °C -34 °C), and additionally record changes in Tb and posture over several days in response to natural fluctuations in Ta. We use the resultant data to predict the impact of future climate change on the metabolic rate and Tb of the different sloth populations. The metabolic responses of sloths originating from the two sites differed at high Ta's, with lowland sloths invoking metabolic depression as temperatures rose above their apparent 'thermally-active zone' (TAZ), whereas highland sloths showed increased RMR. Based on climate change estimates for the year 2100, we predict that high-altitude sloths are likely to experience a substantial increase in metabolic rate which, due to their intrinsic energy processing limitations and restricted geographical plasticity, may make their survival untenable in a warming climate.


Subject(s)
Climate Change , Oxygen Consumption , Sloths , Animals , Oxygen Consumption/physiology , Sloths/metabolism , Energy Metabolism/physiology , Body Temperature , Basal Metabolism , Body Temperature Regulation/physiology , Calorimetry, Indirect , Temperature
2.
J Fish Biol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39228148

ABSTRACT

Bioenergetics models are powerful tools used to address a range of questions in fish biology. However, these models are rarely informed by free-swimming activity data, introducing error. To quantify the costs of activity in free-swimming fish, calibrations produced from standardized laboratory trials can be applied to estimate energy expenditure from sensor data for specific tags and species. Using swim tunnel respirometry, we calibrated acceleration sensor-equipped transmitting tags to estimate the aerobic metabolic rates (MO2) of lake trout (Salvelinus namaycush) at three environmentally relevant temperatures. Aerobic and swim performance were also assessed. Like other calibrations, we found strong relationships between MO2 and acceleration or swimming speed, and jackknife validations and data simulations suggest that our models accurately predict metabolic costs of activity in adult lake trout (~5% algebraic error and ~20% absolute error). Aerobic and swim performance metrics were similar to those reported in other studies, but their critical swimming speed was lower than expected. Additionally, lake trout exhibited a wide aerobic scope, suggesting that the avoidance of waters ≥15°C may be related to selection for optimal growing temperatures. The ability to quantify the free-swimming energetic costs of activity will advance our understanding of lake trout ecology and may yield improvements to bioenergetics model.

3.
Article in English | MEDLINE | ID: mdl-39307392

ABSTRACT

The bone organ is poorly represented in comparative research on mammalian mass-specific metabolic rates. As a first order attempt to remedy this, from the literature we collected mass-specific metabolic rates for all major organs except for the bone organ, and by subtraction infer the rate for the bone organ. The scaling relationships are given of each whole-organ mass-specific metabolic rate and of the relationship between whole-organ metabolic rate and body mass. Scaling of the lung, adipose depot and bone organ with body mass is higher than would be expected by ¾ power scaling. We interpret the similar scalings of bone and the adipose depot in light of their evolved regulation of whole-body metabolism. We also briefly examine the supra-¾ power scaling of the lung as well as the independence of the mass-specific metabolic rate of the heart from body mass. The bone organ exhibits relatively high energy expenditure with increasing body size. The bone marrow and its medullary adipocyte store may be responsible for engendering the greater share of the bone organ's energetic cost.

4.
Genes (Basel) ; 15(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39336747

ABSTRACT

The African clawed frog (Xenopus laevis) endures prolonged periods of dehydration while estivating underground during the dry season. Epigenetic modifications play crucial roles in regulating gene expression in response to environmental changes. The elucidation of epigenetic changes relevant to survival could serve as a basis for further studies on organ preservation under extreme stress. The current study examined the relative protein levels of key enzymes involved in the arginine methylation of histones in the liver and kidney tissues of control versus dehydrated (35 ± 1%) X. laevis through immunoblotting. Protein arginine methyltransferases (PRMT) 4, 5, and 6 showed significant protein level decreases of 35 ± 3%, 71 ± 7%, and 25 ± 5%, respectively, in the liver tissues of the dehydrated frogs relative to controls. In contrast, PRMT7 exhibited an increase of 36 ± 4%. Similarly, the methylated histone markers H3R2m2a, H3R8m2a, and H3R8m2s were downregulated by 34 ± 11%, 15 ± 4%, and 42 ± 12%, respectively, in the livers of dehydrated frogs compared to controls. By contrast, the kidneys of dehydrated frogs showed an upregulation of histone markers. H3R2m2a, H3R8m2a, H3R8m2s, and H4R3m2a were significantly increased by 126 ± 12%, 112 ± 7%, 47 ± 13%, and 13 ± 3%, respectively. These changes can play vital roles in the metabolic reorganization of X. laevis during dehydration, and are likely to increase the chances of survival. In turn, the tissue-specific regulation of the histone arginine methylation mechanism suggests the importance of epigenetic regulation in the adaptation of X. laevis for whole-body dehydration.


Subject(s)
Arginine , Histones , Liver , Xenopus laevis , Animals , Xenopus laevis/genetics , Histones/metabolism , Histones/genetics , Methylation , Arginine/metabolism , Liver/metabolism , Dehydration/genetics , Dehydration/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Epigenesis, Genetic , Kidney/metabolism , Gene Expression Regulation , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
5.
J Exp Biol ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39330255

ABSTRACT

Daily energy expenditure (DEE) is the result of decisions on how to allocate time among activities (resting, commuting, and foraging) and the energy costs of those activities. Dynamic body acceleration (DBA), which measures acceleration associated with movement, can be used to estimate DEE. Previous studies of DBA-DEE correlations in birds occurred on species foraging below their thermoneutral zone, potentially decoupling the DBA-DEE relationship. We used doubly-labelled water (DLW) to validate the use of DBA on plunge-diving seabirds, Peruvian boobies (Sula variegata), foraging in waters above their thermoneutral zone (>19 °C). Mass-specific DEEDLW in boobies was 1.12 kJ/d/g, and higher in males than in females. DBA alone provided the best fitting model to estimate mass-specific DEEDLW compared to models partitioned per activity and time-budget models. Nonetheless, the model parametrizing activity at and away of their onshore breeding colony was the most parsimonious model (r=0.6). This r value, although high, is lower than all other avian studies, implying that temperature is not the main cause of DBA-DEE decoupling in birds. Time at the colony (∼80% of the day) was the largest contributor to DEE as it was the most time-consuming activity and involved nest defense. However, foraging was the most power-consuming activity (4.6 times higher activity-specific metabolic rate than resting at the colony), and commuting-flight was higher than in other gliding seabirds. In short, DBA alone can act as a proxy for DEE, opening avenues to measure the conservation energetics of this seabird in the rapidly-changing Peruvian Humboldt Current System.

6.
Clin Nutr ; 43(11): 54-64, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39342800

ABSTRACT

BACKGROUND & AIMS: Breast cancer (BC) is frequently linked with obesity, metabolic syndrome, and sarcopenia. Therefore, measuring or accurately estimating resting energy expenditure (REE) is crucial for tailoring nutritional needs, managing weight and prevent under- or over-nutrition. We aimed to measure and compare REE between women with BC and a matched control group. Moreover, the prediction accuracy of selected formulas was evaluated. METHODS: Women aged ≥18 years with newly diagnosis of BC (stage 0-III) and body mass index (BMI) ≤ 30 kg/m2 were included in this cross-sectional analysis. Anthropometry, indirect calorimetry, and bioelectrical impedance analysis (BIA) were performed. Patients with BC data were compared to healthy women with similar age and BMI range. Measured REE (mREE) was compared against 15 predictive equations. Agreement between methods was evaluated using Bland-Altman analysis. RESULTS: We included 106 women with BC (age 49.9 ± 11.1 years and BMI 24.5 ± 2.8 kg/m2) and 75 women as control group. There were no differences in age, anthropometry, and BIA variables between groups, except for percentage fat mass. Measured REE values, alone and adjusted for fat-free mass (FFM) and age, were higher in patients with BC compared to controls (+4.3 % and +6.1 %, respectively). Regarding REE prediction, most of the selected equations underestimated mREE. Precision varied widely, with the two Marra equations showing the highest agreement (73 % and 74.5 %) along with the Müller equation (74 %), however, the wide limit of agreement range indicates substantial variability. CONCLUSIONS: Women with early-stage BC exhibited higher mREE compared to controls, albeit its clinical significance is unknown. None of the selected predictive equations provided accurate and precise REE estimates in this group. Although the Marra equation displayed the highest agreement, further studies are needed to evaluate REE variability and its prediction in women with BC.

7.
J Exp Biol ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319396

ABSTRACT

Diel fluctuations of oxygen levels characterize cyclic hypoxia and poses a significant challenge to wild fish populations. Although recent research has been conducted on the effects of hypoxia and reoxygenation, mechanisms by which fish acclimatize to cyclic hypoxia remain unclear, especially in hypoxia-sensitive species. We hypothesized that acclimation to cyclic hypoxia requires a downregulation of their aerobic metabolic rate (MR) and an upregulation of mitochondrial respiratory capacities to mitigate constraints on aerobic metabolism and the elevated risk of oxidative stress upon reoxygenation. We exposed Arctic char (Salvelinus alpinus) to ten days of cyclic hypoxia and measured their MR and mitochondrial physiology to determine how they cope with fluctuating oxygen concentrations. We measured oxygen consumption as a proxy of MR and observed that Arctic char defend their standard metabolic rate but decrease their routine metabolic rate during hypoxic phases, presumably through the repression of spontaneous swimming activities. At the mitochondrial level, acute cyclic hypoxia increases oxygen consumption without ADP (CI-LEAK) in liver and heart. Respiration in the presence of ADP (OXPHOS) temporarily increases in the liver and decreases in the heart. Cytochrome c oxidase (COX) affinity with oxygen also increases at day 3 in the liver. However, no change occurs in the brain, which is likely primarily preserved through preferential perfusion (albeit not measured in this study). Finally, in vivo measurements of reactive oxygen species revealed the absence of an oxidative burst in mitochondria in the cyclic hypoxia group. Our study shows that Arctic char acclimatize to cyclic hypoxia through organ-specific mitochondrial adjustments.

8.
Sci Rep ; 14(1): 21700, 2024 09 17.
Article in English | MEDLINE | ID: mdl-39289438

ABSTRACT

Primates spend on average half as much energy as other placental mammals while expressing a wide range of lifestyles. However, little is known about how primates adapt their rate of energy use in the context of natural environmental variations. Using doubly labelled water, behavioral and accelerometric methods, we measured the total energy expenditure (TEE) and body composition of a population of Eulemur fulvus (N = 12) living in an agroforest in Mayotte. We show that the TEE of this medium-sized cathemeral primate is one of the lowest recorded to date in eutherians. Regression models show that individual variation in the rate of energy use is predicted by fat-free mass, body size, thigh thickness and maximum temperature. TEE is positively correlated with increasing temperature, suggesting that thermoregulation is an important component of the energy budget of this frugivorous species. Mass-specific TEE is only 10% lower than that of a closely related species previously studied in a gallery forest, consistent with the assertion that TEE varies within narrow physiological limits. As lemur communities include many species with unique thermoregulatory adaptations, circadian and/or seasonal temperature variations may have constituted a major selective pressure on the evolution of lemur metabolic strategies.


Subject(s)
Body Temperature Regulation , Energy Metabolism , Lemur , Animals , Energy Metabolism/physiology , Lemur/physiology , Lemur/anatomy & histology , Body Temperature Regulation/physiology , Male , Female , Body Composition/physiology , Temperature
9.
J Fish Biol ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39279054

ABSTRACT

The metabolic rate of a freely moving fish (routine metabolic rate) is tightly coupled with volitional movement (spontaneous activity), both of which commonly show strong daily cycles linked to the species-specific diel activity pattern. Mummichog (Fundulus heteroclitus), an important estuarine fish in the north western Atlantic Ocean, are historically reported as diurnal (i.e., more active during daylight). Our recent laboratory studies on a Bay of Fundy population, however, showed a free-running (i.e., similarly active daytime and night-time) or even nocturnal (i.e., more active at night-time) diel activity pattern. In the laboratory, near-infrared (NIR) illumination is commonly used with a NIR-sensitive camera to visualize fish activity across the light-dark periods of the day. Because NIR light is close to the visible light spectrum and certain fishes show sensitivity to NIR, the use of NIR with mummichog possibly could disturb the animals and obscure the identification of their true diel activity pattern. We aimed to determine if NIR illumination (940 nm wavelength) influences the diel activity pattern of mummichog. We used measurements of routine metabolic rate (oxygen consumption rate, MO2) as a proxy for activity, as evaluating the effect of NIR requires treatments where NIR lights are off, which precludes visualization and direct assessment of fish activity at night-time. We measured routine MO2 of mummichogs over 6 days, exposed to either NIR off-on-off (2 days for each off or on period) or the opposite sequence of NIR on-off-on (to control for time-dependent effects). NIR lights did not influence the diel cycle of routine MO2, and activity by proxy, in mummichog. Thus, NIR illumination is a suitable method to visualize mummichog during light-dark diel cycles. Routine MO2, and presumably activity, was similar or higher during night-time periods compared to daytime periods, confirming a free-running or nocturnal activity pattern for at least certain populations of mummichog.

10.
Int J Parasitol Parasites Wildl ; 25: 100979, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39297147

ABSTRACT

The phenomenon of cuckoos' brood parasitism is well known and can be investigated using applied mathematical techniques. Among adaptive features of this phenomenon are certain egg parameters that ensure their shortened incubation period (I) and thus the successful survival of their offspring. In particular, the volume of a cuckoo egg is not less than, or exceeds, that of the host species, which should, in theory, increase I. Also, cuckoo eggs have thicker shell than that of nest hosts. Here, we analyzed the available geometric dimensions of eggs in 447 species and found an inverse correlation (-0.585, p < 0.05) between I and the shell thickness-to-egg surface area ratio (T/S). A mathematical relationship was derived to calculate I depending on T/S. This premise was confirmed by comparative calculations using egg images of two parasitic species, common (Cuculus canorus) and plaintive cuckoo (Cacomantis merulinus) and their hosts: great reed warbler (Acrocephalus arundinaceus), European robin (Erithacus rubecula), rufescent prinia (Prinia rufescens), and common tailorbird (Orthotomus sutorius). An average calculated I value for cuckoo eggs was one day less than that for host eggs. Our findings unravel additional details of how cuckoos adapt to brood parasitism and specific host-parasite relationships.

11.
NMR Biomed ; : e5260, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254055

ABSTRACT

Isoflurane is one of the most widely used anesthetic agents in rodent imaging studies. However, the impact of isoflurane on brain metabolism has not been fully characterized to date, primarily due to a scarcity of noninvasive technologies to quantitatively measure the brain's metabolic rate in vivo. In this study, using noncontrast MRI techniques, we dynamically measured cerebral metabolic rate of oxygen (CMRO2) under varying doses of isoflurane anesthesia in mice. Concurrently, systemic parameters of heart and respiration rates were recorded alongside CMRO2. Additionally, electroencephalogram (EEG) recording was used to identify changes in neuronal activities under the same anesthetic regimen employed in the MRI experiments. We found suppression of the CMRO2 by isoflurane in a dose-dependent manner, concomitant with a diminished high-frequency EEG activity. The degree of metabolic suppression by isoflurane was strongly correlated with the respiration rate, which offers a potential approach to calibrate CMRO2 measurements. Furthermore, the metabolic level associated with neural responses of the somatosensory and motor cortices in mice was estimated as 308.2 µmol/100 g/min. These findings may facilitate the integration of metabolic parameters into future studies involving animal disease models and anesthesia usage.

12.
World J Gastrointest Surg ; 16(8): 2474-2483, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220071

ABSTRACT

BACKGROUND: This study was to investigate the application value of whole-body dynamic 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging in recurrent anastomotic tumors of digestive tract after gastric and esophageal cancer surgery. Postoperative patients with gastric and esophageal cancer have a high risk of tumor recurrence, and traditional imaging methods have certain limitations in early detection of recurrent tumors. Whole-body dynamic 18F-FDG PET/CT imaging, due to its high sensitivity and specificity, can provide comprehensive information on tumor metabolic activity, which is expected to improve the early diagnosis rate of postoperative recurrent tumors, and provide an important reference for clinical treatment decision-making. AIM: To investigate the clinical value of whole-body dynamic 18F-FDG PET/CT imaging in differentiating anastomotic recurrence and inflammation after the operation of upper digestive tract tumors. METHODS: A retrospective analysis was performed on 53 patients with upper digestive tract tumors after operation and systemic dynamic 18F-FDG PET/CT imaging indicating abnormal FDG uptake by anastomosis, including 29 cases of gastric cancer and 24 cases of esophageal cancer. According to the follow-up results of gastroscopy and other imaging examinations before and after PET/CT examination, the patients were divided into an anastomotic recurrence group and anastomotic inflammation group. Patlak multi-parameter analysis software was used to obtain the metabolic rate (MRFDG), volume of distribution maximum (DVmax) of anastomotic lesions, and MRmean and DVmean of normal liver tissue. The lesion/background ratio (LBR) was calculated by dividing the MRFDG and DVmax of the anastomotic lesion by the MRmean and DVmean of the normal liver tissue, respectively, to obtain LBR-MRFDG and LBR-DVmax. An independent sample t test was used for statistical analysis, and a receiver operating characteristic curve was used to analyze the differential diagnostic efficacy of each parameter for anastomotic recurrence and inflammation. RESULTS: The dynamic 18F-FDG PET/CT imaging parameters MRFDG, DVmax, LBR-MRFDG, and LBR-DVmax of postoperative anastomotic lesions in gastric cancer and esophageal cancer showed statistically significant differences between the recurrence group and the inflammatory group (P < 0.05). The parameter LBR-MRFDG showed good diagnostic efficacy in differentiating anastomotic inflammation from recurrent lesions. In the gastric cancer group, the area under the curve (AUC) value was 0.935 (0.778, 0.993) when the threshold was 1.83, and in the esophageal cancer group, the AUC value was 1. When 86 is the threshold, the AUC value is 0.927 (0.743, 0.993). CONCLUSION: Whole-body dynamic 18F-FDG PET/CT imaging can accurately differentiate the diagnosis of postoperative anastomotic recurrence and inflammation of gastric cancer and esophageal cancer and has the potential to be an effective monitoring method for patients with upper digestive tract tumors after surgical treatment.

13.
J Exp Biol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39234663

ABSTRACT

Increasing evidence shows that larger fish are more vulnerable to acute warming than smaller individuals of the same species. This size-dependency of thermal tolerance has been ascribed to differences in aerobic performance, largely due to a decline in oxygen supply relative to demand. To shed light on these ideas, we examined metabolic allometry in 130 rainbow trout ranging from 12 to 358 g under control conditions (17°C) and in response to acute heating (to 25°C), with and without supplemental oxygen (100% versus 150% air saturation). Under normoxia, high temperature caused an average 17% reduction in aerobic scope compared with 17°C. Aerobic performance disproportionally deteriorated in bigger fish as the scaling exponent (b) for aerobic scope declined from b=0.87 at 17°C to b=0.74 at 25°C. Hyperoxia increased maximum metabolic rate and aerobic scope at both temperatures and disproportionally benefited larger fish at 25°C as the scaling exponent for aerobic scope was reestablished to the same level as at 17°C (b=0.86). This suggests that hyperoxia may provide metabolic refuge for larger individuals, allowing them to sustain aerobic activities when facing acute warming. Notably, the elevated aerobic capacity afforded by hyperoxia did not appear to improve thermal resilience, as mortality in 25°C hyperoxia (13.8%, n=4) was similar to that in normoxia (12.1%, n=4), although we caution that this topic warrants more targeted research. We highlight the need for mechanistic investigations of the oxygen transport system to determine the consequences of differential metabolic scaling across temperature in a climate warming context.

14.
Front Neurol ; 15: 1410525, 2024.
Article in English | MEDLINE | ID: mdl-39139771

ABSTRACT

Recently, the role of high-concentration oxygen therapy in cerebral hemorrhage has been extensively discussed. This review describes the research progress in high-concentration oxygen therapy after cerebral hemorrhage. High-concentration oxygen therapy can be classified into two treatment methods: hyperbaric and normobaric high-concentration oxygen therapy. Several studies have reported that high-concentration oxygen therapy uses the pathological mechanisms of secondary ischemia and hypoxia after cerebral hemorrhage as an entry point to improve cerebral oxygenation, metabolic rate, cerebral edema, intracranial pressure, and oxidative stress. We also elucidate the mechanisms by which molecules such as Hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor, and erythropoietin (EPO) may play a role in oxygen therapy. Although people are concerned about the toxicity of hyperoxia, combined with relevant literature, the evidence discussed in this article suggests that as long as the duration, concentration, pressure, and treatment interval of patients with cerebral hemorrhage are properly understood and oxygen is administered within the treatment window, it can be effective to avoid hyperoxic oxygen toxicity. Combined with the latest research, we believe that high-concentration oxygen therapy plays an important positive role in injuries and outcomes after cerebral hemorrhage, and we recommend expanding the use of normal-pressure high-concentration oxygen therapy for cerebral hemorrhage.

15.
J Exp Biol ; 227(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39092456

ABSTRACT

Respiratory plasticity is a beneficial response to chronic hypoxia in fish. Red drum, a teleost that commonly experiences hypoxia in the Gulf of Mexico, have shown respiratory plasticity following sublethal hypoxia exposure as juveniles, but implications of hypoxia exposure during development are unknown. We exposed red drum embryos to hypoxia (40% air saturation) or normoxia (100% air saturation) for 3 days post fertilization (dpf). This time frame encompasses hatch and exogenous feeding. At 3 dpf, there was no difference in survival or changes in size. After the 3-day hypoxia exposure, all larvae were moved and reared in common normoxic conditions. Fish were reared for ∼3 months and effects of the developmental hypoxia exposure on swim performance and whole-animal aerobic metabolism were measured. We used a cross design wherein fish from normoxia (N=24) were exercised in swim tunnels in both hypoxia (40%, n=12) and normoxia (100%, n=12) conditions, and likewise for hypoxia-exposed fish (n=10 in each group). Oxygen consumption, critical swim speed (Ucrit), critical oxygen threshold (Pcrit) and mitochondrial respiration were measured. Hypoxia-exposed fish had higher aerobic scope, maximum metabolic rate, and higher liver mitochondrial efficiency relative to control fish in normoxia. Interestingly, hypoxia-exposed fish showed increased hypoxia sensitivity (higher Pcrit) and recruited burst swimming at lower swim speeds relative to control fish. These data provide evidence that early hypoxia exposure leads to a complex response in later life.


Subject(s)
Hypoxia , Oxygen Consumption , Swimming , Animals , Swimming/physiology , Hypoxia/physiopathology , Larva/growth & development , Larva/physiology
16.
Sci Total Environ ; 950: 175211, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39111423

ABSTRACT

Squid species, as a burgeoning global food source, has garnered significant concerns due to expanding fisheries and little regulation. Elucidating the dynamics of squid fisheries and their biophysical coupling mechanisms is crucial for predicting spatiotemporal variations in squid fisheries and their sustainable management. Mesoscale eddies are discrete rotating oceanographic features that dominate local environmental variations and have been shown to modulate top predators. However, given controls of both predators and environmental factors, it remains unknown how eddies impact mid-trophic level species such as squids. Using satellite-based global squid fishery datasets, we showed an inverse latitudinal pattern of eddy-induced squid fisheries, where fishing activities are aggregated in (repelled from) cyclonic (anticyclonic) eddy cores in tropical waters and anticyclonic (cyclonic) eddy cores in temperate waters, and this pattern can be significantly enhanced with increasing eddy amplitude. Regarding solely the satellite-based global squid fisheries, eddy-induced environmental variations may generate a trade-off between food intake and energy expenditure, causing these oceanic squids to prefer cool cyclonic eddies in hot but food-limited waters, and warm anticyclonic eddies in nutritious but heat-limited waters. Given that eddy activity is projected to continuously enhance under global warming, our finding of eddy-driven bottom-up control for squid fisheries highlights an increasingly important hotspot for squid stock predictions and ecosystem-based ocean management in a changing climate.


Subject(s)
Decapodiformes , Fisheries , Animals , Ecosystem , Food Chain , Global Warming
17.
J Exp Biol ; 227(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39092671

ABSTRACT

In the context of slow-fast behavioral variation, fast individuals are hypothesized to be those who prioritize speed over accuracy while slow individuals are those which do the opposite. Since energy metabolism is a critical component of neural and cognitive functioning, this predicts such differences in cognitive style to be reflected at the level of the brain. We tested this idea in honeybees by first classifying individuals into slow and fast cognitive phenotypes based on a learning assay and then measuring their brain respiration with high-resolution respirometry. Our results broadly show that inter-individual differences in cognition are reflected in differences in brain mass and accompanying energy use at the level of the brain and the whole animal. Larger brains had lower mass-specific energy usage and bees with larger brains had a higher metabolic rate. These differences in brain respiration and brain mass were, in turn, associated with cognitive differences, such that bees with larger brains were fast cognitive phenotypes whereas those with smaller brains were slow cognitive phenotypes. We discuss these results in the context of the role of energy in brain functioning and slow-fast decision making and speed accuracy trade-off.


Subject(s)
Brain , Cognition , Energy Metabolism , Phenotype , Animals , Bees/physiology , Brain/metabolism , Brain/physiology , Cognition/physiology , Organ Size , Behavior, Animal/physiology
18.
J Exp Biol ; 227(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39206564

ABSTRACT

Torpor is an adaptive strategy allowing heterothermic animals to cope with energy limitations. In birds and mammals, intrinsic and extrinsic factors, such as body mass and ambient temperature, are the main variables influencing torpor use. A theoretical model of the relationship between metabolic rate during torpor and ambient temperature has been proposed. Nevertheless, no empirical attempts have been made to assess the model predictions under different climates. Using open-flow respirometry, we evaluated the ambient temperature at which bats entered torpor and when torpid metabolic rate reached its minimum, the reduction in metabolic rate below basal values, and minimum torpid metabolic rate in 11 bat species of the family Vespertilionidae with different body mass from warm and cold climates. We included data on the minimum torpid metabolic rate of five species we retrieved from the literature. We tested the effects using mixed-effect phylogenetic models. All models showed a significant interaction between body mass and climate. Smaller bats went into torpor and reached minimum torpid metabolic rates at warmer temperatures, showed a higher reduction in the metabolic rate below basal values, and presented lower torpid metabolic rates than larger ones. The slopes of the models were different for bats from different climates. These results are likely explained by differences in body mass and the metabolic rate of bats, which may favor larger bats expressing torpor in colder sites and smaller bats in the warmer ones. Further studies to assess torpor use in bats from different climates are proposed.


Subject(s)
Body Weight , Chiroptera , Climate , Energy Metabolism , Torpor , Animals , Chiroptera/physiology , Torpor/physiology , Temperature , Basal Metabolism , Models, Biological , Phylogeny
19.
J Therm Biol ; 124: 103943, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39151217

ABSTRACT

Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (MO2max and MO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (MO2max) and 1.6 (MO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.


Subject(s)
Thermotolerance , Animals , Hot Temperature , Ecosystem , Oxygen Consumption , Wetlands , Body Temperature
20.
J Therm Biol ; 124: 103941, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39163749

ABSTRACT

The responses of organisms to climate change are mediated primarily by its impact on their metabolic rates, which, in turn, drive various biological and ecological processes. Although there have been numerous seminal studies on the sensitivity of metabolic rate to temperature, little is empirically known about how this rate responds to seasonal temperature ranges and beyond under conservative IPCC climate change scenarios. Here, we measured the SMR of the aquatic amphipod, Gammarus insensibilis, which served as our subject species, with body masses ranging from 0.20 to 7.74 mg ash free weight. We assessed the response of the SMR across nine temperature levels ranging from 12 to 30.2 °C. These temperatures match seasonal temperature norms, with an incremental increase of 0.6-1.2 °C above each seasonal baseline, as projected for the years 2040 and 2100 under the modest climate change scenarios. Overall, our findings showed that the effect of temperature on SMR varies with body mass, as indicated by a negative size-temperature interaction, with larger conspecifics exhibiting less sensitivity to temperature changes than smaller ones. From the cold to warm season, the SMR increased by an average of 14% °C-1, with increases of 18.4% °C-1 in smaller individuals and 11.4% °C-1 in larger ones. The SMR of smaller individuals peaked at a 0.6 °C increase from the current summer baseline (15.08% °C-1, Q10 = 4.2), while in larger ones it peaked with a 1.2 °C increase beyond autumn temperatures (14.9% °C-1, Q10 = 3.9). However, at temperatures reflecting global warming that exceed summer temperatures, the SMR of larger individuals levelled off, while that of smaller ones continued to increase. Overall, our findings suggest that smaller-sized individuals have a broader thermal window for SMR performance, while the SMR of larger-sized ones will become increasingly constrained at summer temperatures as those summer temperatures become hotter.


Subject(s)
Amphipoda , Climate Change , Seasons , Animals , Amphipoda/physiology , Amphipoda/metabolism , Temperature , Basal Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL