Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792222

ABSTRACT

Understanding the changes in carbon structure during the mid-low-temperature pyrolysis of low-rank coal is important for efficient utilization. Raman spectroscopy is commonly used to analyze the structural order of carbonaceous materials, but traditional methods may overlook the heterogeneity of coal/char. This research explores the heterogeneity of char structure derived from low-rank coal at 700 °C through multi-point micro-Raman analysis. The analysis of parameters such as area (A), intensity (I), full width at half maximum (FWHM/W), and peak position (P) reveals that the carbon structure becomes less ordered as coal transforms into char due to the deposition of small molecules on the surface. The study emphasizes the benefits of multi-point detection for gaining in-depth insights into the structural evolution of carbonaceous materials. The increased standard deviation of Raman parameters indicates diverse structural characteristics resulting from pyrolysis at this temperature, which traditional methods may not capture effectively. The mapping method used in this research visually illustrates the distribution of carbon structures in the region.

2.
Anal Bioanal Chem ; 416(12): 2885-2891, 2024 May.
Article in English | MEDLINE | ID: mdl-38558307

ABSTRACT

Detecting, separating, and characterizing airborne microplastics from other airborne particulates is currently challenging due to the various instrumental constraints and related sample preparation hurdles that must be overcome. The ability to measure these real-world environments is needed to better assess the risks associated with microplastics. To that end, the current study focused on developing a methodology for sampling and characterizing airborne microplastics. Particulate sampling was carried out at a municipal materials recovery facility near a conveyer belt containing sorted plastic materials to collect airborne environmental particles on filters. Nucleopore filters were mounted on Teflon support rings, coated with 100 nm aluminum to reduce the background signal for micro-Raman spectroscopy, and marked with a fiducial pattern using a laser engraver. The fiducial pattern was crucial in identifying samples, relocating particles, and efficiently enabling orthogonal measurements on the same samples. Optimum sampling conditions of 2 h at 25 L/min were determined using light microscopy to evaluate the particle loadings. The filters were then cut into slices which were attached to sections of thin beryllium-copper sheeting for easy transfer of the filter between microscopy platforms. Scanning electron microscopy was used to identify carbon-rich particles. Light microscopy was used to identify colored particles which were also carbon-rich which were then analyzed using micro-Raman spectroscopy to identify specific polymers.

3.
Appl Spectrosc ; : 37028241246292, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629431

ABSTRACT

The semiconductor industry is undergoing a transformative phase, marked by the relentless drive for miniaturization and a constant demand for higher performance and energy efficiency. However, the reduction of metal-oxide-semiconductor field-effect transistor sizes for advanced technology nodes below 10 nm presents several challenges. In response, strained silicon technology has emerged as a key player, exploiting strain induction in the silicon crystal lattice to improve device performance. At the same time, there has been a growing need for characterization techniques that allow in-line monitoring of sample conditions during semiconductor manufacturing, as an alternative to traditional methods such as transmission electron microscopy or high-resolution X-ray diffraction, which have several limitations in terms of measurement time and sample destructiveness. This paper explores the application of advanced spectroscopic characterization techniques, in particular µ-Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS), to meet the evolving needs of the semiconductor industry for quality control and failure analysis, increasingly requiring faster and non-destructive characterization techniques. µ-Raman provides insight into strain values and distributions of strained layers with different thicknesses and germanium concentrations, but its lateral resolution is constrained by the Abbe diffraction limit. TERS, on the other hand, emerges as a powerful non-destructive technique capable of overcoming diffraction limits by exploiting the combination of an atomic force microscope with a Raman spectrometer. This breakthrough makes it possible to estimate the chemical composition and induced strain in the lattice by evaluating the Raman peak position shifts in strained and unstrained silicon layers, providing crucial insights for nanoscale strain control. In particular, this paper focuses on the TERS characterization of Si0.7Ge0.3 epitaxial layers grown on a silicon-on-insulator device, demonstrating the effectiveness of this technique and the high lateral resolution that can be achieved.

4.
Environ Int ; 184: 108444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38281449

ABSTRACT

There is a growing concern within the medical community about the potential burden of microplastics on human organs and tissues. In this study, we investigated by microRaman spectroscopy the presence of microplastics in human kidneys and urine. Moreover, an open-access software was developed and validated for the project, which enabled the comparison between the investigated spectra and a self-created spectral database, thus enhancing the ability to characterize polymers and pigments in biological matrices. Healthy portions of ten kidneys obtained from nephrectomies, as well as ten urine samples from healthy donors were analyzed: 26 particles in both kidney and urine samples were identified, with sizes ranging from 3 to 13 µm in urine and from 1 to 29 µm in kidneys. The most frequently determined polymers are polyethylene and polystyrene, while the most common pigments are hematite and Cu-phthalocyanine. This preclinical study proves the presence of microplastics in renal tissues and confirms their presence in urine, providing the first evidence of kidney microplastics deposition in humans.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Polymers , Spectrum Analysis , Kidney/chemistry
5.
Molecules ; 28(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067469

ABSTRACT

Some painted pottery figurines were excavated from the tomb of Qibi Ming of the Tang Dynasty. A series of analytical techniques were employed to understand the craftsmanship of these painted pottery figurines. The pigment, cross-section, adhesive, and firing temperature were analyzed using microscopy (OM), energy X-ray fluorescence spectrometry (EDX), micro-Raman spectroscopy, pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and a dilatometer (DIL). The results demonstrated that the surface of the pigment layers had degraded to different degrees. The pigment particles were litharge, gypsum, malachite, cinnabar, hematite, minium, white lead, and carbon black. The cross-sectional images show that the painted layer of figurines 10-0966 and 10-0678 included a pigment layer and a preparation layer. The preparation layer of both pigments was lead white. Animal glue was used as an adhesive. The firing temperature of the pottery figurines was likely 1080 °C. This study can provide more accurate information with regard to the composition of the raw materials utilized in the making of these artifacts and support the selection of appropriate substances for the purposes of conservation and restoration of the painted pottery figurines.

6.
Mar Pollut Bull ; 197: 115769, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976585

ABSTRACT

Microplastics (MPs) content of the digestive tract of two commercial fish from the northern shores of the Oman Sea were investigated. The MPs were characterized by optical microscopy, fluorescent microscopy, and SEM-EDX for their number, shape, size, and color. Polymer composition was analyzes using micro-Raman spectroscopy (RMS). MPs were recovered in all fish samples (100 %), with an average of 43.16 ± 8.23 items/individual in Otolithes ruber, and 29.9 ± 2.73 items/individual in Acanthopagrus latus. The predominant shape of MPs in both fishes was fiber (46 %) with black, transparent, and white colors. The majority of MPs were <1000 µm (75 %), and half of the MPs were smaller than 300 µm in size. Their synthetic nature was confirmed by Nile Red staining and determination of the elemental composition of selected items. Polypropylene (PP) and polyethylene (PE) were the dominant plastic polymers in the fish digestive tracts. This study reveals abundance distribution of MPs in digestive tract of commercial marine fish. High number of ingested MPs can alarm the accumulation of MPs in the northern of Oman Sea ecosystem with anthropogenic activities and raises issues in public health.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Environmental Monitoring/methods , Oman , Ecosystem , Water Pollutants, Chemical/analysis , Fishes , Gastrointestinal Tract/chemistry
7.
J Transl Med ; 21(1): 617, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37697391

ABSTRACT

BACKGROUND: Vibrational spectroscopy can be a valuable tool to monitor the markers of cardiovascular diseases. In the present work, we explored the vibrational spectroscopy characteristics of the cardiac tissue in an experimental model of heart failure with preserved ejection fraction (HFpEF). The goal was to detect early cardiac chemical modifications associated with the development of HFpEF. METHODS: We used the Fourier-transform infrared (FTIR) and Raman micro-spectroscopic techniques to provide complementary and objective tools for the histological assessment of heart tissues from an animal model of HFpEF. A new sampling technique was adopted (tissue print on a CaF2 disk) to characterize the extracellular matrix. RESULTS: Several spectroscopic markers (lipids, carbohydrates, and glutamate bands) were recognized in the cardiac ventricles due to the comorbidities associated with the pathology, such as obesity and diabetes. Besides, abnormal collagen cross-linking and a decrease in tryptophan content were observed and related to the stiffening of ventricles and to the inflammatory state which is a favourable condition for HFpEF. CONCLUSIONS: By the analyses of tissues and tissue prints, FTIR and Raman techniques were shown to be highly sensitive and selective in detecting changes in the chemistry of the heart in experimental HFpEF and its related comorbidities. Vibrational spectroscopy is a new approach that can identify novel biomarkers for early detection of HFpEF.


Subject(s)
Heart Failure , Animals , Stroke Volume , Myocardium , Heart , Spectrum Analysis
8.
MethodsX ; 11: 102251, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37448948

ABSTRACT

Fourier-transform infrared (FT-IR) spectroscopy method for measuring small microplastic (SMP) concentration in marine environment is time-consuming and labor-intensive due to sample pre-treatment. In contrast, Raman spectroscopy is less influenced by water and can directly measure SMP samples in water, making it a more efficient method to measure SMP concentration. Therefore, a method that can directly estimate the concentration of SMPs in water was developed, and the relationship between SMP concentration and experimental Raman spectra were established by testing with standard polyethylene (PE) samples. It was found that average spectra acquired in water solution could reflect characteristic peaks of the plastic after baseline correction. Further investigation found that there is a significant functional relationship between correlation coefficient of sample spectra and the concentration of PE particles, and such relationship can be modelled by Langmuir model. The empirical functional relationships can be used to estimate SMP concentrations by measuring average Raman spectra. The developed methodology is helpful for developing rapid SMP identification and monitoring methods in a more complex manner.•A method of directly measuring MP concentration in water is proposed.•Experimental procedures are provided.•Data analysis methods are outlined.

9.
Small ; 19(42): e2302935, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37322314

ABSTRACT

Organic-inorganic hybrid materials often face a stability challenge. ß-ZnTe(en)0.5 , which uniquely has over 15-year real-time degradation data, is taken as a prototype structure to demonstrate an accelerated thermal aging method for assessing the intrinsic and ambient-condition long-term stability of hybrid materials. Micro-Raman spectroscopy is used to investigate the thermal degradation of ß-ZnTe(en)0.5 in a protected condition and in air by monitoring the temperature dependences of the intrinsic and degradation-product Raman modes. First, to understand the intrinsic degradation mechanism, the transition state of the degradation is identified, then using a density functional theory, the intrinsic energy barrier between the transition state and ground state is calculated to be 1.70 eV, in excellent agreement with the measured thermal degradation barrier of 1.62 eV in N2 environment. Second, for the ambient-condition degradation, a reduced thermal activation barrier of 0.92 eV is obtained due to oxidation, corresponding to a projected ambient half-life of 40 years at room temperature, in general agreement with the experimental observation of no apparent degradation over 15 years. Furthermore, the study reveals a mechanism, conformation distortion enhanced stability, which plays a pivotal role in forming the high kinetic barrier, contributing greatly to the impressive long-term stability of ß-ZnTe(en)0.5 .

10.
Talanta ; 260: 124611, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37163925

ABSTRACT

Microplastics (MPs) pose a threat to human and environmental health, and have emerged as a global environmental issue. Because MPs are small and complex, methods of quickly and reliably classifying and identifying them are either lacking or in the early stages of development. In this study, micro-Raman spectroscopy and a convolutional neural network (CNN) were combined to establish identification models for 10 MP references and three environmental samples. In addition, an interaction network was established based on pair-wise correlations of Raman bands to determine the influence of environmental stress on MPs. The CNN model achieved average classification accuracies of 96.43% and 95.6% for the 10 MP references and the three environmental samples, respectively. For MPs exposed to environmental stressors, an interaction network can provide highly sensitive, information-dense, and universally applicable signatures for characterizing the environmental processes affecting MP spectra. The results of this study can help establish efficient and automatic analysis for accurate identification of MPs as well as an intuitive exhibition of spectral changes on environmental exposure.

11.
Anal Chim Acta ; 1242: 340798, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36657892

ABSTRACT

Carbonates play a crucial role in the water and carbon cycles of both geochemical and cosmochemical environments. As carbonates do not exist homogeneously with other minerals in rocks and sands of various sizes, an analytical method that simultaneously satisfies non-destructivity and high spatial resolution has been desired. Further, the ability of semi-quantitative analysis with carbonates-selectivity and without any pre-treatments is added, for its applicability would be extended to remote sensing for deep sea and outer spaces. Here, we focused on the application of micro-Raman spectroscopy, where the vibrational wavenumbers of the translational (T) and librational (L) modes of carbonates are sensitively related to their cation composition. By comparing the semi-quantitative information obtained by X-ray fluorescence spectroscopy, it was found that these vibrational wavenumbers are approximately linearly related to the cation composition. Consequently, a conversion matrix was proposed to estimate the cation composition from the T and L mode vibrational wavenumbers. This method is universally applicable to any cation composition in carbonates, with no background information on the analyte required. To improve the accuracy, conversion matrices were further optimized to three solid-solution series of carbonates. It is worth noting that the proposed conversion matrices are free from matrix effects and do not depend on the total amount of carbonate in a sample. Therefore, the proposed method provides a useful analytical basis for remote sensing of the cation composition of carbonates, both in terrestrial and extra-terrestrial environments.

12.
Front Med (Lausanne) ; 9: 858776, 2022.
Article in English | MEDLINE | ID: mdl-36275819

ABSTRACT

Malaria, dengue and leptospirosis are three tropical infectious diseases that present with severe hematological derangement causing significant morbidity and mortality, especially during the seasonal monsoons. During the course of these infectious diseases, circulating red blood cells are imperiled to the direct ill-effects of the infectious pathogen in the body as well as to the pro-inflammatory cytokines generated as a consequence of the infection. RBCs when exposed to such inflammatory and/or pathogenic milieu are susceptible to injuries such as RBC programmed eryptosis or RBC programmed necrosis. This research aimed to explore the Raman spectra of live red cells that were extracted from patients infected with malaria, dengue, and leptospirosis. Red cells were optically trapped and micro-Raman probed using a 785 nm Diode laser. RBCs from samples of all three diseases displayed Raman signatures that were significantly altered from the normal/healthy. Distinct spectral markers that were common across all the four groups were obtained from various standardized multivariate analytical methods. Following comprehensive examination of multiple studies, we propose these spectral wavenumbers as "Raman markers of RBC injury." Findings in our study display that anemia-triggering infections can inflict variations in the healthy status of red cells, easily identifiable by selectively analyzing specific Raman markers. Additionally, this study also highlights relevant statistical tools that can be utilized to study Raman spectral data from biological samples which could help identify the very significant Raman peaks from the spectral band. This approach of RBC analysis can foster a better understanding of red cell behavior and their alterations exhibited in health and disease.

13.
Food Chem X ; 15: 100434, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36211786

ABSTRACT

The effects of low doses of sodium nitrite on yak meat colouring, myoglobin oxygenation status, myoglobin aggregation and myoglobin structure were evaluated using Fourier transform infrared spectroscopy, laser micro-Raman spectroscopy and liquid chromatography-electrospray ionization tandem mass spectrometry. The results showed that the yak meat redness value increased steadily relative to that of the control after the addition of low dose sodium nitrite. The nitrosomyoglobin level gradually increased and was significantly higher in the sodium nitrite-treated group than in the control group. The secondary structures were also transformed. The Cα-N bond extended and then contracted, the area of the haem core decreased and then increased and the frequency of contraction increased. A total of 34 nitrosylated peptides were identified, of which 15 were stable and 19 were unstable. These findings show that low doses of sodium nitrite facilitated the dynamic transformation of the myoglobin nitrosylated peptide fragment, which in turn preserved the colour of the meat.

14.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36142598

ABSTRACT

Raman micro-spectroscopy is a non-destructive and non-contact analytical technique that combines microscopy and spectroscopy, thus providing a potential for non-invasive and in situ molecular identification, even over heterogeneous and rare samples such as fossilized tissues. Recently, chemical imaging techniques have become an increasingly popular tool for characterizing trace elements, isotopic information, and organic markers in fossils. Raman spectroscopy also shows a growing potential in understanding bone microstructure, chemical composition, and mineral assemblance affected by diagenetic processes. In our lab, we have investigated a wide range of different fossil tissues, mainly of Mesozoic vertebrates (from Jurassic through Cretaceous). Besides standard spectra of sedimentary rocks, including pigment contamination, our Raman spectra also exhibit interesting spectral features in the 1200-1800 cm-1 spectral range, where Raman bands of proteins, nucleic acids, and other organic molecules can be identified. In the present study, we discuss both a possible origin of the observed bands of ancient organic residues and difficulties with definition of the specific spectral markers in fossilized soft and hard tissues.


Subject(s)
Nucleic Acids , Trace Elements , Animals , Fossils , Minerals , Spectrum Analysis, Raman/methods
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121613, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35853253

ABSTRACT

Microalgae are a rich source of carotenoids with enhanced yields during biotic or abiotic stresses, which often impose survival challenges on the cells. Using a non-invasive pigment profiling approach with micro-Raman spectroscopy, we have analyzed the effect of salinity stress on carotenoids in autotrophic Chlamydomonas reinhardtii. Raman spectral analysis of ν(C = C) mode indicates an increase in the carotenoids with lower conjugation length (lutein and zeaxanthin) compared to ß-carotene, as the function of culture age and salinity stress, but especially when salinity stress was imposed in two-stage mode (stress imposed on 2nd day, D2_100, and 4th day, D4_100, during exponential phase). Population-scale heterogeneities in carotenoid Raman mode peak center, quantified with heterogeneity index (HI), were highest during the stationary phase of the cultures and under salinity stress. Although the Raman signal was obtained from a randomly selected small focal volume in the cell, a decrease in chlorophyll Raman mode intensities with age and salinity stress was well corroborated by single-cell population fraction measurements by microscopy. Raman intensity fluctuations (If) were high for both chlorophyll and carotenoid modes under salinity stress, which can arise due to variations in chlorophyll/carotenoid content and composition, or conformational changes in the pigments in C. reinhardtii cells. Interestingly, in all growth conditions, chlorophyll a Raman mode intensity was found to show a high correlation to that of ß-carotene, pointing out a high degree of cooperativity in the light-harvesting complex pigments even during salinity stress. Thus, we demonstrate the usefulness of non-invasive pigment profiling with micro-Raman spectroscopy for developing an optimization for salinity stress conditions for high biomass yield and proper harvest time to obtain carotenoids with desired chemical composition.


Subject(s)
Chlamydomonas reinhardtii , Carotenoids/analysis , Chlorophyll , Chlorophyll A , Salt Stress , Spectrum Analysis, Raman/methods , beta Carotene
16.
Materials (Basel) ; 15(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806739

ABSTRACT

Micro Raman spectroscopy is an effective method to quantitatively analyse the internal stress of semiconductor materials and structures. However, the decoupling analysis of the stress components for {100} monocrystalline silicon (c-Si) remains difficult. In the work outlined, physical and simulation experiments were combined to study the influence of the objective lens numerical aperture (NA) on the Raman stress characterization. The physical experiments and simulation experiments show that the spectral results obtained by using lenses with different NAs can accurately obtain the principal stress sum but cannot decouple the components of the in-plane stress. Even if the spectral resolution of the simulated experiment is ideal (The random errors of the polarization directions of less than ±1° and the systematic random errors of less than ±0.02 cm-1). The analysis based on the theoretical model demonstrates that the proportion of the principal stress sum in the Raman shift obtained in an actual experiment exceeded 98.7%, while the proportion of the principal stress difference part was almost negligible. This result made it difficult to identify the variable effects of different stress states from the experimental results. Further simulation experiments in this work verify that when the principal stress sum was identical, the differences in the Raman shifts caused by different stress states were much smaller than the resolution of the existing Raman microscope system, which was hardly possible to identify in the experimental results. It was proven that decoupling analysis of stress components using the large-NA objective lens lacked actual practicability.

17.
Photodiagnosis Photodyn Ther ; 39: 102948, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35661825

ABSTRACT

The present study explores the application of the micro-Raman spectroscopy technique to discriminate normal and cervicitis condition from cervical malignancy by analyzing the Raman signatures of tissues and plasma samples of the same subjects. The Raman peaks from tissue samples at 1026 cm-1,1298 cm-1 and 1243 cm-1 are attributed to glycogen, fatty acids and collagen and are found to be reliable signatures capable of identifying cervicitis and normal condition from cervical cancer. The Raman signatures from plasma samples belonging to carbohydrates (578 cm-1), lipids (1059 cm-1) and nucleic acids (1077 cm-1,1341 cm-1 and 1357 cm-1) are quite useful to classify various pathological conditions of cervix at par with tissue based diagnosis. The PCA-SVM based classification of the spectral data indicates the potential of Raman spectroscopy based liquid biopsy to rule out false diagnosis of cervicitis as cervical malignancy.


Subject(s)
Photochemotherapy , Uterine Cervical Neoplasms , Uterine Cervicitis , Cervix Uteri/pathology , Female , Humans , Photochemotherapy/methods , Plasma , Principal Component Analysis , Spectrum Analysis, Raman/methods , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/pathology , Uterine Cervicitis/diagnosis , Uterine Cervicitis/pathology
18.
Pharmaceutics ; 14(5)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35631528

ABSTRACT

In the present study, we developed chitosan/hyaluronan nanoparticles (CS/HY NPs) for tumor targeting with vinblastine sulfate (VBL), that can be directed to the CD44 transmembrane receptor, over-expressed in cancer cells. NPs were prepared by coating with HY-preformed chitosan/tripolyphosphate (CS/TPP) NPs, or by polyelectrolyte complexation of CS with HY. NPs with a mean hydrodynamic radius (RH) of 110 nm, 12% polydispersity index and negative zeta potential values were obtained by a direct complexation process. Transmission Electron Microscopy (TEM) images showed spherical NPs with a non-homogeneous matrix, probably due to a random localization of CS and HY interacting chains. The intermolecular interactions occurring between CS and HY upon NPs formation were experimentally evidenced by micro-Raman (µ-Raman) spectroscopy, through the analysis of the spectral changes of characteristic vibrational bands of HY during NP formation, in order to reveal the involvement of specific chemical groups in the process. Optimized NP formulation efficiently encapsulated VBL, producing a drug sustained release for 20 h. In vitro studies demonstrated a fast internalization of labeled CS/HY NPs (within 6 h) on K-562 human myeloid leukemia cells. Pre-saturation of CD44 by free HY produced a slowing-down of NP uptake over 24 h, demonstrating the need of CD44 for the internalization of HY-based NPs.

19.
Appl Radiat Isot ; 186: 110271, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35598564

ABSTRACT

In case of any natural disasters or technical failures of nuclear facilities, the surrounding media including human beings may receive unexpected radiation exposures. In such a situation, there is no viable way to know how much radiation dose is received by human beings. Realizing that motorized vehicles are parked at fixed but increasing distances within the nuclear installation and industrial environment, this study investigates the kinetic parameters of readily available car windscreens which form the basis to be employed in post-accident dose reconstruction or for retrospective dosimetry. To understand the luminescence features of this crystalline media, a convenient thermoluminescence (TL) technique has been employed. Several well-defined theoretical models and methods were employed to calculate the kinetic parameters including the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability and trap lifetime (τ), by analyzing the glow curves of the irradiated samples. The analysed trapping parameters indicate that the Toyota (E = 0.75-1.31 eV, s = 3.0E+6 - 3.7E+9 (s-1), τ = 6.9E+5 - 1.3E+14 s) and Honda (E = 0.95-1.68 eV, s = 2.1E+10 - 4.1E+13 (s-1), τ = 2.2E+9 - 3.1E+20 s) windscreen offer promising features for conventional TL dosimetry applications, while the obtained longer lifetime (τ = 6.8E+10 - 8.6E+29 s) or higher activation energy (E = 1.23-2.15 eV) for Proton brand windscreen indicates better stability or slow fading of the material, thus suitable for retrospective TL dosimetry. In addition, by assessing the area of deconvoluted micro-Raman spectra of windshield glasses in high-frequency regions, it has been observed the phenomenon of dose-dependent structural alterations and internal annealing of defects. This pattern is also consistent with those cyclical pattern observed in the intensity ratio of defect and graphite modes in the studies of carbon-rich media. Such common phenomena indicate the possibility of using the Raman microspectroscopy as a probe of radiation damage in silica-based media.


Subject(s)
Automobiles , Luminescent Measurements , Humans , Kinetics , Luminescent Measurements/methods , Retrospective Studies , Thermoluminescent Dosimetry/methods
20.
Environ Sci Pollut Res Int ; 29(8): 11345-11358, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34533749

ABSTRACT

The widespread presence of microplastics in multiple environmental compartments has largely been demonstrated. Assessing the ecological risk that microplastics pose is, at the present stage, hindered due to methodical differences. Moreover, different methods hamper meaningful comparisons between studies and data on microplastics <300 µm is scarce. Therefore, we focused on microplastics >20 µm in freshwater and sampling-related aspects in this concern. Sampling was conducted between 2018 and 2020 in the Tollense catchment in northeastern Germany and was carried out by in situ pump filtration. Two different sampling systems (cutoff sizes 20 µm and 63 µm) were applied to filter water volumes of 0.075-1.836 m3. Retained particles were analyzed by a combination of Nile red staining and micro-Raman spectroscopy. Thereby, we found microplastic concentrations between 123 and 1728 particles m-3 using the 63-µm cut-off size and between 1357 and 2146 particles m-3 using the 20-µm cut-off size. Local hydrodynamics (discharge and flow velocity) and land cover are likely influencing the observed microplastic concentrations and fluxes. The variability between both sampling systems cannot fully be explained by the different mesh sizes used. We argue that differentiation between a theoretical cut-off size (finest mesh) and a factual cut-off size (reliable quantification) can help to understand sampling related differences between studies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Plastics , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL