Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.853
Filter
1.
DNA Repair (Amst) ; 141: 103729, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39089192

ABSTRACT

The Eyes Absent family (EYA1-4) are a group of dual function proteins that act as both tyrosine phosphatases and transcriptional co-activators. EYA proteins play a vital role in development, but are also aberrantly overexpressed in cancers, where they often confer an oncogenic effect. Precisely how the EYAs impact cell biology is of growing interest, fuelled by the therapeutic potential of an expanding repertoire of EYA inhibitors. Recent functional studies suggest that the EYAs are important players in the regulation of genome maintenance pathways including DNA repair, mitosis, and DNA replication. While the characterized molecular mechanisms have predominantly been ascribed to EYA phosphatase activities, EYA co-transcriptional activity has also been found to impact the expression of genes that support these pathways. This indicates functional convergence of EYA phosphatase and co-transcriptional activities, highlighting the emerging importance of the EYA protein family at the intersection of genome maintenance mechanisms. In this review, we discuss recent progress in defining EYA protein substrates and transcriptional effects, specifically in the context of genome maintenance. We then outline future directions relevant to the field and discuss the clinical utility of EYA inhibitors.

2.
Curr Biol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089255

ABSTRACT

Temperature can impact every reaction essential to a cell. For organisms that cannot regulate their own temperature, adapting to temperatures that fluctuate unpredictably and on variable timescales is a major challenge. Extremes in the magnitude and frequency of temperature changes are increasing across the planet, raising questions as to how the biosphere will respond. To examine mechanisms of adaptation to temperature, we collected wild isolates from different climates of the fungus Ashbya gossypii, which has a compact genome of only ∼4,600 genes. We found control of the nuclear division cycle and polarized morphogenesis, both critical processes for fungal growth, were temperature sensitive and varied among the isolates. The phenotypes were associated with naturally varying sequences within the glutamine-rich region (QRR) IDR of an RNA-binding protein called Whi3. This protein regulates both nuclear division and polarized growth via its ability to form biomolecular condensates. In cells and in cell-free reconstitution assays, we found that temperature tunes the properties of Whi3-based condensates. Exchanging Whi3 sequences between isolates was sufficient to rescue temperature-sensitive phenotypes, and specifically, a heptad repeat sequence within the QRR confers temperature-sensitive behavior. Together, these data demonstrate that sequence variation in the size and composition of an IDR can promote cell adaptation to growth at specific temperature ranges. These data demonstrate the power of IDRs as tuning knobs for rapid adaptation to environmental fluctuations.

3.
J Exp Biol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092490

ABSTRACT

Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11ß-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation using one of three stress regimes: a single 1-min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress), or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h. Following acute stress, brain hsd11b2 transcript abundance was significantly lower 24 h after a single air exposure but was unchanged by repeat acute stress or social subordination. A sustained increase in brain Hsd11b2 protein levels occurred after acute stress, but not after repeat or chronic stress. Following acute and repeat acute stress, brain pcna transcript abundance exhibited a prolonged elevation, but was unaffected by social subordination. Interestingly, the number of telencephalic BrdU+ cells increased in fish after a single air exposure but was unchanged by repeat acute stress. Following acute and repeat acute stress, fish expressed lower brain gr and mr transcript abundance while subordinate fish exhibited no changes. Taken together, these results demonstrate stressor-specific regulation of Hsd11b2 in the zebrafish brain that could modulate rates of cortisol catabolism contributing to observed differences in brain cell proliferation.

4.
Proc Natl Acad Sci U S A ; 121(33): e2405177121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39110738

ABSTRACT

The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Chromosome Segregation , Cohesins , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Humans , Protein Binding , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Amino Acid Motifs , Mitosis , Chromatids/metabolism , Carrier Proteins , Proto-Oncogene Proteins
5.
Bioessays ; : e2400048, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128131

ABSTRACT

The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.

6.
Curr Biol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39127048

ABSTRACT

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.

7.
Elife ; 122024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092485

ABSTRACT

The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a 'timely two-ness' that allows cell division to occur in absence of a SAC-dependent mitotic delay.


Subject(s)
Cell Cycle Proteins , Centrosome , M Phase Cell Cycle Checkpoints , Mitosis , Centrosome/metabolism , Humans , M Phase Cell Cycle Checkpoints/physiology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/metabolism , Spindle Apparatus/physiology , Cell Division , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , HeLa Cells
8.
Bull Math Biol ; 86(9): 113, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096399

ABSTRACT

During cell division, the mitotic spindle moves dynamically through the cell to position the chromosomes and determine the ultimate spatial position of the two daughter cells. These movements have been attributed to the action of cortical force generators which pull on the astral microtubules to position the spindle, as well as pushing events by these same microtubules against the cell cortex and plasma membrane. Attachment and detachment of cortical force generators working antagonistically against centring forces of microtubules have been modelled previously (Grill et al. in Phys Rev Lett 94:108104, 2005) via stochastic simulations and mean-field Fokker-Planck equations (describing random motion of force generators) to predict oscillations of a spindle pole in one spatial dimension. Using systematic asymptotic methods, we reduce the Fokker-Planck system to a set of ordinary differential equations (ODEs), consistent with a set proposed by Grill et al., which can provide accurate predictions of the conditions for the Fokker-Planck system to exhibit oscillations. In the limit of small restoring forces, we derive an algebraic prediction of the amplitude of spindle-pole oscillations and demonstrate the relaxation structure of nonlinear oscillations. We also show how noise-induced oscillations can arise in stochastic simulations for conditions in which the mean-field Fokker-Planck system predicts stability, but for which the period can be estimated directly by the ODE model and the amplitude by a related stochastic differential equation that incorporates random binding kinetics.


Subject(s)
Computer Simulation , Mathematical Concepts , Microtubules , Models, Biological , Spindle Apparatus , Stochastic Processes , Spindle Apparatus/physiology , Microtubules/physiology , Microtubules/metabolism , Nonlinear Dynamics , Mitosis/physiology
9.
DNA Repair (Amst) ; 141: 103727, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39098164

ABSTRACT

Loss of Heterozygosity (LOH) due to mitotic recombination is frequently associated with the development of various cancers (e.g. retinoblastoma). LOH is also an important source of genetic diversity, especially in organisms where meiosis is infrequent. Irc20 is a putative helicase, and E3 ubiquitin ligase involved in DNA double-strand break repair pathway. We analyzed genome-wide LOH events, gross chromosomal changes, small insertion-deletions and single nucleotide mutations in eleven S. cerevisiae mutation accumulation lines of irc20∆, which underwent 50 mitotic bottlenecks. LOH enhancement in irc20∆ was small (1.6 fold), but statistically significant as compared to the wild type. Short (≤ 1 kb) and long (> 10 kb) LOH tracts were significantly enhanced in irc20∆. Both interstitial and terminal LOH events were also significantly enhanced in irc20∆ compared to the wild type. LOH events in irc20∆ were more telomere proximal and away from centromeres compared to the wild type. Gross chromosomal changes, single nucleotide mutations and in-dels were comparable between irc20∆ and wild type. Locus based and genome-wide analysis of meiotic recombination showed that meiotic crossover frequencies are not altered in irc20∆. These results suggest Irc20 primarily regulates mitotic recombination and does not affect meiotic crossovers. Our results suggest that the IRC20 gene is important for regulating LOH frequency and distribution.

10.
EMBO J ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143240

ABSTRACT

The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an 'arginine-anchor' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability.

11.
Cell Rep ; 43(8): 114543, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067023

ABSTRACT

Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a master metabolic regulator that is active in nearly all proliferating eukaryotic cells; however, it is unclear whether mTORC1 activity changes throughout the cell cycle. We find that mTORC1 activity oscillates from lowest in mitosis/G1 to highest in S/G2. The interphase oscillation is mediated through the TSC complex but is independent of major known regulatory inputs, including Akt and Mek/Erk signaling. By contrast, suppression of mTORC1 activity in mitosis does not require the TSC complex. mTORC1 has long been known to promote progression through G1. We find that mTORC1 also promotes progression through S and G2 and is important for satisfying the Chk1/Wee1-dependent G2/M checkpoint to allow entry into mitosis. We also find that low mTORC1 activity in G1 sensitizes cells to autophagy induction in response to partial mTORC1 inhibition or reduced nutrient levels. Together, these findings demonstrate that mTORC1 is differentially regulated throughout the cell cycle, with important phase-specific consequences for proliferating cells.

12.
FEBS Open Bio ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39073037

ABSTRACT

Cytoskeleton-associated protein 2-like (CKAP2L) is a paralogue of cytoskeleton-associated protein 2 (CKAP2). We characterized the expression pattern, subcellular localization, and microtubule-stabilizing properties of human CKAP2L. The levels of both CKAP2L transcript and protein were cell cycle phase-dependent, peaking during the G2/M phase and relatively high in certain human tissues, including testis, intestine, and spleen. CKAP2L protein was detectable in all human cancer cell lines we tested. CKAP2L localized to the mitotic spindle apparatus during mitosis, as reported previously. During interphase, however, CKAP2L localized mainly to the nucleus. Ectopic overexpression of CKAP2L resulted in 'microtubule bundling', and, consequently, an elevated CKAP2L level led to prolonged mitosis. These findings support the mitotic role of CKAP2L during the human cell cycle.

13.
Plants (Basel) ; 13(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39065423

ABSTRACT

Reversible protein phosphorylation regulates various cellular mechanisms in eukaryotes by altering the conformation, activity, localization, and stability of substrate proteins. In Arabidopsis thaliana root meristems, histone post-translational modifications are crucial for proper cell division, and they are also involved in oxidative stress signaling. To investigate the link between reactive oxygen species (ROS) and mitosis, we treated various Arabidopsis genotypes, including wild-types and mutants showing dysfunctional PP2A, with the ROS-inducing herbicide diquat (DQ). Studying the c3c4 double catalytic subunit mutant and fass regulatory subunit mutants of PP2A provided insights into phosphorylation-dependent mitotic processes. DQ treatment reduced mitotic activity in all genotypes and caused early mitotic arrest in PP2A mutants, likely due to oxidative stress-induced damage to essential mitotic processes. DQ had a minimal effect on reversible histone H3 phosphorylation in wild-type plants but significantly decreased phospho-histone H3 levels in PP2A mutants. Following drug treatment, the phosphatase activity decreased only in the stronger phenotype mutant plants (fass-5 and c3c4). Our findings demonstrate that (i) the studied PP2A loss-of-function mutants are more sensitive to increased intracellular ROS and (ii) DQ has indirect altering effects of mitotic activities and histone H3 phosphorylation. All these findings underscore the importance of PP2A in stress responses.

14.
Cell Rep ; 43(7): 114419, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985672

ABSTRACT

The compaction of chromatin into mitotic chromosomes is essential for faithful transmission of the genome during cell division. In eukaryotes, chromosome morphogenesis is regulated by the condensin complex, though the exact mechanism used to target condensin to chromatin and initiate condensation is not understood. Here, we reveal that condensin contains an intrinsically disordered region (IDR) that modulates its association with chromatin in early mitosis and exhibits phase separation. We describe DNA-binding motifs within the IDR that, upon deletion, inflict striking defects in chromosome condensation and segregation, ill-timed condensin turnover on chromatin, and cell death. Importantly, we demonstrate that the condensin IDR can impart cell cycle regulatory functions when transferred to other subunits within the complex, indicating its autonomous nature. Collectively, our study unveils the molecular basis for the initiation of chromosome condensation in early mitosis and how this process ultimately promotes genomic stability and faultless cell division.


Subject(s)
Adenosine Triphosphatases , DNA-Binding Proteins , Mitosis , Multiprotein Complexes , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Multiprotein Complexes/metabolism , Adenosine Triphosphatases/metabolism , Chromatin/metabolism , DNA/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Chromosomes/metabolism , Protein Binding , Chromosome Segregation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
15.
Cancer Sci ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004911

ABSTRACT

Forkhead box M1 (FOXM1) is a key regulator of mitosis and is identified as an oncogene involved in several kinds of human malignancies. However, how it induces carcinogenesis and related therapeutic approaches remains not fully understood. In this study, we aimed to identify a regulatory axis involving FOXM1 and its target gene DEP domain containing 1 (DEPDC1) and investigate their biological functions. FOXM1 bound to the promoter and transcriptionally induced DEPDC1 expression, in turn, DEPDC1 physically interacted with FOXM1, promoted its nuclear translocation, and reinforced its transcriptional activities. The FOXM1/DEPDC1 axis was indispensable for cancer cells, as evidenced by the fact that DEPDC1 rescued cell growth inhibition caused by FOXM1 knockdown, and silencing DEPDC1 efficiently attenuated tumor growth in a murine hepatocellular carcinoma model. Furthermore, strong positive associations between FOXM1/DEPDC1 axis and poor clinical outcome were observed in human hepatocellular carcinoma samples, further indicating their significance for hepatocarcinogenesis. Finally, we attempted to exploit immunotherapy approaches to target the FOXM1/DEPDC1 axis. Several HLA-A24:02-restricted T-cell epitopes targeting FOXM1 or DEPDC1 were identified through bioinformatic analysis. Then, T cell receptor (TCR)-engineered T cells targeting FOXM1262-270 or DEPDC1294-302 were successfully established and proved to efficiently eradicate tumor cells. Our findings highlight the significance of the FOXM1/DEPDC1 axis in the process of oncogenesis and indicate their potential as immunotherapy targets.

16.
Bio Protoc ; 14(13): e5024, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39011369

ABSTRACT

Adult mammals lack the ability to regenerate retinal neurons after injury. However, in previous studies from this lab, topical application of the selective alpha7 nicotinic acetylcholine receptor (nAChR) agonist, PNU-282987, has been associated with an increase in the number of retinal neurons in adult murine models both in the presence and absence of injury to the retina. Additionally, studies assaying mitotic markers have shown a substantial increase in the amount of mitotically active and proliferating cells with the topical application of the alpha7 nAChR agonist. However, these previous studies were performed using fluorescent immunolabeling and subsequent confocal microscopy, thus limiting the number of antibodies that can be multiplexed. As a result, we have developed a flow cytometry method that allows for the multiplexing and analysis of multiple external and internal markers in dissociated retinal cells. In this paper, a step-by-step protocol is described for the labeling of multiple retinal cell types such as retinal ganglion cells, rod photoreceptors, and Müller glia, concurrently with Müller glia-derived progenitor cells that arise after treatment with PNU-282987. Key features • Neurogenesis in the adult mammalian retina. • Flow cytometry of retinal cells. • PNU-282987-induced mitotic activity in the retina. • Dissociation of the retina for flow cytometry analysis. Graphical overview Schematic demonstrating the protocol for preparation of retinal cells for flow cytometry analysis. (A) Adult mice (3-6 months) are subjected to topical PBS eyedrop treatment containing DMSO (control groups) or PNU-282987 (experimental groups). Both eyedrop treatments contain 1 mg/mL of BrdU to label proliferating cells. After treatment, mice are euthanized, and retinae are harvested for dissociation using papain. (B) Dissociated retina cells are fixed and permeabilized before aliquots are taken for cell counts on a hemocytometer. After determining the number of cells present, conjugated antibodies and unconjugated primary antibodies are added at the appropriate dilutions. Fluorescent secondary antibodies are added for markers that are unconjugated. Cells are then subjected to flow cytometric analysis using a BD LSRFortessa.

17.
Cell Rep ; 43(7): 114494, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39003739

ABSTRACT

Cell cycle progression is regulated by the orderly balance between kinase and phosphatase activities. PP2A phosphatase holoenzymes containing the B55 family of regulatory B subunits function as major CDK1-counteracting phosphatases during mitotic exit in mammals. However, the identification of the specific mitotic roles of these PP2A-B55 complexes has been hindered by the existence of multiple B55 isoforms. Here, through the generation of loss-of-function genetic mouse models for the two ubiquitous B55 isoforms (B55α and B55δ), we report that PP2A-B55α and PP2A-B55δ complexes display overlapping roles in controlling the dynamics of proper chromosome individualization and clustering during mitosis. In the absence of PP2A-B55 activity, mitotic cells display increased chromosome individualization in the presence of enhanced phosphorylation and perichromosomal loading of Ki-67. These data provide experimental evidence for a regulatory mechanism by which the balance between kinase and PP2A-B55 phosphatase activity controls the Ki-67-mediated spatial organization of the mass of chromosomes during mitosis.


Subject(s)
Ki-67 Antigen , Mitosis , Protein Phosphatase 2 , Animals , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Mice , Ki-67 Antigen/metabolism , Phosphorylation , Chromosomes, Mammalian/metabolism , Chromosomes, Mammalian/genetics , Chromosomes/metabolism
18.
New Phytol ; 243(5): 1840-1854, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39010685

ABSTRACT

The B chromosomes exhibit diverse behaviour compared with conventional genetic models. The capacity of the B chromosome either to accumulate or to be eliminated in a tissue-specific manner is dependent on biological processes related to aberrant cell division(s), but here yet remains compatible with normal development. We studied B chromosome elimination in Sorghum purpureosericeum embryos through cryo-sections and demonstrated the B chromosome instability during plant growth using flow cytometry, molecular markers and fluorescent in situ hybridization techniques. Consequently, using B chromosome-specific probes we revealed the non-Mendelian inheritance of B chromosomes in developing pollen. We disclosed that the occurrence of the B chromosome is specific to certain tissues or organs. The distribution pattern is mainly caused by an extensive elimination that functions primarily during embryo development and persists throughout plant development. Furthermore, we described that B chromosome accumulation can occur either by nondisjunction at first pollen mitosis (PMI) or the initiation of extra nuclear division(s) during pollen development. Our study demonstrates the existence of a not-yet-fully described B chromosome drive process, which is likely under the control of the B chromosome.


Subject(s)
Chromosomes, Plant , Mitosis , Nondisjunction, Genetic , Pollen , Sorghum , Sorghum/genetics , Pollen/genetics , Pollen/cytology , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/growth & development
19.
Curr Biol ; 34(15): 3416-3428.e4, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39043187

ABSTRACT

Karyotypes, composed of chromosomes, must be accurately partitioned by the mitotic spindle for optimal cell health. However, it is unknown how underlying characteristics of karyotypes, such as chromosome number and size, govern the scaling of the mitotic spindle to ensure accurate chromosome segregation and cell proliferation. We utilize budding yeast strains engineered with fewer chromosomes, including just two "mega chromosomes," to study how spindle size and function are responsive to, and scaled by, karyotype. We determined that deletion and overexpression of spindle-related genes are detrimental to the growth of strains with two chromosomes, suggesting that mega chromosomes exert altered demands on the spindle. Using confocal microscopy, we demonstrate that cells with fewer but longer chromosomes have smaller spindle pole bodies, fewer microtubules, and longer spindles. Moreover, using electron tomography and confocal imaging, we observe elongated, bent anaphase spindles with fewer core microtubules in strains with mega chromosomes. Cells harboring mega chromosomes grow more slowly, are delayed in mitosis, and a subset struggle to complete chromosome segregation. We propose that the karyotype of the cell dictates the microtubule number, type, spindle pole body size, and spindle length, subsequently influencing the dynamics of mitosis, such as the rate of spindle elongation and the velocity of pole separation. Taken together, our results suggest that mitotic spindles are highly plastic ultrastructures that can accommodate and adjust to a variety of karyotypes, even within a species.


Subject(s)
Saccharomyces cerevisiae , Spindle Apparatus , Spindle Apparatus/metabolism , Saccharomyces cerevisiae/genetics , Microtubules/metabolism , Chromosome Segregation , Mitosis , Chromosomes, Fungal/genetics , Karyotype
20.
J Cutan Pathol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010671

ABSTRACT

Enfortumab vedotin (EV), a nectin-4-binding agent that affects microtubules, has become standard therapy for advanced urothelial carcinoma. The agent, now given in combination with pembrolizumab, frequently induces cutaneous reactions. Here, we report a severe EV-induced cutaneous eruption. A 58-year-old woman with metastatic urothelial carcinoma developed a rash after receiving simultaneous first doses of EV and pembrolizumab. The eruption began on the flank and spread to involve her trunk and extremities with prominent involvement of folds, including the axillae and medial thighs. Skin biopsy revealed extensive vacuolar alteration of the basal epidermis and numerous epidermal keratinocytic mitotic figures, often suprabasilar, including ring and "starburst" forms. The findings supported a diagnosis of EV-induced eruption. With EV cessation and systemic corticosteroids, the rash resolved over a few weeks. Pembrolizumab was restarted as monotherapy, and the patient's cancer showed a significant radiographic treatment response at 3 months. An emerging literature of small series and case reports, largely from oncologic literature, presents the histopathology of EV-induced cutaneous eruption as a vacuolar interface dermatitis with the inconsistently reported feature of arrested mitotic figures. This case study demonstrates distinctive clinical and histopathologic features of EV-induced eruption, which may inform dermatologic and oncologic management.

SELECTION OF CITATIONS
SEARCH DETAIL