Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 475: 134908, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889459

ABSTRACT

Previous research has established a MES embedding a microbial electrode to facilitate the degradation of antibiotics in water. We modified microbial electrodes in the MES with PEDOT and rGO to enhance electron utilization on electrodes and to further promote antibiotic degradation. Density functional theory calculations on the SMX molecule indicated that the C4-S8 and S8-N27 bonds are the most susceptible to electron attack. The introduction of various functional groups and multivalent elements enhanced the electrodes' capacitance and electron mediation capabilities. This led to enhance both electron utilization on the electrodes and the removal efficiency of SMX. After 120 h, the degradation efficiency of SMX by PEDOT and rGO-modified electrodes increased by 45.47 % and 25.19 %, respectively, compared to unmodified electrodes. The relative abundance of sulfate-reducing and denitrifying bacteria significantly increased in PEDOT and rGO-modified electrodes, while the abundance of nitrifying bacteria and potential antibiotic resistance gene host microbes significantly decreased. The impact of PEDOT modification positively influenced microbial Cellular Processes, including cell growth, death, and motility. This study provides insights into the mechanisms of direct electron involvement in antibiotic degradation steps in microbial electrochemistry, and provides a possible path for improved strategies in antibiotic degradation and sustainable environmental remediation.


Subject(s)
Anti-Bacterial Agents , Electrodes , Electrons , Polymers , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Bacteria/metabolism , Bacteria/genetics , Graphite/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electrochemical Techniques , Water Pollutants, Chemical/chemistry
2.
Bioresour Technol ; 404: 130909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815696

ABSTRACT

To enhance the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in sediments and to elucidate the mechanisms by which microbial electrochemical action aids in the degradation of PAHs, humic acid was used as an electron mediator in the microbial electrochemical system in this study. The results revealed that the addition of humic acids led to increases in the removal efficiencies of naphthalene, phenanthrene, and pyrene by 45.91%, 97.83%, and 85.56%, respectively, in areas remote from the anode, when compared to the control group. The investigation into the microbial community structure and functional attributes showed that the presence of humic acid did not significantly modify the microbial community composition or its functional expression at the anode. However, an examination of humic acid transformations demonstrated that humic acid extended the electron transfer range in sediment via the redox reactions of quinone and semiquinone groups, thereby facilitating the PAHs degradation within the sediment.


Subject(s)
Biodegradation, Environmental , Geologic Sediments , Humic Substances , Polycyclic Aromatic Hydrocarbons , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Electrons , Electrodes , Electrochemical Techniques/methods , Oxidation-Reduction
3.
J Environ Manage ; 357: 120767, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560953

ABSTRACT

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Subject(s)
Atrazine , Herbicides , Soil Pollutants , Humic Substances/analysis , Soil/chemistry , Soil Microbiology , Herbicides/chemistry , Soil Pollutants/chemistry
4.
J Hazard Mater ; 469: 134080, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522204

ABSTRACT

Humus substances (HSs) participate in extracellular electron transfer (EET), which is unclear in heterogeneous soil. Here, a microbial electrochemical system (MES) was constructed to determine the effect of HSs, including humic acid, humin and fulvic acid, on soil electron transfer. The results showed that fulvic acid led to the optimal electron transfer efficiency in soil, as evidenced by the highest accumulated charges and removal of total petroleum hydrocarbons after 140 days, with increases of 161% and 30%, respectively, compared with those of the control. However, the performance of MES with the addition of humic acid and humin was comparable to that of the control. Fulvic acid amendment enhanced the carboxyl content and oxidative state of dissolved organic matter, endowing a better electron transfer capacity. Additionally, the presence of fulvic acid induced an increase in the abundance of electroactive bacteria and organic degraders, extracellular polymeric substances and functional enzymes such as cytochrome c and NADH synthesis, and the expression of m tr C gene, which is responsible for EET enhancement in soil. Overall, this study reveals the mechanism by which HSs stimulate soil electron transfer at the physicochemical and biological levels and provides basic support for the application of bioelectrochemical technology in soil.


Subject(s)
Benzopyrans , Humic Substances , Soil , Humic Substances/analysis , Soil/chemistry , Electrons
5.
Water Res ; 249: 120988, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38070341

ABSTRACT

Groundwater, the main freshwater resource for humans, has been widely contaminated with nitrate from fertilizers. Here, we report a new and chemical-free strategy to prevent nitrate leaching from soil based on the enrichment of electroactive bacteria, mainly of the genus Geobacter, with bioelectro-barriers, which leads to a nearly 100 % interception of nitrate and partly conserves reactive nitrogen in the form of weakly mobile ammonium by dissimilatory nitrate reduction to ammonium (DNRA). G. sulfurreducens was recognized to efficiently secrete nitrite reductase (NrfA) for rapid DNRA because it lacks nitrate reductase, which inhibits DNRA by competing with nitrite and producing toxic intracellular nitric oxide. With an increase in G. sulfurreducens abundance, near-zero nitrate leaching and 3-fold greater N retention was achieved. Periodic application of weak electricity to the bioelectro-barrier ensured the dominance of G. sulfurreducens in the microbial community and therefore its ability to consistently prevent nitrate leaching. The ability of G. sulfurreducens to intercept nitrate was further demonstrated in more diverse agricultural soils, providing a novel way to prevent nitrate leaching and conserve bioavailable nitrogen in the soil, which has broader implications for both sustainable agriculture and groundwater protection.


Subject(s)
Ammonium Compounds , Groundwater , Humans , Nitrates/analysis , Denitrification , Soil , Nitrogen/analysis
6.
Biosens Bioelectron ; 242: 115745, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37832348

ABSTRACT

Water toxicity determination with electrochemically active bacteria (EAB) is promising in the early warning of water pollution. However, limited by tedious biofilm formation, natural EAB biofilms are uncapable of the instant detection of water toxicity, resulting in the failure for the emergency monitoring of water pollution. To solve this problem, a novel method for the rapid construction of EAB biofilms using magnetic adsorption was established, and the performance of instant water toxicity detection with magnetically-constructed EAB biofilm was investigated. The results demonstrate that EAB biofilms were magnetically constructed in less than 30 min, and magnetically-constructed EAB biofilm generated stable currents even under continuous flow conditions. Magnetically-constructed EAB biofilms realized instant water toxicity detection, and the sensitivity increased with the decrease of magnetic field intensity. Low magnetic field intensity resulted in a loose biofilm structure, which is conducive to toxic pollutant penetration. The detection limit for Cu2+, phenol, and Cd2+ achieved 0.07 mg/L with optimal magnetic field intensity, and the detection time was less than 30 min. This study broadens the application of water toxicity determination with EAB, and establishes a foundation for the instant and continuous detection of water toxicity with EAB.


Subject(s)
Biosensing Techniques , Water , Biofilms , Light , Bacteria
7.
J Hazard Mater ; 460: 132313, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37619277

ABSTRACT

The degradation of organic pollutants and the adsorption of organic pollutants onto microplastics (MPs) in the environment have recently been intensively studied, but the effects of biocurrents, which are widespread in various soil environments, on the environmental behavior of MPs and antibiotic pollutants have not been reported. In this study, it was found that polylactic acid (PLA) and polyvinyl chloride (PVC) MPs accelerated the mineralization of humic substances in microbial electrochemical systems (MESs). After tetracycline (TC) was introduced into the MESs, the internal resistance of the soil MESs decreased. Additionally, the presence of MPs enhanced the charge output of the soil MESs by 40% (PLA+TC) and 18% (PVC+TC) compared with a control group without MPs (424 C). The loss in MP mass decreased after TC was added, suggesting a promotion of TC degradation rather than MP degradation for charge output. MPs altered the distribution of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals of TC molecules and reduced the energy barrier for the TC hydrolysis reaction. The microbial community of the plastisphere exhibited a greater ability to degrade xenobiotics than the soil microbial community, indicating that MPs were hotspots for TC degradation. This study provides the first glimpse into the influence of MPs on the degradation of TC in MESs, laying a theoretical and methodological foundation for the systematic evaluation of the potential risks of environmental pollutants in the future.


Subject(s)
Environmental Pollutants , Microplastics , Plastics , Soil , Soil Microbiology , Tetracycline , Anti-Bacterial Agents , Polyesters
8.
Huan Jing Ke Xue ; 44(7): 4059-4076, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438304

ABSTRACT

In recent years, the contamination of antibiotics and their resistance genes (ARGs) has attracted the extensive attention of researchers at home and abroad. Soil is an important sink for the migration and transformation of antibiotics and ARGs, which pose a threat to soil organisms and human health. According to the relevant investigations in the past 15 years, the soil has been polluted by antibiotics to varying degrees in China. Bioremediation is a green and environment-friendly remediation technology, which has great potential in the remediation of antibiotic-contaminated soil. This review summarized the spatial and temporal characteristics of antibiotic pollution of soils in China in the past 15 years and the application of plants, animals, and microorganisms in the remediation of antibiotic-contaminated soil. In particular, the recent research advances of microbial electrochemical systems in removing antibiotics and ARGs in soil were reviewed, and the unaddressed issues of relevant research and the direction of future development were proposed, in order to provide a scientific basis for soil pollution remediation.


Subject(s)
Environmental Restoration and Remediation , Animals , Humans , Biodegradation, Environmental , China , Anti-Bacterial Agents , Soil
9.
Environ Int ; 177: 108035, 2023 07.
Article in English | MEDLINE | ID: mdl-37329759

ABSTRACT

Bioelectric field is a stimulated force to degrade xenobiotic pollutants in soils. However, the effect of bioelectric field on microplastics (MPs) aging is unclear. The degradation behavior of polyvinyl chloride (PVC), polyethylene (PE) and polylactic acid (PLA) was investigated in an agricultural soil microbial electrochemical system in which bioelectric field was generated in-situ by native microbes. Based on the density function theory, the energy gaps between the highest and the lowest occupied molecular orbitals of the three polymers with periodic structure were 4.20, 7.24 and 10.09 eV respectively, and further decreased under the electric field, indicating the higher hydrolysis potential of PLA. Meanwhile, the mass loss of PLA in the closed-circuit group (CC) was the highest on day 120, reaching 8.94%, which was 3.01-3.54 times of that without bioelectric field stimulation. This was mainly due to the enrichment of plastic-degrading bacteria and a robust co-occurrence network as the deterministic assembly process, e.g., the abundance of potential plastic-degrading bacteria on the surface of PLA and PVC in the CC increased by 1.92 and 1.30 times, respectively, compared to the open-circuit group. In terms of functional genes, the xenobiotic biodegradation and metabolism capacity of plasticsphere in the CC were stronger than that in soil, and determined by the bioaccessibility of soil nitrogen and carbon. Overall, this study explored the promoting effect of bioelectric field on the degradation of MPs and reveled the mechanism from quantum chemical calculations and microbial community analysis, which provides a novel perception to the in-situ degradation of MPs.


Subject(s)
Microplastics , Plastics , Soil/chemistry , Xenobiotics , Soil Microbiology , Polyesters
10.
Water Res ; 241: 120139, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37270949

ABSTRACT

Microbial electrolysis cells (MECs) have demonstrated high-rate H2 production while concurrently treating wastewater, but the transition in scale from laboratory research to systems that can be practically applied has encountered challenges. It has been more than a decade since the first pilot-scale MEC was reported, and in recent years, many attempts have been made to overcome the barriers and move the technology to the market. This study provided a detailed analysis of MEC scale-up efforts and summarized the key factors that should be considered to further develop the technology. We compared the major scale-up configurations and systematically evaluated their performance from both technical and economic perspectives. We characterized how system scale-up impacts the key performance metrics such as volumetric current density and H2 production rate, and we proposed methods to evaluate and optimize system design and fabrication. In addition, preliminary techno-economic analysis indicates that MECs can be profitable in many different market scenarios with or without subsidies. We also provide perspectives on future development needed to transition MEC technology to the marketplace.


Subject(s)
Bioelectric Energy Sources , Wastewater , Hydrogen , Electrolysis , Technology
11.
Bioresour Technol ; 384: 129307, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37311526

ABSTRACT

Microbial electrochemical system autotrophic denitrification has attracted much attention due to its cost-efficiency and clean advantages. The autotrophic denitrification rate highly depends on the input electrons to the cathode. In this study, agricultural waste corncob was filled into sandwich structure anode as low-cost carbon source for electron production. The COMSOL software was used to guide the construction of sandwich structure anode to control carbon source release and enhance electron collection, including suitable pore size (4 mm) and current collector arrangement (five branches). Optimized sandwich structure anode system with the help of 3D printing obtained a higher denitrification efficiency (21.79 ± 0.22 gNO3--N/m3d) than anodic systems without pore and current collector. Statistical analysis showed that enhanced autotrophic denitrification efficiency was the responsible for enhanced denitrification performance of the optimized anode system. This study provides a strategy to improve the autotrophic denitrification performance of the microbial electrochemical system by optimizing the anode structure.


Subject(s)
Denitrification , Wastewater , Electrons , Zea mays , Nitrates , Bioreactors , Electrodes , Autotrophic Processes , Nitrogen
12.
Water Res ; 237: 119967, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37104934

ABSTRACT

Ecological floating bed coupled with microbial electrochemical system (ECOFB-MES) has great application potential in micro-polluted water remediation yet limited by low electron transfer efficiency on the microbial/electrode interface. Here, an innovative cathode-enhanced EOCFB-MES was constructed with nano-Fe3O4 modification and applied for in-situ remediation both at lab scale (6 L, 62-day operation) and demonstration scale (2300 m2, 1-year operation). The cathode-enhanced ECOFB-MES exhibited superior removal in TOC (81.43 ± 2.05%), TN (85.12% ± 1.46%) and TP (59.80 ± 2.27%), much better than those of original ECOFB-MES and anode-enhanced ECOFB-MES in the laboratory test. Meanwhile, cathode-enhanced ECOFB-MES boosted current output by 33% than that of original ECOFB-MES, which made a great contribution to the improvement of ectopic electronic compensation for pollutant decontamination. Notably, cathode-enhanced ECOFB-MES presented high efficiency, stability and durability in the demonstration test, and fulfilled the average concentration of COD (9.5 ± 2.81 mg/L), TN (1.00 ± 0.21 mg/L) and TP (0.10 ± 0.04 mg/L) of effluent water to meet the Grade III (GB 3838-2002) with stable operation stage. Based on the KOSIM calculation, the removal loads of cathode-enhanced ECOFB-MES in carbon, nitrogen and phosphorus could reach 37.14 g COD/(d·m2), 2.62 g TN/(d·m2) and 0.55 g TP/(d·m2), respectively. According to the analysis of microbial communities and functional genes, the cathode modified by Fe3O4 made a sensible enrichment in electroactive bacteria (EAB) and nitrogen-converting bacteria (NCB) as well as facilitated the functional genes expression in electron transfer and nitrogen metabolism, resulting in the synergistic removal of carbon in sediment and nitrite in water. This study provided a brandnew technique reference for in-situ remediation of surface water in practical application.


Subject(s)
Phosphorus , Water , Phosphorus/analysis , Carbon , Electrodes , Nitrogen/analysis
13.
Chemosphere ; 324: 138313, 2023 May.
Article in English | MEDLINE | ID: mdl-36878371

ABSTRACT

Hydrogen peroxide (H2O2) production in microbial electrochemical systems (MESs) is an attractive option for enabling a circular economy in the water/wastewater sector. Here, a machine learning algorithm was developed, using a meta-learning approach, to predict the H2O2 production rates in MES based on the seven input variables, including various design and operating parameters. The developed models were trained and cross-validated using the experimental data collected from 25 published reports. The final ensemble meta-learner model (combining 60 models) demonstrated a high prediction accuracy with very high R2 (0.983) and low root-mean-square error (RMSE) (0.647 kg H2O2 m-3 d-1) values. The model identified the carbon felt anode, GDE cathode, and cathode-to-anode volume ratio as the top three most important input features. Further scale-up analysis for small-scale wastewater treatment plants indicated that proper design and operating conditions could increase the H2O2 production rate to as high as 9 kg m-3 d-1.


Subject(s)
Hydrogen Peroxide , Water Purification , Peroxides , Carbon , Wastewater , Electrodes
14.
Sci Total Environ ; 878: 162926, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-36933715

ABSTRACT

The denitrification process in wastewater treatment plants (WWTPs) is limited by insufficient carbon sources. Agricultural waste corncob was investigated for its feasibility as a low-cost carbon source for efficient denitrification. The results showed that the corncob as the carbon source exhibited a similar denitrification rate (19.01 ± 0.03 gNO3--N/m3d) to that of the traditional carbon source sodium acetate (19.13 ± 0.37 gNO3--N/m3d). When filling corncob into a microbial electrochemical system (MES) three-dimensional anode, the release of corncob carbon sources was well controlled with an improved denitrification rate (20.73 ± 0.20 gNO3--N/m3d). Carbon source and electron recovered from corncob led to autotrophic denitrification and heterotrophic denitrification occurred in the MES cathode, which synergistically improved the denitrification performance of the system. The proposed strategy for enhanced nitrogen removal by autotrophic coupled with heterotrophic denitrification using agricultural waste corncob as the sole carbon source opened up an attractive route for low-cost and safe deep nitrogen removal in WWTPs and resource utilization for agricultural waste corncob.


Subject(s)
Denitrification , Wastewater , Zea mays , Carbon , Electrons , Bioreactors , Nitrogen , Nitrates
15.
Sci Total Environ ; 867: 161432, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36623651

ABSTRACT

Our previous studies have reported water toxicity determination with a fresh electrochemically active bacteria (EAB) suspension as the sensing element, which exhibits high sensitivity and has great prospects in providing early warning about water pollution. However, because the preparation of fresh EAB suspensions is time-consuming, these studies are not suitable for the on-site determination of water toxicity. To solve this problem, this study investigated the rapid preparation of an EAB suspension by the rehydration of freeze-dried EABs and established a novel method for the on-site determination of water toxicity based on the freeze-dried EAB model strain Shewanella oneidensis MR-1. The results demonstrate that the optimal cryoprotectant for S. oneidensis MR-1 freeze drying is 7.5 % (w/v) skimmed milk powder. Compared with fresh S. oneidensis MR-1, freeze-dried S. oneidensis MR-1 exhibits similar extracellular electron transfer (EET) performance (74.7 % ± 0.3 %) and slightly lower sensitivity for water toxicity determination (65.8 % ± 2.2 %) with the optimal cryoprotectant. On-site determination of water toxicity was realized by using freeze-dried S. oneidensis MR-1, and the detection limits of five common toxic pollutants (Cd2+, Pb2+, Cu2+, phenol and dichlorophenol) reached 0.5 mg/L. Water toxicity determination is capable of resisting common interferences, e.g., glucose, lactate, nitrate and nitrite, and shows high accuracy in practical applications.


Subject(s)
Bacteria , Water , Electron Transport , Nitrates , Nitrites
16.
Sci Total Environ ; 867: 161446, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36621490

ABSTRACT

Source-separated urine is a readily accessible nutrients dense waste stream that can be used to recover nitrogen and hydrogen. In the research, the microbial electrochemical gas-permeable membrane system (MEGS) is creatively introduced for urine treatment in removing organics, recovering the total ammonia nitrogen and high-value product of hydrogen (H2) as well as ammonium sulfate ((NH4)2SO4). MEGS can simultaneously realize the functions of H2 recovery, in-situ efficient alkali production at the cathode, and the efficient absorption capacity of the gas-permeable membrane (GPM). Under the action of the urease enzyme, urea is hydrolyzed into large amounts of carbonic acid and ammonium, causing the pH (7.87 ± 0.13) and conductivity (5.44 ± 0.21 mS cm-1) of the anode to increase extremely rapidly. A large amount of NH4+ was transported to the cathode chamber under the strengthening effect of the electric field, enriched, and then absorbed to produce the high-quality (NH4)2SO4 to be recovered. The findings reveal that MEGS can achieve 100 % of urea removal, 88.52 ± 0.40 % of COD removal, 94.22 ± 2.57 % of nitrogen recovery, 0.58 ± 0.03 m3 m-3 d-1 of hydrogen yield, and 3.78 kg m-3 of (NH4)2SO4 production with 78.03 ± 3.51 % of coulombic efficiency during a 30-h cycle. A benefit of $18.29 can be achieved with the recovery of (NH4)2SO4 and H2 from 1 m3 of urine. The study presents a promising idea for the efficient nutrient-energy recovery and utilization of urine.


Subject(s)
Hydrogen , Nitrogen , Waste Disposal, Fluid , Ammonia , Urea , Electrodes
17.
Sci Total Environ ; 865: 161289, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36587698

ABSTRACT

Recycling urban tail water for ecological base flow and landscape use offers a reliable solution for the problem of water resource shortage. But the long-term direct discharge of urban tail water can aggravate the eutrophication of surface water based on the present drainage standard of sewage plant. It is of great significance to develop low-cost and low-energy ecological technologies as transitional region between urban tail water and surface water. In this study, a pilot-scale ecological bed coupled with microbial electrochemical system (EB-MES) was established to treat urban tail water deeply. The system was operated for 96 days from June to September. Average TN removal efficiency in EB-MES under the condition of submerged plant coupled closed-circuit MES could reach 59.0 ± 16.6 %, which was 82.7 % and 38.1 % higher than that of open-circuit EB-MES and MES without plants, respectively. Microbial community structure testing indicated that multiple nitrogen metabolic mechanisms occurred in the system, including nitrification, electrode autotrophic denitrification, anammox, simultaneous nitrification and denitrification, and aerobic denitrification, which results in better denitrification efficiency under tail water. Our research provided a novel ecological technology with advantages of high-efficiency, low-energy and low-carbon and verified the feasibility in pilot scale for application in the advanced treatment of urban tail water.


Subject(s)
Denitrification , Water Purification , Nitrification , Sewage/chemistry , Water Purification/methods , Autotrophic Processes , Nitrogen/analysis , Bioreactors
18.
J Hazard Mater ; 443(Pt A): 130172, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36308935

ABSTRACT

In the water environment such as lakes, there is a phenomenon that the sediment and overlying water are polluted at the same time. In this study, A microbial electrochemical system with an embedded active electrode was developed for simultaneous removal of polycyclic aromatic hydrocarbons in sediment and antibiotics in overlying water by in-situ utilization of electrons. In the closed-circuit group, the pyrene concentration in sediment decreased from 9.94 to 2.08 mg/L in 96 d, and the sulfamethoxazole concentration in water decreased from 5.12 to 1.12 mg/L in 168 h. These values were 18.71 % and 31.21 % higher, respectively, than those of the open-circuit group. The pyrene degradation pathway may be from polycyclic aromatic substances to low-cyclic aromatic hydrocarbons via successive breakdown of benzene rings. Multiple metabolites produced by reduction verified that SMX or its intermediates were reductively degraded in water. On the active electrode, the relative abundances of Acetobacterium and Piscinibacter, which were genera related to SMX degradation, was promoted, while the electricity-producing genus Pseudomonas was inhibited. ccdA, pksS, torC, and acsE genes related to extracellular electron transport may accelerate electron transport. Electrons could be transferred to SMX under the influence of proteins involved in extracellular electron transport, and SMX could be degraded reductively as an electron acceptor by microbes. Generation of electrons and in-situ utilization for simultaneous removal of solid-liquid two-phase pollutants will provide mechanistic insight into pollutant biodegradation by microbial electrochemistry and promote the development of sustainable bioremediation strategies for surface water.


Subject(s)
Electrons , Geologic Sediments , Geologic Sediments/chemistry , Water/chemistry , Sulfamethoxazole/metabolism , Biodegradation, Environmental , Electrodes , Pyrenes
19.
Sci Total Environ ; 838(Pt 3): 156383, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35654178

ABSTRACT

It is essential to remediate the polluted urban river, which endangers the aquatic creatures and affected human body's senses. The treatment wetland combined with microbial electrochemical system (MES) used for the remediation is becoming a new research focus due to its ideal pollutants removal efficiency and small footprint. Here this paper provided a kind of novel shallow wetland bed coupling with close-circuit microbial electrochemical system (WB-CMES) to remove pollutants in surface water. In contrast to the shallow wetland bed coupling with open-circuit MES (WB-OMES) and the shallow wetland bed without MES (WB), the enhancing effects and pollutants removal pathway were evaluated. After 62-day operation, average TN removal efficiency in WB-CMES was 87.7%, which was 19.7% and 13.8% higher than that of WB-OMES and WB respectively. The rate coefficient k of NO3--N degradation in WB-CMES was 1.6 and 1.8 times higher than that in WB-OMES and WB. The results of chlorophyll, protein and superoxide dismutase (SOD) in WB-CMES were 27.3%, 44.3% and 12.9% higher than those in WB. The microbial community structure analysis indicated that electroactive bacteria on anode like Desulfobulbus could oxidize organics and generate electrons to compensate cathode, meanwhile, cathode could enrich more species of functional bacteria like Rhodobacter, Pirellula, Hyphomicrobium, Thauera, which had a synergistic effect on oxygen reduction, nitrogen removal and plant growth. The results indicated that oxygen produced by submerged plants could be utilized by the oxygen-reducing functional biocathode of MES and the proper aerobic and anoxic environment might enhance nitrate removal mainly through simultaneous nitrification and denitrification (SND), aerobic denitrification and anammox. This research provided a novel technology with advantages of simple operation, flexible configuration, easy scale-up and low cost for application in remediation of highly polluted surface water.


Subject(s)
Environmental Pollutants , Wetlands , Denitrification , Environmental Pollutants/analysis , Humans , Microbial Interactions , Nitrification , Nitrogen/analysis , Oxygen/analysis , Wastewater/chemistry , Water/analysis
20.
Bioresour Technol ; 359: 127474, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35714783

ABSTRACT

A newly designed microbial electrochemical system (MES) with the addition of a baffle between the electrodes was integrated with the anaerobic digestion (AD) process for biogas upgradation. Novel MES configuration attained an increased methane production rate of 292.6 mL/L∙d and methane yield of 0.36 ± 0.006 [Formula: see text] /gCOD, which were higher than the values (185.3 mL/L∙d and 0.33 ± 0.009 [Formula: see text] /gCOD) from the MES operation without baffle, respectively. Moreover, the MES with baffle operation resulted in increased substrate removal (88.4 ± 0.5%) and less volatile fatty acids accumulation with a high energy efficiency of 99.6 %. Microbial community analysis revealed that acids metabolizing bacteria, Firmicutes, and Methanothrix were highly enriched in the cathode biofilm of MES with baffle. This study suggests that the baffle addition into the single chamber MES is beneficial to further improve the methanogenesis process for practical applications in the scaled-up MES-AD process.


Subject(s)
Biofuels , Methane , Anaerobiosis , Bioreactors , Fatty Acids, Volatile
SELECTION OF CITATIONS
SEARCH DETAIL
...