Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Acta Trop ; 257: 107295, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906362

ABSTRACT

Histone post-translational modifications are extensively studied for their role in regulating gene transcription and cellular environmental adaptation. Research into these modifications has recently begun in the protozoan parasite Giardia lamblia, focusing on histone-modifying enzymes and specific post-translational changes. In the transformation from the trophozoite to the cyst form in the life cycle of this parasite, significant morphological and genetic alterations occur, culminating in the synthesis of cyst wall proteins responsible for forming the protective cyst wall. It has been previously demonstrated that histone deacetylation is required during encystation and that the enzyme lysine methyltransferase 1 is involved in the upregulation of encystation. Our study aims to extend the analysis to lysine methyltransferase 2 (GlKMT2) function. For this, two constructs were generated: one that downregulate the expression of GLKMT2 via antisense (glkmt2-as transgenic cells) and the other overexpressing GlKMT2 (glkmt2-ha transgenic cells). We found that the glktm2-as transgenic cells showed an arrest in progress at the late encystation stage. Consequently, the number of cysts produced was lower than that of the control cells. On the other hand, we found that the overexpression of GlKMT2 acts as a negative mutant of the enzyme. In this way, these glktm2-ha transgenic cells showed the same behavior during growth and encystation as glkmt2-as transgenic cells. This interplay between different enzymes acting during encystation reveals the complex process behind the differentiation of the parasite. Understanding how these enzymes play their role during the encystation of the parasite would allow the design of inhibitors to control the parasite.


Subject(s)
Giardia lamblia , Parasite Encystment , Protozoan Proteins , Giardia lamblia/enzymology , Giardia lamblia/genetics , Giardia lamblia/growth & development , Giardia lamblia/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Parasite Encystment/physiology , Parasite Encystment/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Protein Processing, Post-Translational
2.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892284

ABSTRACT

SMYD4 is a member of the SMYD family that has lysine methyltransferase function. Little is known about the roles of SMYD4 in cancer. The aim of this study is to investigate genetic alterations in the SMYD4 gene across the most prevalent solid tumors and determine its potential as a biomarker. We performed an integrative multi-platform analysis of the most common mutations, copy number alterations (CNAs), and mRNA expression levels of the SMYD family genes using cohorts available at the Cancer Genome Atlas (TCGA), cBioPortal, and the Catalogue of Somatic Mutations in Cancer (COSMIC). SMYD genes displayed a lower frequency of mutations across the studied tumors, with none of the SMYD4 mutations detected demonstrating sufficient discriminatory power to serve as a biomarker. In terms of CNAs, SMYD4 consistently exhibited heterozygous loss and downregulation across all tumors evaluated. Moreover, SMYD4 showed low expression in tumor samples compared to normal samples, except for stomach adenocarcinoma. SMYD4 demonstrated a frequent negative correlation with other members of the SMYD family and a positive correlation between CNAs and mRNA expression. Additionally, patients with low SMYD4 expression in STAD and LUAD tumors exhibited significantly poorer overall survival. SMYD4 demonstrated its role as a tumor suppressor in the majority of tumors evaluated. The consistent downregulation of SMYD4, coupled with its association with cancer progression, underscores its potential usefulness as a biomarker.


Subject(s)
Mutation , Neoplasms , Humans , Neoplasms/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , DNA Copy Number Variations , Histone-Lysine N-Methyltransferase/genetics
3.
Front Pharmacol ; 15: 1381168, 2024.
Article in English | MEDLINE | ID: mdl-38720770

ABSTRACT

Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.

5.
Clin Exp Pharmacol Physiol ; 51(4): e13851, 2024 04.
Article in English | MEDLINE | ID: mdl-38452757

ABSTRACT

Benign prostatic hyperplasia (BPH) is characterised by increases in prostate volume and contraction. Downregulation of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway contributes to prostate dysfunctions. Previous studies in cancer cells or vessels have shown that the epigenetic mechanisms control the gene and protein expression of the enzymes involved in the production of NO and cGMP. This study is aimed to evaluate the effect of a 2-week treatment of 5-azacytidine (5-AZA), a DNA-methyltransferase inhibitor, in the prostate function of mice fed with a high-fat diet. Functional, histological, biochemical and molecular assays were carried out. Obese mice presented greater prostate weight, α-actin expression and contractile response induced by the α-1adrenoceptors agonist. The relaxation induced by the NO-donor and the protein expression of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) were significantly decreased in the prostate of obese mice. The treatment with 5-AZA reverted the higher expression of α-actin, reduced the hypercontractility state of the prostate and increased the expression of eNOS and sGC and intraprostatic levels of cGMP. When prostates from obese mice treated with 5-AZA were incubated in vitro with inhibitors of the NOS or sGC, the inhibitory effect of 5-AZA was reverted, therefore, showing the involvement of NO and cGMP. In conclusion, our study paves the way to develop or repurpose therapies that recover the expression of eNOS and sGC and, hence, to improve prostate function in BPH.


Subject(s)
Nitric Oxide , Prostatic Hyperplasia , Male , Humans , Mice , Animals , Nitric Oxide/metabolism , Guanylate Cyclase/metabolism , Prostate/metabolism , Mice, Obese , Guanosine Monophosphate/metabolism , Azacitidine/metabolism , Prostatic Hyperplasia/metabolism , Actins/metabolism , Cyclic GMP/metabolism
6.
Nutrition ; 120: 112333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38271759

ABSTRACT

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Subject(s)
Insulin Resistance , Neuropeptides , Rats , Animals , Leptin/metabolism , Insulin/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Diet, High-Fat/adverse effects , Agouti-Related Protein/metabolism , Insulin Receptor Substrate Proteins/metabolism , Receptor, Angiotensin, Type 2/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/genetics , DNA Methyltransferase 3A , Rats, Sprague-Dawley , Obesity/genetics , Obesity/metabolism , Hyperphagia/complications , Hypothalamus/metabolism , Neuropeptides/metabolism , Superoxide Dismutase/metabolism , Angiotensins/metabolism
7.
Curr Neurovasc Res ; 20(5): 586-598, 2024.
Article in English | MEDLINE | ID: mdl-38288841

ABSTRACT

BACKGROUND: Major depression has a complex and multifactorial etiology constituted by the interaction between genetic and environmental factors in its development. OBJECTIVE: The aim of this study was to evaluate the effects of sodium butyrate (SD) on epigenetic enzyme alterations in rats subjected to animal models of depression induced by maternal deprivation (MD) or chronic mild stress (CMS). METHODS: To induce MD, male Wistar rats were deprived of maternal care during the first 10 days of life. To induce CMS, rats were subjected to the CMS for 40 days. Adult rats were then treated with daily injections of SD for 7 days. Animals were subjected to the forced swimming test (FST), and then, histone deacetylase (HDAC), histone acetyltransferase (HAT), and DNA methyltransferase (DNMT) activities were evaluated in the brain. RESULTS: MD and CMS increased immobility time in FST and increased HDAC and DNMT activity in the animal brains. SD reversed increased immobility induced by both animal models and the alterations in HDAC and DNMT activities. There was a positive correlation between enzyme activities and immobility time for both models. HDAC and DNMT activities also presented a positive correlation between themselves. CONCLUSION: These results suggest that epigenetics can play an important role in major depression pathophysiology triggered by early or late life stress and its treatment.


Subject(s)
Antidepressive Agents , Brain , Butyric Acid , Epigenesis, Genetic , Maternal Deprivation , Rats, Wistar , Stress, Psychological , Animals , Male , Stress, Psychological/drug therapy , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Epigenesis, Genetic/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Rats , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Histone Deacetylases/metabolism , Depression/drug therapy , Histone Acetyltransferases/metabolism , Swimming/psychology
8.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069045

ABSTRACT

In this study, molecular dynamics (MD) and docking simulations were carried out on the crystal structure of Neisseria Gonorrhoeae RsmE aiming at free energy of binding estimation (ΔGbinding) of the methyl transfer substrate S-adenosylmethionine (SAM), as well as its homocysteine precursor S-adenosylhomocysteine (SAH). The mechanistic insight gained was generalized in view of existing homology to two other crystal structures of RsmE from Escherichia coli and Aquifex aeolicus. As a proof of concept, the crystal poses of SAM and SAH were reproduced reflecting a more general pattern of molecular interaction for bacterial RsmEs. Our results suggest that a distinct set of conserved residues on loop segments between ß12, α6, and Met169 are interacting with SAM and SAH across these bacterial methyltransferases. Comparing molecular movements over time (MD trajectories) between Neisseria gonorrhoeae RsmE alone or in the presence of SAH revealed a hitherto unknown gatekeeper mechanism by two isoleucine residues, Ile171 and Ile219. The proposed gating allows switching from an open to a closed state, mimicking a double latch lock. Additionally, two key residues, Arg221 and Thr222, were identified to assist the exit mechanism of SAH, which could not be observed in the crystal structures. To the best of our knowledge, this study describes for the first time a general catalytic mechanism of bacterial RsmE on theoretical ground.


Subject(s)
Escherichia coli Proteins , Methyltransferases , Methyltransferases/metabolism , RNA, Ribosomal, 16S/genetics , Molecular Dynamics Simulation , Methylation , Escherichia coli/genetics , Escherichia coli/metabolism , S-Adenosylmethionine/metabolism , Escherichia coli Proteins/metabolism
9.
Ther Clin Risk Manag ; 19: 1005-1018, 2023.
Article in English | MEDLINE | ID: mdl-38050617

ABSTRACT

Purpose: Thiopurine S-methyltransferase (TPMT) is an enzyme that metabolizes purine analogs, agents used in the treatment of acute lymphoblastic leukemia. Improper drug metabolism leads to toxicity in chemotherapy patients and reduces treatment effectiveness. TPMT variants associated with reduced enzymatic activity vary across populations. Therefore, studying these variants in heterogeneous populations, such as Ecuadorians, can help identify molecular causes of deficiency for this enzyme. Methods: We sequenced the entire TPMT coding region in 550 Ecuadorian individuals from Afro-Ecuadorian, Indigenous, Mestizo, and Montubio ethnicities. Moreover, we conducted an ancestry analysis using 46 informative ancestry markers. Results: We identified 8 single nucleotide variants in the coding region of TPMT. The most prevalent alleles were TPMT*3A, TPMT*3B, and TPMT*3C, with frequencies of 0.055, 0.012, and 0.015, respectively. Additionally, we found rare alleles TPMT*4 and TPMT*8 with frequencies of 0.005 and 0.003. Correlating the ancestry proportions with TPMT-deficient genotypes, we observed that the Native American ancestry proportion influenced the distribution of the TPMT*1/TPMT*3A genotype (OR = 5.977, p = 0.002), while the contribution of African ancestral populations was associated with the TPMT*1/TPMT*3C genotype (OR = 9.769, p = 0.003). The rates of TPMT-deficient genotypes observed in Mestizo (f = 0.121) and Indigenous (f = 0.273) groups provide evidence for the influence of Native American ancestry and the prevalence of the TPMT*3A allele. In contrast, although Afro-Ecuadorian groups demonstrate similar deficiency rates (f = 0.160), the genetic factors involved are associated with contributions from African ancestral populations, specifically the prevalent TPMT*3C allele. Conclusion: The distribution of TPMT-deficient variants offers valuable insights into the populations under study, underscoring the necessity for genetic screening strategies to prevent thiopurine toxicity events among Latin American minority groups.

10.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894922

ABSTRACT

Changes in epigenetic programming have been proposed as being key events in the initiation and progression of childhood cancers. HMT euchromatic histone lysine methyltransferase 2 (G9a, EHMT2), which is encoded by the G9a (Ehmt2) gene, as well as its related protein GLP, which is encoded by the GLP/Ehmt1 gene, participate in epigenetic regulation by contributing to a transcriptionally repressed chromatin state. G9a/GLP activation has been reported in several cancer types. Herein, we evaluated the role of G9a in two solid pediatric tumors: neuroblastoma (NB) and Ewing sarcoma (ES). Our results show that G9a/Ehmt2 and GLP/Ehmt1 expression is higher in tumors with poorer prognosis, including St4 International Neuroblastoma Staging System (INSS) stage, MYCN amplified NB, and metastatic ES. Importantly, higher G9a and GLP levels were associated with shorter patient overall survival (OS) in both NB and ES. Moreover, pharmacological inhibition of G9a/GLP reduced cell viability in NB and ES cells. These findings suggest that G9a and GLP are associated with more aggressive NB and ES tumors and should be further investigated as being epigenetic targets in pediatric solid cancers.


Subject(s)
Neuroblastoma , Sarcoma, Ewing , Child , Humans , Cell Survival/genetics , Epigenesis, Genetic , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone Methyltransferases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Neuroblastoma/genetics , Sarcoma, Ewing/genetics
11.
Physiol Rep ; 11(19): e15833, 2023 10.
Article in English | MEDLINE | ID: mdl-37771070

ABSTRACT

We evaluated whether anserine, a methylated analog of the dipeptide carnosine, is present in the cardiac and skeletal muscles of humans and whether the CARNMT1 gene, which encodes the anserine synthesizing enzyme carnosine-N-methyltransferase, is expressed in human skeletal muscle. We found that anserine is present at low concentrations (low micromolar range) in both cardiac and skeletal muscles, and that anserine content in skeletal muscle is ~15 times higher than in cardiac muscle (cardiac muscle: 10.1 ± 13.4 µmol·kg-1 of dry muscle, n = 12; skeletal muscle: 158.1 ± 68.5 µmol·kg-1 of dry muscle, n = 11, p < 0.0001). Anserine content in the heart was highly variable between individuals, ranging from 1.4 to 45.4 µmol·kg-1 of dry muscle, but anserine content was not associated with sex, age, or body mass. We also showed that CARNMT1 gene is poorly expressed in skeletal muscle (n = 10). This is the first study to demonstrate that anserine is present in the ventricle of the human heart. The presence of anserine in human heart and the confirmation of its expression in human skeletal muscle open new avenues of investigation on the specific and differential physiological functions of histidine dipeptides in striated muscles.


Subject(s)
Anserine , Carnosine , Humans , Anserine/analysis , Anserine/metabolism , Carnosine/analysis , Carnosine/metabolism , Muscle, Skeletal/metabolism , Dipeptides/metabolism , Myocardium/metabolism
12.
Methods Mol Biol ; 2698: 87-107, 2023.
Article in English | MEDLINE | ID: mdl-37682471

ABSTRACT

Capturing the dynamic and transient interactions of a transcription factor (TF) with its genome-wide targets whose regulation leads to plants' adaptation to their changing environment is a major technical challenge. This is a widespread problem with biochemical methods such as chromatin immunoprecipitation-sequencing (ChIP-seq) which are biased towards capturing stable TF-target gene interactions. Herein, we describe how DNA adenine methyltransferase identification and sequencing (DamID-seq) can be used to capture both transient and stable TF-target interactions by DNA methylation. The DamID technique uses a TF protein fused to a DNA adenine methyltransferase (Dam) from E. coli. When expressed in a plant cell, the Dam-TF fusion protein will methylate adenine (A) bases near the sites of TF-DNA interactions. In this way, DamID results in a permanent, stable DNA methylation mark on TF-target gene promoters, even if the target gene is only transiently "touched" by the Dam-TF fusion protein. Here we provide a step-by-step protocol to perform DamID-seq experiments in isolated plant cells for any Dam-TF fusion protein of interest. We also provide information that will enable researchers to analyze DamID-seq data to identify TF-binding sites in the genome. Our protocol includes instructions for vector cloning of the Dam-TF fusion proteins, plant cell protoplast transfections, DamID preps, library preparation, and sequencing data analysis. The protocol outlined in this chapter is performed in Arabidopsis thaliana, however, the DamID-seq workflow developed in this guide is broadly applicable to other plants and organisms.


Subject(s)
Arabidopsis , DNA Methylation , Plant Cells , Escherichia coli , DNA , Transcription Factors , Adenine , Arabidopsis/genetics , Factor VII , Methyltransferases
13.
New Phytol ; 240(2): 597-612, 2023 10.
Article in English | MEDLINE | ID: mdl-37548040

ABSTRACT

Here, we report the characterization of a plant RNA methyltransferase, orthologous to yeast trimethylguanosine synthase1 (Tgs1p) and whose downregulation was associated with apomixis in Paspalum grasses. Using phylogenetic analyses and yeast complementation, we determined that land plant genomes all encode a conserved, specific TGS1 protein. Next, we studied the role of TGS1 in female reproduction using reporter lines and loss-of-function mutants in Arabidopsis thaliana. pAtTGS1:AtTGS1 reporters showed a dynamic expression pattern. They were highly active in the placenta and ovule primordia at emergence but, subsequently, showed weak signals in the nucellus. Although expressed throughout gametophyte development, activity became restricted to the female gamete and was also detected after fertilization during embryogenesis. TGS1 depletion altered the specification of the precursor cells that give rise to the female gametophytic generation and to the sporophyte, resulting in the formation of a functional aposporous-like lineage. Our results indicate that TGS1 participates in the mechanisms restricting cell fate acquisition to a single cell at critical transitions throughout the female reproductive lineage and, thus, expand our current knowledge of the mechanisms governing female reproductive fate in plants.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Saccharomyces cerevisiae , Phylogeny , Mutation/genetics , Ovule/metabolism , Germ Cells , Gene Expression Regulation, Plant
14.
Front Genet ; 14: 1037406, 2023.
Article in English | MEDLINE | ID: mdl-37614819

ABSTRACT

Colorectal cancer is a complex disease resulting from the interaction of genetics, epigenetics, and environmental factors. DNA methylation is frequently found in tumor suppressor genes to promote cancer development. Several factors are associated with changes in the DNA methylation pattern, and recently, the gastrointestinal microbiota could be associated with this epigenetic change. The predominant phyla in gut microbiota are Firmicutes and Bacteroidetes; however, an enrichment of Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus bovis, among others, has been reported in colorectal cancer, although the composition could be influenced by several factors, including diet, age, sex, and cancer stage. Fusobacterium nucleatum, a gram-negative anaerobic bacillus, is mainly associated with colorectal cancer patients positive for the CpG island methylator phenotype, although hypermethylation in genes such as MLH1, CDKN2A, MTSS1, RBM38, PKD1, PTPRT, and EYA4 has also been described. Moreover, Hungatella hathewayi, a gram-positive, rod-shaped bacterium, is related to hypermethylation in SOX11, THBD, SFRP2, GATA5, ESR1, EYA4, CDX2, and APC genes. The underlying epigenetic mechanism is unclear, although it could be implicated in the regulation of DNA methyltransferases, enzymes that catalyze the transfer of a methyl group on cytosine of CpG sites. Since DNA methylation is a reversible event, changes in gut microbiota could modulate the gene expression through DNA methylation and improve the colorectal cancer prognosis.

15.
Acta Trop ; 244: 106959, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37257676

ABSTRACT

Arginine methylation is catalysed by Protein Arginine Methyltransferases (PRMTs) and can affect how a target protein functions and how it interacts with other macromolecules, which in turn impacts on cell metabolism and gene expression control. Leishmania parasites express five different PRMTs, and although the presence of each individual PRMT is not essential per se, the imbalanced activity of these PRMTs can impact the virulence of Leishmania parasites in vitro and in vivo. Here we created a Leishmania major cell line overexpressing PRMT6 and show that similar to what was observed for the T. brucei homologous enzyme, L. major PRMT6 probably has a narrow substrate range. However, its overexpression notably impairs the infection in mice, with a mild reduction in the number of viable parasites in the lymph nodes. Our results indicate that arginine methylation by LmjPRMT6 plays a significant role in the adaptation of the parasite to the environment found in the mammalian host.


Subject(s)
Leishmania major , Parasites , Mice , Animals , Protein-Arginine N-Methyltransferases/chemistry , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Parasites/metabolism , Methylation , Arginine/metabolism , Mammals
16.
Pharmaceutics ; 15(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37111599

ABSTRACT

Searching for new alternatives for treating leishmaniasis, we present the synthesis, characterization, and biological evaluation against Leishmania amazonensis of the new ZnCl2(H3)2 complex. H3 is 22-hydrazone-imidazoline-2-yl-chol-5-ene-3ß-ol, a well-known bioactive molecule functioning as a sterol Δ24-sterol methyl transferase (24-SMT) inhibitor. The ZnCl2(H3)2 complex was characterized by infrared, UV-vis, molar conductance measurements, elemental analysis, mass spectrometry, and NMR experiments. The biological results showed that the free ligand H3 and ZnCl2(H3)2 significantly inhibited the growth of promastigotes and intracellular amastigotes. The IC50 values found for H3 and ZnCl2(H3)2 were 5.2 µM and 2.5 µM for promastigotes, and 543 nM and 32 nM for intracellular amastigotes, respectively. Thus, the ZnCl2(H3)2 complex proved to be seventeen times more potent than the free ligand H3 against the intracellular amastigote, the clinically relevant stage. Furthermore, cytotoxicity assays and determination of selectivity index (SI) revealed that ZnCl2(H3)2 (CC50 = 5 µΜ, SI = 156) is more selective than H3 (CC50 = 10 µΜ, SI = 20). Furthermore, as H3 is a specific inhibitor of the 24-SMT, free sterol analysis was performed. The results showed that H3 was not only able to induce depletion of endogenous parasite sterols (episterol and 5-dehydroepisterol) and their replacement by 24-desalkyl sterols (cholesta-5,7,24-trien-3ß-ol and cholesta-7,24-dien-3ß-ol) but also its zinc derivative resulting in a loss of cell viability. Using electron microscopy, studies on the fine ultrastructure of the parasites showed significant differences between the control cells and parasites treated with H3 and ZnCl2(H3)2. The inhibitors induced membrane wrinkle, mitochondrial injury, and abnormal chromatin condensation changes that are more intense in the cells treated with ZnCl2(H3)2.

18.
Microb Genom ; 9(3)2023 03.
Article in English | MEDLINE | ID: mdl-36961505

ABSTRACT

Antimicrobial resistance (AMR) mechanisms, especially those conferring resistance to critically important antibiotics, are a great concern for public health. 16S rRNA methyltransferases (16S-RMTases) abolish the effectiveness of most clinically used aminoglycosides, but some of them are considered sporadic, such as RmtE. The main goals of this work were the genomic analysis of bacteria producing 16S-RMTases from a 'One Health' perspective in Venezuela, and the study of the epidemiological and evolutionary scenario of RmtE variants and their related mobile genetic elements (MGEs) worldwide. A total of 21 samples were collected in 2014 from different animal and environmental sources in the Cumaná region (Venezuela). Highly aminoglycoside-resistant Enterobacteriaceae isolates were selected, identified and screened for 16S-RMTase genes. Illumina and Nanopore whole-genome sequencing data were combined to obtain hybrid assemblies and analyse their sequence type, resistome, plasmidome and pan-genome. Genomic collections of rmtE variants and their associated MGEs were generated to perform epidemiological and phylogenetic analyses. A single 16S-RMTase, the novel RmtE4, was identified in five Klebsiella isolates from wastewater samples of Cumaná. This variant possessed three amino acid modifications with respect to RmtE1-3 (Asn152Asp, Val216Ile and Lys267Ile), representing the most genetic distant among all known and novel variants described in this work, and the second most prevalent. rmtE variants were globally spread, and their geographical distribution was determined by the associated MGEs and the carrying bacterial species. Thus, rmtE4 was found to be confined to Klebsiella isolates from South America, where it was closely related to ISVsa3 and an uncommon IncL plasmid related with hospital environments. This work uncovered the global scenario of RmtE and the existence of RmtE4, which could potentially emerge from South America. Surveillance and control measures should be developed based on these findings in order to prevent the dissemination of this AMR mechanism and preserve public health worldwide.


Subject(s)
Klebsiella , Aminoglycosides/pharmacology , Plasmids/genetics , Hospitals , Animals , Venezuela , Klebsiella/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Phylogeny
19.
Eur J Med Chem ; 252: 115290, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36958266

ABSTRACT

Emerging and/or re-emerging viral diseases such as dengue and Zika are a worldwide concern. Therefore, new antiviral therapeutics are necessary. In this sense, a non-structural protein with methyltransferase (MTase) activity is an attractive drug target because it plays a crucial role in dengue and Zika virus replication. Different drug strategies such as virtual screening, molecular docking, and molecular dynamics have identified new inhibitors that bind on the MTase active site. Therefore, in this review, we analyze MTase inhibitors, including S-adenosyl-L-methionine (SAM), S-adenosyl-l-homocysteine (SAH) and guanosine-5'-triphosphate (GTP) analogs, nitrogen-containing heterocycles (pyrimidine, adenosine, and pyridine), urea derivatives, and natural products. Advances in the design of MTase inhibitors could lead to the optimization of a possible single or broad-spectrum antiviral drug against dengue and Zika virus.


Subject(s)
Arboviruses , Dengue , Zika Virus Infection , Zika Virus , Humans , Molecular Docking Simulation , Arboviruses/metabolism , Viral Nonstructural Proteins , Antiviral Agents/chemistry , Methyltransferases , Dengue/drug therapy , Zika Virus Infection/drug therapy
20.
Front Microbiol ; 14: 1079855, 2023.
Article in English | MEDLINE | ID: mdl-36910171

ABSTRACT

Introduction: The human blood fluke parasite Schistosoma mansoni relies on diverse mechanisms to adapt to its diverse environments and hosts. Epigenetic mechanisms play a central role in gene expression regulation, culminating in such adaptations. Protein arginine methyltransferases (PRMTs) promote posttranslational modifications, modulating the function of histones and non-histone targets. The coactivator-associated arginine methyltransferase 1 (CARM1/PRMT4) is one of the S. mansoni proteins with the PRMT core domain. Methods: We carried out in silico analyses to verify the expression of SmPRMTs in public datasets from different infection stages, single-sex versus mixed-worms, and cell types. The SmCARM1 function was evaluated by RNA interference. Gene expression levels were assessed, and phenotypic alterations were analyzed in vitro, in vivo, and ex vivo. Results: The scRNAseq data showed that SmPRMTs expression is not enriched in any cell cluster in adult worms or schistosomula, except for Smcarm1 expression which is enriched in clusters of ambiguous cells and Smprmt1 in NDF+ neurons and stem/germinal cells from schistosomula. Smprmt1 is also enriched in S1 and late female germ cells from adult worms. After dsRNA exposure in vitro, we observed a Smcarm1 knockdown in schistosomula and adult worms, 83 and 69%, respectively. Smcarm1-knockdown resulted in reduced oviposition and no significant changes in the schistosomula or adult worm phenotypes. In vivo analysis after murine infection with Smcarm1 knocked-down schistosomula, showed no significant change in the number of worms recovered from mice, however, a significant reduction in the number of eggs recovered was detected. The ex vivo worms presented a significant decrease in the ovary area with a lower degree of cell differentiation, vitelline glands cell disorganization, and a decrease in the testicular lobe area. The worm tegument presented a lower number of tubercles, and the ventral sucker of the parasites presented a damaged tegument and points of detachment from the parasite body. Discussion: This work brings the first functional characterization of SmCARM1 shedding light on its roles in S. mansoni biology and its potential as a drug target. Additional studies are necessary to investigate whether the reported effects of Smcarm1 knockdown are a consequence of the SmCARM1-mediated methylation of histone tails involved in DNA packaging or other non-histone proteins.

SELECTION OF CITATIONS
SEARCH DETAIL