Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274625

ABSTRACT

Al-Mg alloys are widely used as important engineering structural materials in aerospace engineering, transportation systems, and structural constructions due to their low density, high specific strength, corrosion resistance, welding capability, fatigue strength, and cost-effectiveness. However, the conventional Al-Mg alloys can no longer fully satisfy the demands of practical production due to difficulties caused by many defects. The high strength of Al-Mg alloys as non-heat treatment precipitation-strengthened alloys is achieved primarily by solid solution strengthening along with work hardening rather than precipitation strengthening. Therefore, severe plastic deformation (SPD) techniques can be often used to produce ultrafine-grained structures to fabricate ultra-high strength aluminum alloys. However, this approach often achieves the strengthening of material at the cost of reduced ductility. This paper comprehensively summarizes the various approaches of ultrafine/nanocrystalline materials for enhancing their plasticity, elaborates on the creation of a bimodal microstructure within the alloy, and discusses the formation of a nanotwin microstructure within the alloy and the incorporation of dispersed nanoparticles. The mechanisms underlying both the strengthening and toughening during large plastic deformation in aluminum alloys are summarized, and the future research direction of high-performance ultrafine crystalline and nanocrystalline Al-Mg aluminum alloys is prospected.

2.
Materials (Basel) ; 17(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39203177

ABSTRACT

The microstructure and mechanical properties of as-cast Al-10Ce-3Mg-xZn (x = 0, 1, 3, 5 wt.%) alloys were systematically investigated, with a focus on the effect of Zn on the Al11Ce3 reinforcing phase in the alloy. The results showed that the Al-10Ce-3Mg alloy consists of α-Al, a Chinese-script Al11Ce3 eutectic phase, and a massive Al11Ce3 primary phase. With the addition of Zn content, most of the Zn atoms are enriched in the Al11Ce3 phase to form the acicular-like Al2CeZn2 phase within the Al11Ce3 phase. Increasing the Zn content can increase the volume fraction of the Al11Ce3 phase. Compared to the alloy without Zn addition, the microhardness and elastic modulus of the Al2CeZn2-reinforced Al11Ce3 phase in the alloy with 5 wt.% Zn increased by 18.9% and 9.0%, respectively. Moreover, the room-temperature mechanical properties of Al-10Ce-3Mg alloys were significantly improved due to the addition of Zn element. The alloy containing 5 wt.% Zn had the best tensile properties with an ultimate tensile strength of 210 MPa and a yield strength of 171MPa, which were 21% and 77% higher than those of the alloy without Zn, respectively. The alloy containing 5 wt.% Zn demonstrated a superior retention ratio of tensile strength at 200-300 °C, indicating that the alloy has excellent heat resistance. The improvement in the mechanical properties is primarily attributed to second-phase strengthening and solid solution strengthening.

3.
Sci Rep ; 14(1): 15453, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965308

ABSTRACT

Present study has been conducted to characterize the Mg alloy namely AZ31-based composite joined by Friction stir processing (FSP) technique. This study deals with the effect of single and double passes in FSP of AZ31 Mg alloy. The single pass run in FSP is followed at tool rotation speed (N) of 1000 to 1400 rpm. Also, the double pass run in FSP was followed at these speeds without using reinforcements. The feedstock particles namely SiC, Al2O3, Cr, and Si powders were used in fabrication process. The hardness, impact strength, and tensile strength characteristics were assessed in the stir region zone, and the results indicated significant improvement in these properties. The highest values of mechanical strength were seen in the FSPed area with N = 1000 rpm at a constant transverse speed (r) of 40 mm/min. Also, the tensile strength of the two passes FSPed plates is much higher than that of the single section without any reinforcement, as revealed in previous study also. The Scanning electron microscopy (SEM) analysis is done at two different magnifications for the Silicon carbide, Alumina, Chromium, and Silicon powder reinforced composites fabricated at speed of 1000 rpm. The microstructure shows that reinforced particles were uniform dispersed into FSPed region and agglomerated with Mg matrix. Si powder produces finer microstructure as compare to SiC, Al2O3, Cr. FSP decreases the grain size of processed material. Optical Microscopy results revealed that the reinforcement particle produced a homogenous microstructure and, a refined grain and equally dispersed in matrix material without split to the particle.

4.
Heliyon ; 10(13): e33125, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39035519

ABSTRACT

The microstructure, corrosion resistance and mechanical properties of extruded pure Mg, Mg-2Y and Mg-2Gd were studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), scanning probe microscope (SPM), immersion test, electrochemical test and tensile test. The results demonstrated that Mg-2Y and Mg-2Gd were composed of Mg, Mg24Y5, and Mg5Gd phases with the addition of Y and Gd. The addition of Y and Gd to pure Mg noticeably reduced the grain size and textural strength of the alloy. Mg-2Gd alloy had the smallest grain size and the lowest textural strength. The corrosion rate of Mg-2Gd was the slowest due to the influence of grain size. Y slowed the corrosion of pure Mg in the early stages due to the grain refinement, but speeded up the corrosion because of the galvanic corrosion produced by the precipitation of the second phase in the latter stages. The elongation of pure Mg, Mg-2Y, and Mg-2Gd were 16.5 %, 38.67 %, and 48.67 %, respectively. The inclusion of Y and Gd refined the grain, softened the texture strength, and activated basal slip, which improved the elasticity of alloys. Gd was more significant than Y in improving the corrosion resistance and mechanical properties of pure Mg.

5.
Materials (Basel) ; 17(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39063797

ABSTRACT

Low-alloyed Mg-Li-Er alloys were developed in this study and a bimodal-grained structure was obtained by varying the trace Er content and extrusion temperature. The alloys displayed a good strength-ductility synergy, i.e., a tensile yield strength (TYS) of 270 MPa and an elongation (EL) of 19.1%. Microstructural characterization revealed that the formation of numerous submicron Mg24Er5 particles favored a high density of low-angle grain boundaries (LAGBs) inside the deformed grains and inhibited dynamic recrystallization (DRX). The resultant coarse unDRXed grains with a strong basal texture and considerable LAGBs, together with the fine DRXed grains, contributed to the high strength-ductility synergy.

6.
Sci Rep ; 14(1): 8299, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594488

ABSTRACT

In the pursuit of magnesium (Mg) alloys with targeted mechanical properties, a multi-objective Bayesian optimisation workflow is presented to enable optimal Mg-alloy design. A probabilistic Gaussian process regressor model was trained through an active learning loop, while balancing the exploration and exploitation trade-off via an acquisition function of the upper confidence bound. New candidate alloys suggested by the optimiser within each iteration were appended to the training data, and the performance of this sequential strategy was validated via a regret analysis. Using the proposed approach, the dependency of the prediction error on the training data was overcome by considering both the predictions and their associated uncertainties. The method developed here, has been packaged into a web tool with a graphical user-interactive interface (GUI) that allows the proposed optimal Mg-alloy design strategy to be deployed.

7.
Materials (Basel) ; 17(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612195

ABSTRACT

A new Mg-Zn-Zr-Ca alloy in a powder state, intended to be used for custom shaped implants, was obtained via a mechanical alloying method from pure elemental powder. Further, the obtained powder alloy was processed by a PBF-LB/M (powder bed fusion with laser beam/of metal) procedure to obtain additive manufactured samples for small biodegradable implants. A series of microstructural, mechanical and corrosion analyses were performed. The SEM (scanning electron microscopy) analysis of the powder alloy revealed a good dimensional homogeneity, with a uniform colour, no agglutination and almost rounded particles, suitable for the powder bed fusion procedure. Further, the PBF-LB/M samples revealed a robust and unbreakable morphology, with a suitable porosity (that can reproduce that of cortical bone) and without an undesirable balling effect. The tested Young's modulus of the PBF-LB/M samples, which was 42 GPa, is close to that of cortical bone, 30 GPa. The corrosion tests that were performed in PBS (Phosphate-buffered saline) solution, with three different pH values, show that the corrosion parameters have a satisfactory evolution comparative to the commercial ZK 60 alloy.

8.
J Mech Behav Biomed Mater ; 154: 106510, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593720

ABSTRACT

Stress corrosion cracking (SCC) can be a crucial problem in applying rare earth (RE) Magnesium alloys in environments where mechanical loads and electrochemical driven degradation processes interact. It has been proven already that the SCC behavior is associated with microstructural features, compositions, loading conditions, and corrosive media, especially in-vivo. However, it is still unclear when and how mechanisms acting on multiple scales and respective system descriptors predictable contribute to SCC for the wide set of existing Mg alloys. In the present work, suitable literature data along SCC of Mg alloys has been analyzed to enable the development of a reliable SCC model for MgGd binary alloys. Pearson correlation coefficient and linear fitting are utilized to describe the contribution of selected parameters to corrosion and mechanical properties. Based on our data analysis, a parameter ranking is obtained, providing information on the SCC impact with regard to ultimate tensile strength (UTS) and fracture elongation of respective materials. According to the analyzed data, SCC susceptibility can be grouped and mapped onto Ashby type diagrams for UTS and elongation of respective base materials tested in air and in corrosive media. The analysis reveals the effect of secondary phase content as a crucial materials descriptor for our analyzed materials and enables better understanding towards SCC model development for Mg-5Gd alloy based implant.


Subject(s)
Alloys , Caustics , Materials Testing , Alloys/chemistry , Corrosion , Data Analysis , Biocompatible Materials/chemistry
9.
Heliyon ; 10(4): e24348, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434039

ABSTRACT

Magnesium and its alloys are considered excellent materials for biodegradable implants because of their good biocompatibility and biodegradability as well as their mechanical properties. However, the rapid degradation rate severely limits their clinical applications. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is an effective surface modification technique. However, there are many pores and cracks on the coating surface under conventional PEO process. The corrosive products tend to penetrate deeply into the substrate, reducing its corrosion resistance and the biocompatibility, which makes PEO-coated Mg difficult to meet the long-term needs of in vivo implants. Hence, it is necessary to modify the PEO coating. This review discusses the formation mechanism and the influential parameters of PEO coatings on Mg. This is followed by a review of the latest research of the pretreatment and typical amelioration of PEO coating on biodegradable Mg alloys in the past 5 years, including calcium phosphate (Ca-P) coating, layered double hydroxide (LDH)-PEO coating, ZrO2 incorporated-PEO coating, antibacterial ingredients-PEO coating, drug-PEO coating, polymer-PEO composite coating, Plasma electrolytic fluorination (PEF) coating and self-healing coating. Meanwhile, the improvements of morphology, corrosion resistance, wear resistance, biocompatibility, antibacterial abilities, and drug loading abilities and the preparation methods of the modified PEO coatings are deeply discussed as well. Finally, the challenges and prospects of PEO coatings are discussed in detail for the purpose of promoting the clinical application of biodegradable Mg alloys.

10.
Materials (Basel) ; 17(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38541547

ABSTRACT

The second-phase particles in magnesium alloys could affect the mechanical properties of the material significantly. In this work, 3D finite element models with explicit incorporation of second-phase particles are established. The simulations are calibrated with the experimental results of the Mg-1Gd alloy. The influences of factors, such as the particle distribution, size, and orientation of cylindrical particles, on precipitation hardening are investigated in detail. Three interface conditions between particles and the matrix-perfect bonding and high- and low-strength bonding-are studied at the same time. The interface conditions are shown to exert a stronger influence on precipitation hardening compared to the factors of particle distribution and size. In contrast, the influence of the orientation of cylindrical particles at grain boundaries outweighs the effect of interface property. When second-phase particles are relatively large and all located at grain boundaries, the hardening effect can be improved, and the magnesium alloy shows relatively high flow stress. However, the high hardening effect from the second-phase particles could result in high local stress concentration and possible early failure or low ductility of Mg alloys.

11.
Materials (Basel) ; 17(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399152

ABSTRACT

Mg alloys with excellent high-temperature mechanical properties are urgently desired to meet the design requirements of new-generation aircraft. Herein, novel cast Mg-10Gd-2Y-0.4Zn-0.2Ca-0.5Zr-xAg alloys were designed and prepared according to the advantages of multi-component alloying. The SEM and XRD results revealed that the as-cast microstructures contained α-Mg grains, ß, and Zr-containing phase. As Ag rose from 0 wt.% to 2.0 wt.%, the grain size was refined from 40.7 µm to 33.5 µm, and the ß phase significantly increased. The TEM observations revealed that the nano-scaled γ' phase could be induced to precipitate in the α-Mg matrix by the addition of Ag. The stacking sequence of lamellar γ' phases is ABCA. The multiple strengthening phases, including ß phase, γ' phases, and Zr-containing particles, were effectively tailored through alloying and synergistically enhanced the mechanical properties. The ultimate tensile strength increased from 154.0 ± 3.5 MPa to 231.0 ± 4.0 MPa at 548 K when Ag was added from 0 to 2.0 wt.%. Compared to the Ag-free alloy, the as-cast alloy containing 2.0 wt.% Ag exhibited a minor reduction in ultimate tensile strength (7.0 ± 4.0 MPa) from 498 K to 548 K. The excellent high-temperature performance of the newly developed Mg-RE-Ag alloy has great value in promoting the use of Mg alloys in aviation industries.

12.
Dent Mater ; 40(3): 557-562, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326212

ABSTRACT

OBJECTIVES: This study aimed to investigate the biocompatibility, osteogenic and antibacterial activity of biomedical devices based on Magnesium (Mg) Alloys manufactured by Superplastic Forming process (SPF) and subjected to Hydrothermal (HT) and Sol-Gel Treatment (Sol-Gel). METHODS: Mg-SPF devices subjected to Hydrothermal (Mg-SPF+HT) and Sol-Gel Treatment (Mg-SPF+Sol-Gel) were investigated. The biocompatibility of Mg-SPF+Sol-Gel and Mg-SPF+HT devices was observed by indirect and direct cytotoxicity assays, whereas the colonization of sample surfaces was assessed by confocal microscopy. qRT-PCR analysis and microbial growth curve analyses were employed to evaluate the osteogenic and antibacterial activity of both SPF-Mg treated devices, respectively. RESULTS: Mg-SPF+HT and Mg-SPF+Sol-Gel showed a high degree of biocompatibility. Analysis of mRNA expression of osteogenic genes in cells cultured on Mg-treated devices revealed a significant upregulation of the expression levels of BMP2 and Runx-2. Furthermore, the bacterial growth in strains developed in contact with both the Mg-SPF+HT and Mg-SPF+Sol-Gel devices was lower than that observed in the control. SIGNIFICANCE: Hydrothermal and Sol-Gel Treatments of Mg alloys obtained through the SPF process demonstrated bioactive, osteogenic and antibacterial activity, offering a promising alternative to conventional Mg-based devices. The obtained Mg-based materials may have the potential to enhance the tunability of temporary devices in maxillary reconstruction, eliminating the need for second surgeries, and ensuring a good bone reconstruction and a reduced implant failure rate due to bacterial infections.


Subject(s)
Alloys , Magnesium , Magnesium/pharmacology , Alloys/pharmacology , Anti-Bacterial Agents/pharmacology
13.
ChemSusChem ; 17(4): e202301589, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38143242

ABSTRACT

Rechargeable magnesium batteries (RMBs) become a highly promising candidate for the large-scale energy storage system by right of the high volumetric capacity, intrinsic safety and abundant resources of Mg anode. However, the uneven Mg stripping and large overpotential will cause a severe pitting perforation and the followed failure of Mg anode. Herein, we proposed a high-performance binary Mg-1 at% Gd alloy anode prepared by the melting and hot extrusion. The introduction of 1 at% Gd element can effectively reduce the Mg2+ diffusion energy barrier (0.34 eV) on alloy surface and induces the formation of a robust and low-resistance electrolyte/anode interphase, thus enabling a uniform and fast Mg plating/stripping. As a result, the Mg-1 at.% Gd anode displays a largely enhanced life of 220 h and a low overpotential of 213 mV at a high current density of 5.0 mA cm-2 with 2.5 mAh cm-2 . Moreover, the assembled Mg-1 at.% Gd//Mo6 S8 full cell delivers a high rate performance (73.5 mAh g-1 at 5 C) and ultralong cycling stability of 8000 cycles at 5 C. This work brings new insights to design the new-type and practical Mg alloy anodes for commercial RMBs.

14.
ACS Biomater Sci Eng ; 9(11): 6058-6083, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37774322

ABSTRACT

Zinc (Zn) and its alloys are considered futuristic biodegradable materials for their acceptable mechanical properties, suitable corrosion rate, and good biocompatibility. In this study, we report newly developed biodegradable Zn-2Cu-xMn/Mg (x = 0, 0.1, and 0.5) alloys, aiming to achieve good mechanical strength with excellent elongation, desirable wear resistance, and suitable corrosion rate. The effect of Mn/Mg addition on the structural, mechanical, wear, and degradation behaviors of the Zn-2Cu-xMn/Mg alloys was thoroughly investigated. Degradation and tribological behaviors of the alloys were explored in the presence of simulated body fluid (SBF), Dulbecco's modified Eagle medium (DMEM), and DMEM with a 10% fetal bovine serum (FBS) solution. Alloy elements and hot rolling improve their mechanical properties significantly due to precipitation hardening, grain refinement, and solid solution strengthening owing to the formation of MnZn13 and Mg2Zn11 phases. Among all the alloys, the Zn-2Cu-0.5Mn alloy achieved the highest ultimate tensile strength (UTS) of ∼405 MPa and yield strength (YS) of ∼293 MPa with an excellent elongation of ∼51%. The corrosion behavior of the alloys as determined by a potentiodynamic polarization study under different solutions follows the sequence Zn-2Cu < Zn-2Cu-0.5Mn < Zn-2Cu-0.1Mn < Zn-2Cu-0.1Mg < Zn-2Cu-0.5Mg. The corrosion rate by immersion testing for 30 and 90 days also follows the same sequence. The corrosion rate in different solutions follows the order SBF > DMEM + 10%FBS > DMEM. The addition of Mn/Mg also improves the wear resistance and slows the wear rate under wet conditions. The bending test results also indicate the highest bending strength of ∼375 MPa for the Zn-2Cu-0.5Mn alloy, among all the alloys. The bending and tensile strengths deteriorate continuously after the immersion for 30 and 90 days in the solution of SBF, DMEM, and DMEM + 10%FBS. Therefore, the Zn-2Cu-xMn/Mg (x = 0.1 and 0.5) alloys can be considered potential biodegradable implant materials.


Subject(s)
Alloys , Biocompatible Materials , Materials Testing , Alloys/chemistry , Zinc , X-Ray Diffraction
15.
Materials (Basel) ; 16(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37374567

ABSTRACT

The objective of this study was to examine the impact of varying magnesium levels in the α-Al + S + T region of the Al-Cu-Mg ternary phase diagram on the solidification process, microstructure development, tensile properties, and precipitation hardening of Al-Cu-Mg-Ti alloys. The outcomes indicate that alloys with 3% and 5% Mg solidified with the formation of binary eutectic α-Al-Al2CuMg (S) phases, whereas in the alloy with 7% Mg, the solidification process ended with the formation of eutectic α-Al-Mg32(Al, Cu)49 (T) phases. Additionally, a significant number of T precipitates were noticed inside the granular α-Al grains in all alloys. In the as-cast condition, the 5% Mg-added alloy showed the best combination of yield strength (153 MPa) and elongation (2.5%). Upon T6 heat treatment, both tensile strength and elongation increased. The 7% Mg-added alloy had the best results, with a yield strength of 193 MPa and an elongation of 3.4%. DSC analysis revealed that the increased tensile strength observed after the aging treatment was associated with the formation of solute clusters and S″/S' phases.

16.
J Funct Biomater ; 14(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37103285

ABSTRACT

The effect of magnesium (Mg) content on the microstructure, mechanical properties, and cytocompatibility of degradable Zn-0.5Mn-xMg (x = 0.05 wt%, 0.2 wt%, 0.5 wt%) alloys was investigated. The microstructure, corrosion products, mechanical properties, and corrosion properties of the three alloys were then thoroughly characterized by scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD), and other methods. According to the findings, the grain size of matrix was refined by the addition of Mg, while the size and quantity of Mg2Zn11 phase was increased. The Mg content could significantly improve the ultimate tensile strength (UTS) of the alloy. Compared with the Zn-0.5Mn alloy, the UTS of Zn-0.5Mn-xMg alloy was increased significantly. Zn-0.5Mn-0.5Mg exhibited the highest UTS (369.6 MPa). The strength of the alloy was influenced by the average grain size, the solid solubility of Mg, and the quantity of Mg2Zn11 phase. The increase in the quantity and size of Mg2Zn11 phase was the main reason for the transition from ductile fracture to cleavage fracture. Moreover, Zn-0.5Mn-0.2Mg alloy showed the best cytocompatibility to L-929 cells.

17.
Materials (Basel) ; 16(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049027

ABSTRACT

This paper investigates the effect of retrogression time on the fatigue crack growth of a modified AA7475 aluminum alloy. Tests including tensile strength, fracture toughness, and fatigue limits were performed to understand the changes in properties with different retrogression procedures at 180 °C. The microstructure was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The findings indicated that as the retrogression time increased, the yield strength decreased from 508 MPa to 461 MPa, whereas the fracture toughness increased from 48 MPa√m to 63.5 MPa√m. The highest fracture toughness of 63.5 MPa√m was seen after 5 h of retrogression. The measured diameter of η' precipitates increased from 6.13 nm at the retrogression 1 h condition to 6.50 nm at the retrogression 5 h condition. Prolonged retrogression also increased the chance of crack initiation, with slower crack growth rate in the long transverse direction compared to the longitudinal direction. An empirical relationship was established between fracture toughness and the volume fraction of age-hardening precipitates, with increasing number density of precipitates seen with increasing retrogression time.

18.
Molecules ; 28(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36985537

ABSTRACT

As the lightest structural materials, magnesium (Mg) alloys play a significant role in vehicle weight reduction, aerospace, military equipment, energy saving, and emission reduction. However, the poor corrosion resistance of Mg alloys has become a bottleneck restricting its wide application. Developing a good surface protective coating can effectively improve the corrosion resistance of Mg alloys. The silane-based sol-gel coating technology has been widely used in the corrosion protection of Mg alloys in recent years due to its advantages of simple process, accessible tailoring of film composition and structure, and excellent corrosion resistance. Whereas the synthesis of sol-gel coatings includes the hydrolysis and dehydration process, which may inherently contain micron or nano defects in the coatings, thereby making it detrimental to the anti-corrosion effect. Therefore, in order to enhance their protection against corrosion, the appropriate modification of sol-gel coatings has become a current research hotspot. This review is based on the modification methods of silane-based sol-gels on the surface of Mg alloys, which are divided into four categories: bare sol-gel, nanoparticles, corrosion inhibitors, and sol-gel-based composite coatings. The modification methods and corrosion protection mechanism are discussed respectively, and the application, development, and research strategies of silane-based sol-gel coatings are included.

19.
Materials (Basel) ; 16(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903068

ABSTRACT

In response to the increased emphasis on reducing carbon emissions, the demand for lightweight, high-performance structural materials is quickly increasing, and Mg alloys, because of their having the lowest density among the common engineering metals, have demonstrated considerable advantages and prospective applications in contemporary industry. High-pressure die casting (HPDC), owning to its high efficiency and low production cost, is the most extensively utilized technique in commercial Mg alloy applications. The high room-temperature strength-ductility of HPDC Mg alloys plays an important role in their safe use, particularly in the automotive and aerospace industries. With respect to HPDC Mg alloys, their mechanical properties highly rely on their microstructural characteristics, particularly the intermetallic phases, which are further dependent on the alloys' chemical compositions. Therefore, the further alloying of traditional HPDC Mg alloys, such as Mg-Al, Mg-RE, and Mg-Zn-Al systems, is the most adopted method to further improve their mechanical properties. Different alloying elements lead to different intermetallic phases, morphologies, and crystal structures, which can have helpful or harmful effects on an alloy's strength or ductility. The methods aimed at regulating and controlling the strength-ductility synergy of HPDC Mg alloys have to arise from an in-depth understanding of the relationship between the strength-ductility and the components of the intermetallic phases of various HPDC Mg alloys. This paper focuses on the microstructural characteristics, mainly the intermetallic phases (i.e., components and morphologies), of various HPDC Mg alloys with good strength-ductility synergy, aimed at providing insight into the design of high-performance HPDC Mg alloys.

20.
Sensors (Basel) ; 23(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36850894

ABSTRACT

Magnesium (Mg) alloys possess unique properties that make them ideal for use as biodegradable implants in clinical applications. However, reports on the in vivo assessment of these alloys are insufficient. Thus, monitoring the degradation of Mg and its alloys in vivo is challenging due to the dynamic process of implant degradation and tissue regeneration. Most current works focus on structural remodeling, but functional assessment is crucial in providing information about physiological changes in tissues, which can be used as an early indicator of healing. Here, we report continuous wave near-infrared spectroscopy (CW NIRS), a non-invasive technique that is potentially helpful in assessing the implant-tissue dynamic interface in a rodent model. The purpose of this study was to investigate the effects on hemoglobin changes and tissue oxygen saturation (StO2) after the implantation of Mg-alloy (WE43) and titanium (Ti) implants in rats' femurs using a multiwavelength optical probe. Additionally, the effect of changes in the skin on these parameters was evaluated. Lastly, combining NIRS with photoacoustic (PA) imaging provides a more reliable assessment of tissue parameters, which is further correlated with principal component analysis.


Subject(s)
Absorbable Implants , Spectroscopy, Near-Infrared , Rats , Animals , Alloys , Magnesium , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL