Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 940: 173440, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38802018

ABSTRACT

Despite their ability to mitigate climate change by efficiently absorbing atmospheric carbon dioxide (CO2) and acting as natural long-term carbon sinks, mangrove ecosystems have faced several anthropogenic threats over the past century, resulting in a decline in the global mangrove cover. By using standardized methods and the most recent Bayesian tracer mixing models MixSIAR, this study aimed to quantify source contributions, burial rates, and stocks of organic carbon (Corg) and explore their temporal changes (∼100 years) in seven lead-210 dated sediment cores collected from three contrasting Mexican mangrove areas. The spatial variation in Corg burial rates and stocks in these blue carbon ecosystems primarily depended on the influence of local rivers, which controlled Corg sources and fluxes within the mangrove areas. The Corg burial rates in the cores ranged from 66 ± 16 to 400 ± 40 g m-2 yr-1. The Corg stocks ranged from 84.9 ± 0.7 to 255 ± 2 Mg ha-1 at 50 cm depth and from 137 ± 2 to 241 ± 4 Mg ha-1 at 1 m depth. The highest Corg burial rates and stocks were observed in cores from the carbonate platform of Yucatan and in cores with reduced river influence and high mangrove detritus inputs, in contrast to patterns identified from global databases. Over the past century, the rising trends in Corg burial rates and stocks in the study sites were primarily driven by enhanced inputs of fluvial-derived Corg and, in some cores, mangrove-derived Corg. Despite their decreasing extension, mangrove areas remained highly effective producers and sinks of Corg. Ongoing efforts to enhance the global database should continue, including mangrove area characteristics and reliable timescales to facilitate cross-comparison among studies.

2.
Isotopes Environ Health Stud ; 56(4): 346-357, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32508164

ABSTRACT

Considering the increasing pet owner's concern about the food their pets are consuming, in this study we investigated the origin of the main ingredients in wet and dry foods produced in Brazil using stable isotope ratios of carbon and nitrogen. We concluded that chicken and pork seem to be the dominant ingredients in most of the samples, with larger proportions in wet cat food. Even in pet foods showing 'beef' as the main ingredient on the label, we found a low proportion of bovine products in both wet and dry cat foods. Comparing the contribution of plant-derived products (C3 and C4 plants) and animal-derived products (chicken-pork, bovine and fish), approximately 21 % of cat foods had more than 30 % of ingredients with plant origin in their composition. The high amount of plant-derived products in cat foods found here raises the question whether this should be mentioned on package labels.


Subject(s)
Animal Feed/analysis , Carbon Isotopes/analysis , Food Analysis/methods , Meat/analysis , Nitrogen Isotopes/analysis , Plants/chemistry , Animals , Brazil , Cats , Cattle , Chickens , Fishes
3.
Oecologia ; 188(1): 303-317, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29943144

ABSTRACT

Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF ecohydrology remain poorly understood. To investigate functional responses of TMCF trees to reduced water availability, we conducted a study during the 2014 dry season in the lower altitudinal limit of TMCF in central Veracruz, Mexico. Temporal variations of transpiration, depth of water uptake and tree water sources were examined for three dominant, brevi-deciduous species using micrometeorological, sap flow and soil moisture measurements, in combination with oxygen and hydrogen stable isotope composition of rainfall, tree xylem, soil and stream water. Over the course of the dry season, reductions in crown conductance and transpiration were observed in canopy species (43 and 34%, respectively) and mid-story trees (23 and 8%), as atmospheric demand increased and soil moisture decreased. Canopy species consistently showed more depleted isotope values compared to mid-story trees. However, MixSIAR Bayesian model results showed that the evaporated (enriched) soil water pool was the main source for trees despite reduced soil moisture. Additionally, while increases in tree water uptake from deeper to shallower soil water sources occurred, concomitant decreases in transpiration were observed as the dry season progressed. A larger reduction in deep soil water use was observed for canopy species (from 79 ± 19 to 24 ± 20%) compared to mid-story trees (from 12 ± 17 to 10 ± 12%). The increase in shallower soil water sources may reflect a trade-off between water and nutrient requirements in this forest.


Subject(s)
Soil , Water , Bayes Theorem , Ecosystem , Forests , Mexico , Plant Transpiration , Seasons , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL