Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.017
Filter
1.
Data Brief ; 55: 110592, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993231

ABSTRACT

Pearl millet (Pennisetum glaucum, also known as Cenchrus americanus) is a cereal crop that has a C4 photosynthesis system and that can grow and develop seeds even under stressed conditions including drought-stressed, high temperature-stressed and nutrient-poor conditions. In previous studies, transcriptomes of pearl millet were studied by RNA sequencing (RNA-Seq) to understand mechanisms regulating its development and tolerance to such stressed conditions. Here, RNA-Seq reads from 565 pearl millet samples from 25 projects in the NCBI (National Center for Biotechnology Information) BioProject database were collected and mapped to the pearl millet reference genome to obtain read counts and transcripts per million (TPM) for each pearl millet gene. The count and TPM data for all the 565 samples as well as the attributes of those samples and projects were deposited in the figshare repository (https://doi.org/10.6084/m9.figshare.24902100).

2.
J Food Sci Technol ; 61(8): 1557-1568, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966788

ABSTRACT

The majority of millets are produced in India, particularly pearl millet, which is more nutritious than both wheat and rice. Native to India, the "north-western semi-arid region" produces rabadi, a natural dairy beverage made from cereal and fermented by lactic acid bacteria. The three components of rabadi viz. pearl millet, buttermilk and deionized water were optimized by using Design Expert software trial version13.0.12.0. Rabadi was processed by using the traditional technique i.e., the three components were mixed in sterile conditions and fermented for 4 h at 37 °C and then cooked for 7-8 min at high flame and finally boiled. Parameters such as pH, viscosity, ash, moisture, total solids, antioxidants, total phenols, tannins, suspension stability, titratable acidity, total sugars, and reducing sugars were analysed for all 16 runs predicted by the software. 6.83 g of pearl millet, 42.44 ml of buttermilk, and 50.72 ml of deionized water were predicted to be the best formulation of rabadi, when using the set goal of maximizing the antioxidants, total phenols and minimizing the tannins. FTIR analysis was also carried out, after the final concentration optimization, to confirm the presence of phenolic compounds, antioxidants, carbohydrates, proteins and fatty acids.

3.
Food Chem X ; 23: 101541, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38974197

ABSTRACT

The utilization of byproducts from foxtail millet polishing can reduce food loss and waste. Thus, it is necessary to know the chemical compounds from the millet and the segregation of the layers. The nutrients including minerals were compared among the husk, bran, and millet, and a LC-MS metabolomics analysis was also performed among them. The results showed that the protein, crude fat and 4 fatty acids, seven minerals, the nitrogen-containing compounds and phenolic acids were at much higher levels in the bran part than the husk and millet, whereas the husk only contained higher levels of dietary fibre, and some minerals. The millet section, as the edible part, contained the lowest level of chemical constituents. It illustrated that the bran part contained more functional and nutritional components than the millet and husk part. Therefore, the bran of the foxtail millet should be a food resources instead of wasting.

4.
Planta ; 260(2): 43, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958760

ABSTRACT

MAIN CONCLUSION: Millets' protein studies are lagging behind those of major cereals. Current status and future insights into the investigation of millet proteins are discussed. Millets are important small-seeded cereals majorly grown and consumed by people in Asia and Africa and are considered crops of future food security. Although millets possess excellent climate resilience and nutrient supplementation properties, their research advancements have been lagging behind major cereals. Although considerable genomic resources have been developed in recent years, research on millet proteins and proteomes is currently limited, highlighting a need for further investigation in this area. This review provides the current status of protein research in millets and provides insights to understand protein responses for climate resilience and nutrient supplementation in millets. The reference proteome data is available for sorghum, foxtail millet, and proso millet to date; other millets, such as pearl millet, finger millet, barnyard millet, kodo millet, tef, and browntop millet, do not have any reference proteome data. Many studies were reported on stress-responsive protein identification in foxtail millet, with most studies on the identification of proteins under drought-stress conditions. Pearl millet has a few reports on protein identification under drought and saline stress. Finger millet is the only other millet to have a report on stress-responsive (drought) protein identification in the leaf. For protein localization studies, foxtail millet has a few reports. Sorghum has the highest number of 40 experimentally proven crystal structures, and other millets have fewer or no experimentally proven structures. Further proteomics studies will help dissect the specific proteins involved in climate resilience and nutrient supplementation and aid in breeding better crops to conserve food security.


Subject(s)
Millets , Plant Proteins , Millets/genetics , Millets/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Proteome/metabolism , Proteomics/methods , Droughts , Stress, Physiological , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Sorghum/metabolism , Sorghum/genetics
5.
Heliyon ; 10(12): e32774, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975087

ABSTRACT

Finger millet, an important 'Nutri-Cereal' and climate-resilient crop, is cultivated as a marginal crop in calcareous soils. Calcareous soils have low organic carbon content, high pH levels, and poor structure. Such a situation leads to poor productivity of the crop. Site-specific nutrient management (SSNM), which focuses on supplying optimum nutrients when a crop is needed, can ensure optimum production and improve the nutrient and energy use efficiency of crops. Moreover, developing an appropriate SSNM technique for this crop could offer new insights into nutrient management practices, particularly for calcareous soils. A field experiment was conducted during the rainy seasons of 2020 and 2021 in calcareous soil at Dr. Rajendra Prasad Central Agricultural University, Pusa, India. The experiment consisted of 8 treatments, viz. control, nitrogen (N)/phosphorus (P)/potassium (K)-omission, 75 %, 100 %, and 125 % recommended fertilizer dose (RFD), and 100 % recommended P and K + 30 kg ha-1 N as basal + rest N as per GreenSeeker readings. From this study, it was observed that the GreenSeeker-based SSNM resulted in the maximum grain yield (2873 kg ha-1), net output energy (96.3 GJ ha-1), and agronomic efficiency of N (30.6 kg kg-1), P (68.9 kg kg-1), and K (68.9 kg kg-1). The application of 125 % RFD resulted in ∼7 % lower yield than that under GreenSeeker-based nutrient management. Approximately 12 % greater energy use efficiency and 21-36 % greater nutrient use efficiency were recorded under GreenSeeker-based nutrient management than under 125 % RDF. The indigenous supplies of N, P, and K were found to be 14.31, 3.00, and 18.51 kg ha-1, respectively. Thus, 100 % of the recommended P and K + 30 kg ha-1 N as basal + rest N according to GreenSeeker readings can improve the yield, nutrient use efficiency, and energy balance of finger millet in calcareous soils.

6.
BMC Genomics ; 25(1): 581, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858648

ABSTRACT

BACKGROUND: Phospholipases constitute a diverse category of enzymes responsible for the breakdown of phospholipids. Their involvement in signal transduction with a pivotal role in plant development and stress responses is well documented. RESULTS: In the present investigation, a thorough genome-wide analysis revealed that the pearl millet genome contains at least 44 phospholipase genes distributed across its 7 chromosomes, with chromosome one harbouring the highest number of these genes. The synteny analysis suggested a close genetic relationship of pearl millet phospholipases with that of foxtail millet and sorghum. All identified genes were examined to unravel their gene structures, protein attributes, cis-regulatory elements, and expression patterns in two pearl millet genotypes contrasting for rancidity. All the phospholipases have a high alpha-helix content and distorted regions within the predicted secondary structures. Moreover, many of these enzymes possess binding sites for both metal and non-metal ligands. Additionally, the putative promoter regions associated with these genes exhibit multiple copies of cis-elements specifically responsive to biotic and abiotic stress factors and signaling molecules. The transcriptional profiling of 44 phospholipase genes in two genotypes contrasting for rancidity across six key tissues during pearl millet growth revealed a predominant expression in grains, followed by seed coat and endosperm. Specifically, the genes PgPLD-alpha1-1, PgPLD-alpha1-5, PgPLD-delta1-7a, PgPLA1-II-1a, and PgPLD-delta1-2a exhibited notable expression in grains of both the genotypes while showing negligible expression in the other five tissues. The sequence alignment of putative promoters revealed several variations including SNPs and InDels. These variations resulted in modifications to the corresponding cis-acting elements, forming distinct transcription factor binding sites suggesting the transcriptional-level regulation for these five genes in pearl millet. CONCLUSIONS: The current study utilized a genome-wide computational analysis to characterize the phospholipase gene family in pearl millet. A comprehensive expression profile of 44 phospholipases led to the identification of five grain-specific candidates. This underscores a potential role for at least these five genes in grain quality traits including the regulation of rancidity in pearl millet. Therefore, this study marks the first exploration highlighting the possible impact of phospholipases towards enhancing agronomic traits in pearl millet.


Subject(s)
Edible Grain , Multigene Family , Pennisetum , Phospholipases , Pennisetum/genetics , Pennisetum/metabolism , Phospholipases/genetics , Phospholipases/metabolism , Phospholipases/chemistry , Edible Grain/genetics , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Synteny , Gene Expression Profiling , Genotype , Chromosome Mapping
7.
Food Res Int ; 189: 114563, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876595

ABSTRACT

The digestibility of ungelatinized, short-term retrograded and long-term retrograded starch from foxtail millet was investigated and correlated with starch chain length distributions (CLDs). Some variations in starch CLDs of different varieties were obtained. Huangjingu and Zhonggu 9 had higher average chain lengths of debranched starch and lower average chain length ratios of amylopectin and amylose than Dajinmiao and Jigu 168. Compared to ungelatinized starch, retrogradation significantly increased the estimated glycemic index (eGI), whereas significantly decreased the resistant starch (RS). In contrast, long-term retrograded starches have lower eGI (93.33-97.37) and higher RS (8.04-14.55%) than short-term retrograded starch. PCA and correlation analysis showed that amylopectin with higher amounts of long chains and longer long chains contributed to reduced digestibility in ungelatinized starch. Both amylose and amylopectin CLDs were important for the digestibility of retrograded starch. This study helps a better understanding of the interaction of starch CLDs and digestibility during retrogradation.


Subject(s)
Amylopectin , Amylose , Digestion , Setaria Plant , Starch , Setaria Plant/chemistry , Setaria Plant/metabolism , Starch/chemistry , Starch/metabolism , Amylopectin/chemistry , Amylose/chemistry , Glycemic Index
8.
Front Biosci (Elite Ed) ; 16(2): 18, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38939908

ABSTRACT

INTRODUCTION: Millets, owing to their rich nutritional and low-to-moderate glycemic index values, are termed superfoods; however, some anti-nutritional factors, such as tannins, limit the absorption of micro and macronutrients. Non-thermal processing technologies, such as fermentation, can improve nutrient content and reduce these anti-nutritional factors. METHODS: The effect of a controlled submerged fermentation of whole grain sorghum, pearl millet, and dehusked Kodo millet using mixed lactic acid bacteria (LAB) culture in tofu whey-based media on the proximate, antioxidant, tannin content, vitamin B, amino acids profile and estimated glycemic index (eGI) of different millets were evaluated. RESULTS: The protein content (2-12.5%), carbohydrate content (2-13.6%), antioxidant activity (3-49%), vitamin B complex, amino acid profile (89-90%), and eGI of whole grain sorghum, pearl millet, and dehusked Kodo millet improved due to LAB-assisted submerged fermentation. In contrast, fat (4-15%), ash (56-67%), crude fiber (5-34%), minerals, tannin and resistant starch content decreased due to LAB fermentation. CONCLUSION: Controlled LAB fermentation can improve the nutritional quality of sorghum and millets while reducing anti-nutritional factors. This non-thermal process can be adopted industrially to produce more palatable and nutritionally superior millet products.


Subject(s)
Amino Acids , Fermentation , Glycemic Index , Millets , Pennisetum , Sorghum , Sorghum/chemistry , Sorghum/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Pennisetum/metabolism , Millets/chemistry , Nutrients/analysis , Lactobacillales/metabolism
9.
Plants (Basel) ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931125

ABSTRACT

Proso millet (Panicum miliaceum L.) is resilient to abiotic stress, especially to drought. However, the mechanisms by which its roots adapt and tolerate salt stress are obscure. In this study, to clarify the molecular mechanism of proso millet in response to drought stress, the physiological indexes and transcriptome in the root of seedlings of the proso millet cultivar 'Yumi 2' were analyzed at 0, 0.5, 1.0, 1.5, and 3.0 h of stimulated drought stress by using 20% PEG-6000 and after 24 h of rehydration. The results showed that the SOD activity, POD activity, soluble protein content, MDA, and O2-· content of 'Yumi 2' increased with the time of drought stress, but rapidly decreased after rehydration. Here, 130.46 Gb of clean data from 18 samples were obtained, and the Q30 value of each sample exceeded 92%. Compared with 0 h, the number of differentially expressed genes (DEGs) reached the maximum of 16,105 after 3 h of drought, including 9153 upregulated DEGs and 6952 downregulated DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that upregulated DEGs were mainly involved in ATP binding, nucleus, protein serine/threonine phosphatase activity, MAPK signaling pathway-plant, plant-pathogen interactions, and plant hormone signal transduction under drought stress, while downregulated DEGs were mainly involved in metal ion binding, transmembrane transporter activity, and phenylpropanoid biosynthesis. Additionally, 1441 TFs screened from DEGs were clustered into 64 TF families, such as AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, and bZIP TF families. Genes related to physiological traits were closely related to starch and sucrose metabolism, phenylpropanoid biosynthesis, glutathione metabolism, and plant hormone signal transduction. In conclusion, the active oxygen metabolism system and the soluble protein of proso millet root could be regulated by the activity of protein serine/threonine phosphatase. AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, and bZIP TF families were found to be closely associated with drought tolerance in proso millet root. This study will provide data to support a subsequent study on the function of the drought tolerance gene in proso millet.

10.
Gels ; 10(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38920943

ABSTRACT

The objective of this study was to develop candelilla wax oleogels with hemp seed oil and olive oil and use them as a fat source in the development of new plant-based ice cream assortments. Oleogels were structured with 3 and 9% candelilla wax and characterized by oil-binding capacity, peroxide value and color parameters. The oil-binding capacities of 9% wax oleogels were significantly higher than those of 3% wax oleogels, while peroxide values of oleogels decrease with increasing wax dosage. All oleogel samples are yellow-green due to the pigments present in the oils and candelilla wax. Physicochemical (pH, titratable acidity, soluble solids, fat, protein) and rheological (viscosity and viscoelastic modulus) parameters of plant-based ice cream mixes with oleogels were determined. Also, sensory attributes and texture parameters were investigated. The results showed that titratable acidity and fat content of plant-based ice cream samples increased with increasing wax percentage, while pH, soluble solids and protein values are more influenced by the type of plant milk used. The plant-based ice cream sample with spelt milk, hemp oil and 9% candelilla wax received the highest overall acceptability score. The hardness of the plant-based ice cream samples increased as the percentage of candelilla wax added increased.

11.
Foods ; 13(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38890912

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic manifestation of metabolic dysfunction for which effective interventions are lacking. The burden of NAFLD is increasing at an alarming rate. NAFLD is frequently associated with morbidities such as dyslipidemia, type 2 diabetes mellitus and obesity, etc. The current study explored the potential role of bound polyphenols from foxtail millet (BPIS) in treating mice with NAFLD induced by a high-fat diet (HFD). The results indicated the critical role of BPIS in treating NAFLD by effectively restoring the gut microbiota in C57BL/6 mice that received a high-fat diet (HFD) for 12 weeks. At the same time, 16S rRNA analysis demonstrated that BPIS remodeled the overall structure of the gut microbiota from fatty liver diseases towards that of normal counterparts, including ten phylum and twenty genus levels. Further study found that the expression of tight junction proteins was upregulated in the BPIS-treated group. This study provides new insights into the potential NAFLD protective effects induced by polyphenols of foxtail millet.

12.
Foods ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38890924

ABSTRACT

Millet products have garnered global recognition for their exceptional nutritional profile, appealing to various age demographics, and, therefore, fortifying such products with minerals can ensure nutritional security. This research explores the feasibility of utilizing millet as a substitute for refined wheat flour in biscuit production. Three distinct millet varieties were investigated: finger, pearl, and buckwheat. Employing response surface methodology (RSM), the optimal ratio of these flours was determined, resulting in a blend of 1.5:1:1, respectively. The optimized multi-millet biscuits were further enhanced with calcium fortification and subjected to comprehensive physico-chemical analysis. Proximate composition analysis revealed favorable levels of protein (5.472 ± 0.31%), ash (2.80 ± 0.57 g/100 g), and energy density (5.8015 ± 0.004 kcal/g), indicating a significantly higher protein content, enriched mineral profile, and high energy density as compared to refined wheat flour products. Sensory evaluation encompassing attributes such as color and texture and organoleptic assessment using a nine-point hedonic scale demonstrated favorable acceptance. Additionally, the overall acceptability of the biscuits remained consistently high throughout storage, ranging from 8.263 ± 0.65 (day 0) to 8.053 ± 0.85 (day 14). This study underscores the potential of multi-millet biscuits as a nutritious and palatable alternative to traditional wheat-based snacks, offering an avenue for diversifying dietary options and promoting healthier food choices.

13.
Methods ; 229: 30-40, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880434

ABSTRACT

The objective of this study was to optimise the millet formulation using Levilactobacillus brevis and to evaluate its anticarcinogenic potential in vitro. The formula was developed in the course of the fermentation of finger millet (Eleusine coracana) using L. brevis MTTC 4460 and optimised by response surface methodology and validation by artificial neural networking (ANN). The optimised millet formulation could be obtained using 2 % of bacterial inoculum, 2 % of glucose, and a fermentation duration of 3.3 days with a yield of 5.98 mg/mL lactic acid and 3.38 log10 (CFU/mL) viable L. brevis with overall desirability value of 1. The fermented millet formulation exhibited antiproliferative and antimigratory effects on MDA-MB-231 and HCT116 cancer cell lines. In addition, the outcomes observed in western blot analysis revealed that the formulation elicited apoptotic responses mediated by the Bcl-2 family of proteins in MDA-MB-231 and HCT116 cell lines while demonstrating no discernible impact on HEK293 normal cells.

14.
Food Chem ; 457: 140104, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38941905

ABSTRACT

Starch chain-length distributions play a key role in regulating the processing and digestion characteristics of proso millet starch. Waxy proso millet starch has higher endothermic enthalpy (13.06-16.73 J/g) owing to its higher relative crystallinity (27.83%-32.04%), while nonwaxy proso millet starch has lower peak viscosity (1.0630-1.1930 Pa∙s) and stronger viscoelasticity owing to its higher amylose content (21.72%-24.34%). Non-waxy proso millet starch exhibited two different digestion phases and its resistant starch content (18.37%-20.80%) was higher than waxy proso millet starch. Correlation analysis showed proso millet starch with longer amylopectin B1 chains and more amylopectin B2 chains exhibited excellent thermal ability and retrograde resistance, whereas proso millet starch with shorter and more amylose medium/long-chains not only reduced the digestion rate and increased the resistant starch content but also exhibited stronger viscoelasticity and excellent retrogradation properties. These results could provide more insights into efficient utilization of proso millet starch.

15.
Food Res Int ; 190: 114635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945624

ABSTRACT

Finger millet, like other cereals, contains high amounts of antinutrients that bind minerals, making them unavailable for absorption. This study explores the effect of traditional fermentation on nutritional, antinutritional, and subsequent mineral bioaccessibility (specifically iron, zinc, and calcium) of finger millet based Injera. Samples of fermented dough and Injera prepared from light brown and white finger millet varieties were analyzed for nutritional composition, antinutritional content, and mineral bioaccessibility following standard procedures. With some exceptions, the proximate composition of fermented dough was significantly affected by fermentation time. Compared to unfermented flour, the phytate and condensed tannin content significantly (p < 0.05) decreased for fermented dough and Injera samples. A strong decline in phytate and condensed tannin content was observed in white finger millet Injera as fermentation time increased, compared to light brown finger millet based Injera. The mineral bioaccessibility of Injera prepared from finger millet and maize composite flour increased with fermentation time, leading to a significant increase in bioaccessible iron, zinc, and calcium, ranging from 15.4-40.0 %, 26.8-50.8 %, and 60.9-88.5 %, respectively. The results suggest that traditional fermentation can be an effective method to reduce phytate and condensed tannin content, simultaneously increasing the bioaccessibility of minerals in the preparation of finger millet based Injera.


Subject(s)
Biological Availability , Eleusine , Fermentation , Nutritive Value , Phytic Acid , Phytic Acid/analysis , Flour/analysis , Minerals/analysis , Ethiopia , Food Handling/methods , Proanthocyanidins/analysis , Zinc/analysis
16.
Planta ; 260(1): 23, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850310

ABSTRACT

MAIN CONCLUSION: In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.


Subject(s)
Genome, Mitochondrial , Setaria Plant , Setaria Plant/genetics , Genome, Mitochondrial/genetics , Phylogeny , RNA, Transfer/genetics , Genome, Plant/genetics , Codon Usage , RNA, Ribosomal/genetics , Codon/genetics
17.
Food Res Int ; 188: 114439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823829

ABSTRACT

Tropane alkaloids (TAs) are secondary metabolites from weeds that can contaminate cereals and vegetables during harvest. Due to their toxicity, the Regulation (EC) 2023/915 sets maximum levels for atropine and scopolamine in cereal-based foods for infants containing millet, sorghum, buckwheat or their derived products. The aim of this study was to evaluate the effect of pH and temperature on the stability of TAs, as possible parameters in thermal processing to mitigate this chemical hazard in cereal-based infant food. The effect of pH (4 and 7) and temperature (80 °C and 100 °C) was assessed in buffer solutions. Also, treatment at 180 °C was performed in spiked and naturally incurred millet flour to assess the effect of high temperature, simulating cooking or drying, on the stability of TAs in the cereal matrix. The fate of 24 TAs was assessed by UHPLC-MS/MS. TAs showed high thermostability, although it was variable depending on the specific compound, pH, temperature and treatment time. In buffer solutions, higher degradation was found at 100 °C and pH 7. In spiked millet flour at 180 °C for 10 min, scopolamine and atropine contents decreased by 25 % and 22 %, similarly to other TAs which also showed a slow thermal degradation. Atropine, scopolamine, anisodamine, norscopolamine, scopine and scopoline were found in naturally contaminated millet flour. Interestingly, naturally incurred atropine was more thermostable than when spiked, showing a protective effect of the cereal matrix on TAs degradation. The present results highlight the need for an accurate monitorization of TAs in raw materials, as this chemical hazard may remain in infant cereal-based food even after intense thermal processing.


Subject(s)
Edible Grain , Food Contamination , Infant Food , Tandem Mass Spectrometry , Edible Grain/chemistry , Hydrogen-Ion Concentration , Infant Food/analysis , Food Contamination/prevention & control , Tropanes/chemistry , Tropanes/analysis , Temperature , Alkaloids/analysis , Humans , Food Handling/methods , Hot Temperature , Atropine/analysis , Atropine/chemistry , Infant , Chromatography, High Pressure Liquid
18.
Sci Rep ; 14(1): 13569, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866844

ABSTRACT

Revolutionizing construction, the concrete blend seamlessly integrates human hair (HH) fibers and millet husk ash (MHA) as a sustainable alternative. By repurposing human hair for enhanced tensile strength and utilizing millet husk ash to replace sand, these materials not only reduce waste but also create a durable, eco-friendly solution. This groundbreaking methodology not only adheres to established structural criteria but also advances the concepts of the circular economy, representing a significant advancement towards environmentally sustainable and resilient building practices. The main purpose of the research is to investigate the fresh and mechanical characteristics of concrete blended with 10-40% MHA as a sand substitute and 0.5-2% HH fibers by applying response surface methodology modeling and optimization. A comprehensive study involved preparing 225 concrete specimens using a mix ratio of 1:1.5:3 with a water-to-cement ratio of 0.52, followed by a 28 day curing period. It was found that a blend of 30% MHA and 1% HH fibers gave the best compressive and splitting tensile strengths at 28 days, which were 33.88 MPa and 3.47 MPa, respectively. Additionally, the incorporation of increased proportions of MHA and HH fibers led to reductions in both the dry density and workability of the concrete. In addition, utilizing analysis of variance (ANOVA), response prediction models were created and verified with a significance level of 95%. The models' R2 values ranged from 72 to 99%. The study validated multi-objective optimization, showing 1% HH fiber and 30% MHA in concrete enhances strength, reduces waste, and promotes environmental sustainability, making it recommended for construction.


Subject(s)
Construction Materials , Hair , Millets , Tensile Strength , Humans , Construction Materials/analysis , Hair/chemistry , Millets/chemistry , Materials Testing , Compressive Strength
19.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892028

ABSTRACT

Amino acid permeases (AAPs) transporters are crucial for the long-distance transport of amino acids in plants, from source to sink. While Arabidopsis and rice have been extensively studied, research on foxtail millet is limited. This study identified two transcripts of SiAAP9, both of which were induced by NO3- and showed similar expression patterns. The overexpression of SiAAP9L and SiAAP9S in Arabidopsis inhibited plant growth and seed size, although SiAAP9 was found to transport more amino acids into seeds. Furthermore, SiAAP9-OX transgenic Arabidopsis showed increased tolerance to high concentrations of glutamate (Glu) and histidine (His). The high overexpression level of SiAAP9 suggested its protein was not only located on the plasma membrane but potentially on other organelles, as well. Interestingly, sequence deletion reduced SiAAP9's sensitivity to Brefeldin A (BFA), and SiAAP9 had ectopic localization on the endoplasmic reticulum (ER). Protoplast amino acid uptake experiments indicated that SiAAP9 enhanced Glu transport into foxtail millet cells. Overall, the two transcripts of SiAAP9 have similar functions, but SiAAP9L shows a higher colocalization with BFA compartments compared to SiAAP9S. Our research identifies a potential candidate gene for enhancing the nutritional quality of foxtail millet through breeding.


Subject(s)
Arabidopsis , Endoplasmic Reticulum , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Endoplasmic Reticulum/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/growth & development , Setaria Plant/genetics , Setaria Plant/metabolism , Setaria Plant/growth & development , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems/genetics , Protein Transport , Brefeldin A/pharmacology , Amino Acids/metabolism , Glutamic Acid/metabolism
20.
Environ Sci Pollut Res Int ; 31(29): 41953-41963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856851

ABSTRACT

Various plant species can be selected for environmental testing, including pearl millet (Pennisetum glaucum (L.) R. Br), a globally significant cereal crop. This study aims to assess millet's suitability as a species for ecotoxicological tests, examining (1) germination and initial development dynamics, (2) the minimum seed quantity for reliable sampling, (3) optimal experimental design with replication numbers, (4) suitability of positive control, and (5) the effectiveness of the protocol in evaluating toxic effects of environmental pollutants. Millet exhibited rapid and uniform germination as well as consistent initial seedling development. To establish the minimum number of seeds required for reliable experimentation, germination, and seedling growth were compared across plots containing 10, 25, and 50 seeds. Consequently, 10 seeds per plot were chosen for subsequent experiments to reduce labor and costs while maintaining reliability. To validate the selected experimental design, and to establish a positive control for assays, aluminum was used as a toxic element at concentrations ranging from 10-2 to 10-6 M. While aluminum did not affect the final percentage of germinated seeds, it did exhibit an impact on the Germination Speed Index (GSI). Significant differences in root and aerial growth, and with fresh weight, were observed. The 10-3M concentration was chosen as the positive control as the 10-2 concentration showed extreme toxicity. To assess the applicability of the established protocol in determining the toxic effects of environmental pollutants, millet roots were exposed to the toxic agents atrazine, cadmium, methyl methane sulfonate (MMS), and Spent pot liner (SPL). Millet demonstrated sensitivity and efficiency in response to these tests. In conclusion, millet proves to be an effective species for the toxicological risk assessment of environmental pollutants.


Subject(s)
Ecotoxicology , Germination , Pennisetum , Pennisetum/drug effects , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...