Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Dis Aquat Organ ; 159: 29-35, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087617

ABSTRACT

The Clinical and Laboratory Standards Institute has published epidemiological cut-off values for susceptibility data generated at 22°°C and read after 44-48 h for florfenicol, oxolinic acid and oxytetracycline against Aeromonas salmonicida. The cut-off values for the minimum inhibitory concentration (MIC) and disc diffusion were derived from data obtained by 1 laboratory and 2 laboratories respectively. The present work reports the generation of susceptibility data from additional laboratories and the calculation of provisional cut-off values from aggregations of these data with previously published data. With respect to MIC data, the provisional cut-off values, derived from aggregations of the data from 4 laboratories, were ≤4 µg ml-1 for florfenicol, ≤0.0625 µg ml-1 for oxolinic acid and ≤1 µg ml-1 for oxytetracycline. For disc diffusion data, the provisional cut-off values derived from aggregations of the data from 5 laboratories were ≥30 mm for florfenicol, ≥32 mm for oxolinic acid and ≥25 mm for oxytetracycline. In addition, a cut-off value of ≥29 mm for ampicillin was derived from the aggregation of data from 4 laboratories.


Subject(s)
Aeromonas salmonicida , Anti-Bacterial Agents , Microbial Sensitivity Tests , Aeromonas salmonicida/drug effects , Anti-Bacterial Agents/pharmacology , Animals , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Drug Resistance, Bacterial , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacology
2.
Mar Drugs ; 22(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667789

ABSTRACT

Sea anemones are valuable for therapeutic research as a diversified source of bioactive molecules, due to their diverse bioactive molecules linked to predation and defence mechanisms involving toxins and antimicrobial peptides. Acid extracts from Actinia equina tentacles and body were examined for antibacterial activity against Gram-positive, Gram-negative bacteria, and fungi. The peptide fractions showed interesting minimum inhibitory concentration (MIC) values (up to 0.125 µg/mL) against the tested pathogens. Further investigation and characterization of tentacle acid extracts with significant antimicrobial activity led to the purification of peptides through reverse phase chromatography on solid phase and HPLC. Broad-spectrum antimicrobial peptide activity was found in 40% acetonitrile fractions. The resulting peptides had a molecular mass of 2612.91 and 3934.827 Da and MIC ranging from 0.06 to 0.20 mg/mL. Sequencing revealed similarities to AMPs found in amphibians, fish, and Cnidaria, with anti-Gram+, Gram-, antifungal, candidacidal, anti-methicillin-resistant Staphylococcus aureus, carbapenemase-producing, vancomycin-resistant bacteria, and multi-drug resistant activity. Peptides 6.2 and 7.3, named Equinin A and B, respectively, were synthesized and evaluated in vitro towards the above-mentioned bacterial pathogens. Equinin B exerted interesting antibacterial activity (MIC and bactericidal concentrations of 1 mg/mL and 0.25 mg/mL, respectively) and gene organization supporting its potential in applied research.


Subject(s)
Microbial Sensitivity Tests , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/isolation & purification , Antimicrobial Peptides/chemistry , Sea Anemones/chemistry , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/chemistry , Fungi/drug effects
3.
EFSA J ; 21(Suppl 1): e211016, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38047128

ABSTRACT

The EU-FORA programme 'Quantitative tools in microbial and chemical risk assessment' was dedicated to training on predictive microbiology fundamentals, implementation of different modelling strategies, design of experiments and software tools such as MATLAB, GInaFiT and DMFit. The fellow performed MATLAB training on maximum specific growth rate (µmax) determination according to the Ratkowsky model. GInaFiT training on different models for bacterial inactivation and DMFit training on growth parameters of Vibrio parahaemolyticus were also carried out. Optical density measurements of V. parahaemolyticus bacterial cultures were performed. The obtained kinetics of optical density measurements were used to estimate µmax. Hereafter, Minimum inhibitory concentrations and non-inhibitory concentrations of aminoglycoside antibiotics were estimated based on the quantification of the fractional areas of the optical density vs time. It can be concluded that the results of the quantitative characterisation of V. parahaemolyticus are reliable and can be used for exposure assessments. Also, the turbidimetric assay can be applied for successful estimation of minimum inhibitory concentrations and non-inhibitory concentrations.

4.
Microorganisms ; 11(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38004787

ABSTRACT

Despite aggressive antibiotic therapy and surgical debridement, Aeromonas necrotizing fasciitis (NF) can lead to high amputation and mortality rates. Our study compares the different antibiotic minimum inhibitory concentrations (MICs) via Epsilometer tests (E-tests) between non-survivors and survivors of Aeromonas NF of limbs. A prospective review of 16 patients with Aeromonas NF was conducted for 3.5 years in a tertiary coastal hospital. E-tests were conducted for 15 antimicrobial agents to determine the MIC value for Aeromonas species. These patients were divided into non-survival and survival groups. The clinical outcomes, demographics, comorbidities, presenting signs and symptoms, laboratory findings, and microbiological results between the two periods were compared. A total of four patients died, whereas 12 survived, resulting in a 25% mortality rate. A higher proportion of bloodstream infections (100% vs. 41.7%; p = 0.042), monomicrobial infections (100% vs. 33.3%; p = 0.021), shock (100% vs. 33.3%; p = 0.021), serous bullae (50% vs. 0%; p = 0.009), liver cirrhosis (100% vs. 25%; p = 0.009), chronic kidney disease (100% vs. 33.3%; p = 0.021), lower susceptibility to cefuroxime (25% vs. 83.3%; p = 0.028), and ineffective antibiotic prescriptions (75% vs. 16.7%; p = 0.029) was observed in non-survivors. Aeromonas NF is an extremely rare skin and soft-tissue infection that is associated with high mortality, bacteremia, antibiotic resistance, and polymicrobial infection. Therefore, antibiotic regimen selection is rendered very challenging. To improve clinical outcomes and irrational antimicrobial usage, experienced microbiologists can help physicians identify specific pathogens and test MIC.

5.
Antimicrob Agents Chemother ; 67(10): e0052823, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37671880

ABSTRACT

As new treatment alternatives for Mycobacterium abscessus complex (MABC) are urgently needed, we determined the minimum inhibitory concentrations (MICs) for novel carbapenem combinations, including imipenem-relebactam and tebipenem-avibactam against 98 MABC isolates by broth microdilution. The MIC50 was reduced from 16 to 8 mg/L by adding relebactam to imipenem, while the addition of avibactam to tebipenem showed a more pronounced reduction from 256 to 16 mg/L, representing a promising non-toxic, oral treatment option for further exploration.


Subject(s)
Mycobacterium abscessus , beta-Lactamase Inhibitors , beta-Lactamase Inhibitors/pharmacology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Imipenem/pharmacology , Microbial Sensitivity Tests , Drug Combinations , beta-Lactamases/pharmacology
6.
Microorganisms ; 11(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37764002

ABSTRACT

The emergence of carbapenem-resistant Enterobacterales (CRE) has been recognized as a significant concern globally. Ceftazidime/avibactam (CZA) is a novel ß-lactam/ß-lactamase inhibitor that has demonstrated activity against isolates producing class A, C, and D ß-lactamases. Here-in, we evaluated the in vitro activity of CZA and comparator antimicrobial agents against 858 CRE isolates, arising from the Southeast Asian region, collected from a large tertiary hospital in Singapore. These CRE isolates mainly comprised Klebsiella pneumoniae (50.5%), Escherichia coli (29.4%), and Enterobacter cloacae complex (17.1%). Susceptibility rates to levofloxacin, imipenem, meropenem, doripenem, aztreonam, piperacillin/tazobactam, cefepime, tigecycline, and polymyxin B were low. CZA was the most active ß-lactam agent against 68.9% of the studied isolates, while amikacin was the most active agent among all comparator antibiotics (80% susceptibility). More than half of the studied isolates (51.4%) identified were Klebsiella pneumoniae carbapenemase (KPC)-2 producers, 25.9% were New Delhi metallo-ß-lactamase (NDM) producers, and Oxacillinase (OXA)-48-like producers made up 10.7%. CZA was the most active ß-lactam agent against KPC-2, OXA-48-like, and Imipenemase (IMI) producers (99.3% susceptible; MIC50/90: ≤1/2 mg/L). CZA had excellent activity against the non-carbapenemase-producing CRE (91.4% susceptible; MIC50/90: ≤1/8 mg/L). Expectedly, CZA had no activity against the metallo-ß-lactamases (MBL)-producing CRE (NDM- and Imipenemase MBL (IMP) producers; 27.2% isolates), and the carbapenemase co-producing CRE (NDM + KPC, NDM + OXA-48-like, NDM + IMP; 3.0% isolates). CZA is a promising addition to our limited armamentarium against CRE infections, given the reasonably high susceptibility rates against these CRE isolates. Careful stewardship and rational dosing regimens are required to preserve CZA's utility against CRE infections.

7.
Int J Mycobacteriol ; 12(3): 211-225, 2023.
Article in English | MEDLINE | ID: mdl-37721224

ABSTRACT

Difficult-to-treat mycobacterial infections are increasing globally. There is an urgent need of new treatment alternatives for multidrug-resistant Mycobacterium tuberculosis (MTB), as well as nontuberculous mycobacteria such as the Mycobacterium abscessus complex (MABC) and Mycobacterium avium complex (MAC). Recently, new carbapenems and combinations of carbapenems with ß-lactamase inhibitors have become available, but activity data in vitro against mycobacteria are so far scarce. Therefore, we performed a systematic review collating the minimum inhibitory concentrations (MICs) of carbapenems, with or without a ß-lactamase inhibitors for MTB, MABC, and MAC. The databases PubMed and Web of Science were searched for the relevant articles in English up until September 21, 2022. Screening of studies was performed by two independent reviewers. MIC data by recommended methods with at least five individual MICs were included. Data were reported as MIC range, MIC50, modal MIC, and/or histograms when individual MICs were available. The study protocol was registered at PROSPERO (CRD42021258537). After screening, a total of 75 studies with MIC data for carbapenems with or without ß-lactamase inhibitors were included in the review. For MTB, the oral carbapenem tebipenem combined with the ß-lactamase inhibitor clavulanic acid resulted in the most significant reduction of MICs. For MABC, the addition of avibactam to tebipenem resulted in a 64-fold reduction of modal MIC. Data were insufficient for the analysis of MAC. Carbapenems, and in particular the novel oral compound tebipenem, in combination with clavulanic acid for MTB and avibactam for MABC may be an untapped potential for difficult-to-treat mycobacterial infections.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Humans , beta-Lactamase Inhibitors/pharmacology , Mycobacterium avium Complex , Carbapenems/pharmacology , Penicillins , Clavulanic Acid , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium Infections, Nontuberculous/microbiology
8.
Microbiol Spectr ; : e0178123, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737628

ABSTRACT

As meropenem-clavulanic acid is recommended for the treatment of drug-resistant tuberculosis, the repurposing of new carbapenem combinations may provide new treatment options, including oral alternatives. Therefore, we studied the in vitro activities of meropenem-vaborbactam, meropenem-clavulanic acid, and tebipenem-clavulanic acid. One hundred nine Mycobacterium tuberculosis complex (MTBC) clinical isolates were tested, of which 69 were pan-susceptible and the remaining pyrazinamide- or multidrug-resistant. Broth microdilution MICs were determined using the EUCAST reference method. Meropenem and tebipenem were tested individually and in combination with vaborbactam 8 mg/L and clavulanic-acid 2 and 4 mg/L, respectively. Whole-genome sequencing was performed to explore resistance mechanisms. Clavulanic acid lowered the modal tebipenem MIC approximately 16-fold (from 16 to 1 mg/L). The modal meropenem MIC was reduced twofold by vaborbactam compared with an approximately eightfold decrease by clavulanic acid. The only previously described high-confidence carbapenem resistance mutation, crfA T62A, was shared by a subgroup of lineage 4.3.4.1 isolates and did not correlate with elevated MICs. The presence of a ß-lactamase inhibitor reduced the MTBC MICs of tebipenem and meropenem. The resulting MIC distribution was lowest for the orally available drugs tebipenem-clavulanic acid. Whether this in vitro activity translates to similar or greater clinical efficacy of tebipenem-clavulanic acid compared with the currently WHO-endorsed meropenem-clavulanic acid requires clinical studies. IMPORTANCE Repurposing of already approved antibiotics, such as ß-lactams in combination with ß-lactamase inhibitors, may provide new treatment alternatives for drug-resistant tuberculosis. Meropenem-clavulanic acid was more active in vitro compared to meropenem-vaborbactam. Notably, tebipenem-clavulanic acid showed even better activity, raising the potential of an all-oral treatment option. Clinical data are needed to investigate whether the better in vitro activity of tebipenem-clavulanic acid correlates with greater clinical efficacy compared with the currently WHO-endorsed meropenem-clavulanic acid.

9.
Med Mycol ; 61(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37740432

ABSTRACT

Data on antifungal susceptibility of Cryptococcus neoformans are limited in Japan. A total of 89 C. neoformans strains isolated from 83 non-human immunodeficiency virus-infected patients with cryptococcosis between 1997 and 2021 in Nagasaki, Japan, were investigated. Using the reference method M27-Ed4 by the Clinical and Laboratory Standards Institute, the minimum inhibitory concentration for 90% of isolates of fluconazole, itraconazole, voriconazole, amphotericin B, and flucytosine were 4, 0.125, 0.06, 0.5, and 4 µg/ml, respectively, which were below the reported epidemiological cutoff values, without any detectable non-wild-type strains. Our findings imply no increasing trend of antifungal-resistant C. neoformans in Nagasaki, Japan.


Cryptococcus neoformans strains obtained from non-human immunodeficiency virus-infected patients were observed to maintain good antifungal susceptibility to fluconazole, itraconazole, voriconazole, amphotericin B, and flucytosine over a 25-year-long period in Nagasaki, Japan.

10.
Life (Basel) ; 13(8)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37629517

ABSTRACT

The harmful effects following the ingestion of mycotoxin-contaminated food include the induction of cancers, mutagenicity, immune suppression, and toxicities that target organs of the digestive, cardiovascular, and central nervous systems. Synthetic fungicides are generally associated with a high toxic residue in food and the development of excessive fungal resistance. This study aimed to determine the antifungal activities against mycotoxigenic fungi of selected South African plant leaves and potentially develop plant-derived bio-fungicides, and, furthermore, to explore the in vitro antioxidant activity and the phytochemical spectra of the compounds of the selected medicinal plant extracts. The extracts were tested for antifungal activity against phytopathogenic strains using a microdilution broth assay. Bauhinia galpinii extracts exhibited the lowest minimum inhibitory concentration (MIC) against C. cladospoides and P. haloterans at 24 h incubation periods. C. caffrum had good antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with 50% inhibitory concentration (IC50) values of 0.013 mg/mL while B. galpini had IC50 values of 0.053 against free radicals of 2,2'-azinobis (3-ethylbenzthiazoline-6-suphonic acid (ABTS). The antimycotoxigenic and antioxidant activity exerted by both B. galpinii and C. caffrum may well be attributed to high TPC. In the GC-ToF-MS analysis, all the selected medicinal plants exhibited the presence of Hexadecanoic acid at varying % areas, while both B. galpinii and C. caffum exhibited the presence of lupeol at % area 2.99 and 3.96, respectively. The compounds identified, particularly the ones with higher % area, may well explain the biological activity observed. Although the selected medicinal plants exhibited a notable biological activity, there is a need to explore the safety profiles of these plants, both in vitro and in vivo.

11.
Int J Antimicrob Agents ; 62(3): 106930, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37490959

ABSTRACT

This study aimed to investigate the geographical trends of minimum inhibitory concentrations (MICs) for tigecycline and colistin in Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae isolates which were collected for the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme from 2016-2021. MICs of the isolates were determined using the broth microdilution method. In the study period, there was an increase in MIC50 and MIC90 values in Asia for tigecycline MICs in A. baumannii isolates, and the geometric mean of MICs increased significantly from 0.51-0.96 (R2 value of 0.912). The isolates in Europe and Latin America also showed an increase in the geometric mean, but the percentage of MIC values ≤ 2 mg/L decreased from 99.7% to 86.7% in Asia. Among the Asian countries studied, China (90.9%), Thailand (94.3%), and Malaysia (95.5%) showed the lower percentages of tigecycline MIC values ≤0.5 mg/L for E. coli isolates. In terms of colistin susceptibility among A. baumannii isolates, there was no increase in MIC50/ MIC90 or the geometric mean from 2016-2021. Compared to other continents, A. baumannii isolates in Europe had the highest MIC50 (0.5 mg/L), MIC90 (2 mg/L), and geometric mean (0.55 mg/L). For E. coli, the percentage of colistin MIC values ≤2 mg/L was consistently >98% in the study areas from 2016-2021. Among K. pneumoniae isolates, Europe and Latin America had higher geometric means of MICs (0.41 and 0.4 mg/L, respectively) and lower percentages of colistin MICs ≤2 mg/L than those in the other continents.


Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Escherichia coli , Klebsiella pneumoniae , Minocycline/pharmacology , Leadership , Thailand , Microbial Sensitivity Tests
12.
mSystems ; 8(4): e0034523, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37431995

ABSTRACT

Antimicrobial peptides (AMPs) are a promising alternative to antibiotics to combat drug resistance in pathogenic bacteria. However, the development of AMPs with high potency and specificity remains a challenge, and new tools to evaluate antimicrobial activity are needed to accelerate the discovery process. Therefore, we proposed MBC-Attention, a combination of a multi-branch convolution neural network architecture and attention mechanisms to predict the experimental minimum inhibitory concentration of peptides against Escherichia coli. The optimal MBC-Attention model achieved an average Pearson correlation coefficient (PCC) of 0.775 and a root mean squared error (RMSE) of 0.533 (log µM) in three independent tests of randomly drawn sequences from the data set. This results in a 5-12% improvement in PCC and a 6-13% improvement in RMSE compared to 17 traditional machine learning models and 2 optimally tuned models using random forest and support vector machine. Ablation studies confirmed that the two proposed attention mechanisms, global attention and local attention, contributed largely to performance improvement. IMPORTANCE Antimicrobial peptides (AMPs) are potential candidates for replacing conventional antibiotics to combat drug resistance in pathogenic bacteria. Therefore, it is necessary to evaluate the antimicrobial activity of AMPs quantitatively. However, wet-lab experiments are labor-intensive and time-consuming. To accelerate the evaluation process, we develop a deep learning method called MBC-Attention to regress the experimental minimum inhibitory concentration of AMPs against Escherichia coli. The proposed model outperforms traditional machine learning methods. Data, scripts to reproduce experiments, and the final production models are available on GitHub.


Subject(s)
Deep Learning , Escherichia coli , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Bacteria
13.
Med Sci (Basel) ; 11(2)2023 03 31.
Article in English | MEDLINE | ID: mdl-37092497

ABSTRACT

Antimicrobial drug resistance in Neisseria gonorrhoeae has been documented all over the world. However, the situation in Sub-Saharan Africa has received little attention. It is critical to establish diagnostics and extend surveillance in order to prevent the emergence of illnesses that are resistant to several treatments. Monitoring antimicrobial susceptibility is critically required in order to gather data that may be utilised to produce treatment recommendations that will result in effective therapy, a decrease in gonorrhoeae-related difficulties and transmission, and effective therapy. Government authorities may set research and preventive objectives, as well as treatment recommendations, using data from the Gonococcal Antimicrobial Surveillance Program (GISP). Local and state health authorities may use GISP data to make choices about the allocation of STI prevention services and resources, to guide preventative planning, and to disseminate information about the most successful treatment practices. Using molecular and culture approaches, we investigated the occurrence of antibiotic resistance in isolates from KwaZulu Natal, South Africa. The great majority of gonococcal isolates (48% showed absolute resistance to ciprofloxacin), with penicillin and tetracycline resistance rates of 14% each. Only one of the gonococcal isolates tested positive for azithromycin resistance, with a minimum inhibitory concentration (MIC) of 1.5 µg/mL. Ceftriaxone was effective against all gonococcal isolates tested.


Subject(s)
Anti-Infective Agents , Gonorrhea , Humans , Neisseria gonorrhoeae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Anti-Infective Agents/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use
14.
Vet Res ; 54(1): 11, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36747286

ABSTRACT

Antimicrobial resistance (AMR) is a global health issue and surveillance of AMR can be useful for understanding AMR trends and planning intervention strategies. Salmonella, widely distributed in food-producing animals, has been considered the first priority for inclusion in the AMR surveillance program by the World Health Organization (WHO). Recent advances in rapid and affordable whole-genome sequencing (WGS) techniques lead to the emergence of WGS as a one-stop test to predict the antimicrobial susceptibility. Since the variation of sequencing and minimum inhibitory concentration (MIC) measurement methods could result in different results, this study aimed to develop WGS-based random forest models for predicting MIC values of 24 drugs using data generated from the same laboratories in Taiwan. The WGS data have been transformed as a feature vector of 10-mers for machine learning. Based on rigorous validation and independent tests, a good performance was obtained with an average mean absolute error (MAE) less than 1 for both validation and independent test. Feature selection was then applied to identify top-ranked 10-mers that can further improve the prediction performance. For surveillance purposes, the genome sequence-based machine learning methods could be utilized to monitor the difference between predicted and experimental MIC, where a large difference might be worthy of investigation on the emerging genomic determinants.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Anti-Bacterial Agents/pharmacology , Taiwan , Random Forest , Salmonella/genetics , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Drug Resistance, Bacterial
15.
Microb Drug Resist ; 29(2): 59-64, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36802271

ABSTRACT

Delay in the results of standard phenotypic susceptibility tests is the main obstacle to adequate antibiotic treatment. For this reason, the European Committee for Antimicrobial Susceptibility Testing has proposed the Rapid Antimicrobial Susceptibility Testing for the disk diffusion method directly from blood culture. However, to date, there are no studies evaluating early readings of polymyxin B broth microdilution (BMD), the only standardized methodology for assessing susceptibility to polymyxins. This study aimed to evaluate modifications in the BMD technique for polymyxin B using fewer antibiotic dilutions and reading after an incubation time of 8-9 hr (early reading) in comparison to 16-20 hr of incubation (standard reading) for isolates of Enterobacterales, Acinetobacter baumannii complex, and Pseudomonas aeruginosa. A total of 192 isolates of gram-negative bacteria were evaluated and the minimum inhibitory concentrations were read after early and standard incubations. The early reading presented 93.2% of essential agreement and 97.9% of categorical agreement with the standard reading of BMD. Only three isolates (2.2%) presented major errors and only one (1.7%) presented a very major error. These results indicate a high agreement between the early and the standard reading times of BMD of polymyxin B.


Subject(s)
Anti-Bacterial Agents , Polymyxin B , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Microbial Sensitivity Tests , Polymyxins
16.
Am J Ophthalmol Case Rep ; 29: 101800, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36714019

ABSTRACT

Purpose: To report the initial case of microbial keratitis caused by Phialophora chinensis, a rare cause of fungal keratitis. Observations: A 66-year-old gentleman with a complex right eye (OD) ocular history including herpes simplex virus infectious epithelial keratitis with subsequent neurotrophic keratopathy, and prior combined Candida albicans and parapsilosis fungal keratitis presented with pain OD in the absence of an antecedent trauma. The patient was found to have a filamentous fungal keratitis, which was subsequently cultured and identified as Phialophora chinensis by the laboratory. Despite topical and oral antifungal treatment based on sensitivities determined by the lab, the patient ultimately required intrastromal and subconjunctival antifungal injections, corneal crosslinking, and superficial keratectomy with amniotic membrane to clinically improve. The fungal keratitis recurred twice, with each occurrence rapidly progressing to corneal perforation. Months after the second penetrating keratoplasty, the patient's mental status declined due to multiorgan failure. An occult pulmonary malignancy was discovered during this hospital stay, and the patient was lost to follow-up after entering hospice. Conclusions and Importance: We report a unique case of fungal keratitis caused by Phialophora chinensis and the subsequent management, including both medical and surgical interventions. Despite a multimodal treatment regimen, this case demonstrates the recalcitrant and potentially recurrent nature of fungal keratitis caused by P. chinensis.

17.
Mycoses ; 66(1): 13-24, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35986599

ABSTRACT

BACKGROUND: The rare occurrence of human cryptococcosis caused by Cryptococcus gattii sensu lato leads to difficulties in establishing the antifungal susceptibility profile between species of this potentially lethal pathogen, which may be crucial for treating cryptococcosis. OBJECTIVE: To establish an antifungal susceptibility profile of C. gattii s.l. in Taiwan. METHODS: A total of 104 environmental C. gattii s.l. strains (including multilocal sequence typing ST7, ST106, ST274, ST328, ST546, ST548 and ST630) and 21 previously collected clinical strains (including ST7, ST44, ST06, ST274, ST328 and ST329) were included in this study. We determined the minimum inhibitory concentrations (MICs) of six antifungal agents (itraconazole, fluconazole, voriconazole, posaconazole, flucytosine and amphotericin B) against environmental C. gattii s.l. strains and compared the antifungal susceptibility profiles of environmental strains with those of clinical strains. RESULTS: The antifungal susceptibility data demonstrated that the MICs of antifungal agents against environmental strains were comparable to those against clinical strains. Compared with strains of Cryptococcus deuterogattii, those of C. gattii sensu stricto were more susceptible to azoles and flucytosine. The differences in antifungal susceptibility between the strains of each sequence type (ST) were significant. Correlation analysis of MICs revealed cross-resistance between azoles in environmental strains of C. gattii s.l. Geographic differences in the antifungal susceptibility of C. gattii s.l. isolated from different cities in Taiwan were observed in this study. CONCLUSION: Clinical and environmental strains were indistinguishable in antifungal susceptibility. The antifungal susceptibility of C. gattii s.l. is associated with STs. Therefore, establishing an ST-oriented domestic antifungal susceptibility database may help treat C. gattii s.l.-induced cryptococcosis.


Subject(s)
Cryptococcosis , Cryptococcus gattii , Cryptococcus neoformans , Humans , Antifungal Agents/pharmacology , Flucytosine , Taiwan , Drug Resistance, Fungal , Cryptococcosis/microbiology , Fluconazole/pharmacology , Azoles , Microbial Sensitivity Tests
18.
Clin Infect Dis ; 76(3): 497-505, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35731948

ABSTRACT

BACKGROUND: Rifampin-resistant and/or multidrug-resistant tuberculosis (RR/MDR-TB) treatment requires multiple drugs, and outcomes remain suboptimal. Some drugs are associated with improved outcome. It is unknown whether particular pharmacokinetic-pharmacodynamic relationships predict outcome. METHODS: Adults with pulmonary RR/MDR-TB in Tanzania, Bangladesh, and the Russian Federation receiving local regimens were enrolled from June 2016 to July 2018. Serum was collected after 2, 4, and 8 weeks for each drug's area under the concentration-time curve over 24 hours (AUC0-24). Quantitative susceptibility of the M. tuberculosis isolate was measured by minimum inhibitory concentrations (MICs). Individual drug AUC0-24/MIC targets were assessed by adjusted odds ratios (ORs) for favorable treatment outcome, and hazard ratios (HRs) for time to sputum culture conversion. K-means clustering algorithm separated the cohort of the most common multidrug regimen into 4 clusters by AUC0-24/MIC exposures. RESULTS: Among 290 patients, 62 (21%) experienced treatment failure, including 30 deaths. Moxifloxacin AUC0-24/MIC target of 58 was associated with favorable treatment outcome (OR, 3.75; 95% confidence interval, 1.21-11.56; P = .022); levofloxacin AUC0-24/MIC of 118.3, clofazimine AUC0-24/MIC of 50.5, and pyrazinamide AUC0-24 of 379 mg × h/L were associated with faster culture conversion (HR >1.0, P < .05). Other individual drug exposures were not predictive. Clustering by AUC0-24/MIC revealed that those with the lowest multidrug exposures had the slowest culture conversion. CONCLUSIONS: Amidst multidrug regimens for RR/MDR-TB, serum pharmacokinetics and M. tuberculosis MICs were variable, yet defined parameters to certain drugs-fluoroquinolones, pyrazinamide, clofazimine-were predictive and should be optimized to improve clinical outcome. CLINICAL TRIALS REGISTRATION: NCT03559582.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Adult , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacokinetics , Rifampin/pharmacology , Rifampin/therapeutic use , Pyrazinamide/therapeutic use , Pyrazinamide/pharmacokinetics , Prospective Studies , Clofazimine/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Microbial Sensitivity Tests
19.
Curr Med Mycol ; 8(1): 26-31, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36340433

ABSTRACT

Background and Purpose: Taurolidine is active against a wide variety of micro-organisms, including bacteria and fungi. Mucormycosis is one of the life-threatening opportunistic fungal infections, especially in immunocompromised patients. Currently, the emergence of Mucormycosis during the COVID-19 pandemic raises public health concerns regarding untoward morbidity and mortality among SARS-CoV-2 patients. It is well-known that delayed and inappropriate antifungal therapy leads to increased morbidity and mortality. This study aimed to investigate the in-vitro antifungal activity of taurolidine to evaluate its effects against clinical isolates of Mucorales. Materials and Methods: This study included previously collected clinical Mucorales isolates. The minimum in vitro inhibitory concentration (MIC) of amphotericin B, caspofungin, voriconazole, posaconazole, and itraconazole was determined using the broth microdilution method. Results: All clinical isolates showed full sensitivity to amphotericin B. Posaconazole MIC range from 8 µg/mL to 0.032 µg/mL. The MIC range of voriconazole and caspofungin were determined to be 2-8 µg/mL and 0.5-16 µg/mL, respectively. Growth of the isolates was entirely inhibited in 1000 µg/mL concentration of taurolidine. In microscopic observations, morphological effects on hyphal growth were observed at 500 µg/mL concentration. Conclusion: In conclusion, this is an updated experience of using taurolidine against Mucorales. However, our in-vitro findings need to be confirmed in well-designed clinical trials aimed at treating invasive Mucormycosis infections.

20.
Vet World ; 15(7): 1749-1752, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36185523

ABSTRACT

Background and Aim: Brucellosis is a contagious livestock disease with a significant economic impact. This study aimed to compare the efficacy of antibiotics used alone or in combination with silver nanoparticles (AgNPs) against Brucella melitensis Rev 1 in vitro. Materials and Methods: AgNps conjugated with ciprofloxacin was synthesized and thoroughly characterized by ultraviolet visible spectrophotometry (UV-vis). The antimicrobial effect of ciprofloxacin alone and ciprofloxacin conjugated with AgNPs against B. melitensis Rev 1 was determined by minimum inhibitory concentration (MIC) and the erythrocyte hemolytic assay determined the capability of conjugation to cause hemolysis in human erythrocyte. Results: The UV-vis spectra of both silver-drug nanoconjugates showed a characteristic surface plasmon resonance band at 420 nm. The MIC assays showed that AgNPs conjugation to antibiotics enhanced the antibacterial potential of the selected antibiotics against B. melitensis Rev 1 relative to non-conjugated antibiotics. The results show that low concentrations of AgNPs can kill B. melitensis Rev 1. The MICs of ciprofloxacin and ciprofloxacin-AgNPs were 0.75 and 0.05 µM, respectively. Conclusion: The conjugation of ciprofloxacin with AgNPs enhanced the antibacterial effects against B. melitensis Rev 1. In addition, this conjugation appears to inhibit the capability of this bacterium to adapt to the presence of antibiotics, thereby inhibiting bacterial resistance. Further studies are required to examine its potential as an in vivo treatment.

SELECTION OF CITATIONS
SEARCH DETAIL