Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Chemosphere ; 364: 143273, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39241840

ABSTRACT

MXene-based membranes, as a type of modified membrane, have unique structures that attract attention for water treatment but suffer from low water flux. To address this, MXene was manipulated with UiO-66-NH2 nanoparticles to create UiO-66-NH2@MXene 2D-nanocomposites for the modification of the PES membrane. Herein, we synthesized a novel modified MXene-based PES membrane. The MXene, UiO-66-NH2, and UiO-66-NH2@MXene were assessed using the Fourier transform infrared, X-ray diffraction pattern, X-ray photoelectron spectroscopy, and zeta potential analysis. Field emission scanning electron microscopy was used to evaluate the MXene-based materials and prepared membranes, and the surface topography of the fabricated membranes was studied using atomic force microscopy. The membrane modified by 0.25 wt% of modifier was able to not only remove 72% and 81% of methylene blue and crystal violet cationic dyes, but also recorded more than 91% rejections for methyl blue, methyl orange, acid fusion, and Congo red anionic dyes. Using the same membrane, salt rejections of 91%, 87%, 79%, and 62% were achieved for Na2SO4, MgSO4, MgCl2, and NaCl, respectively. Water flux was also increased by more than 4 times in the membrane modified with 0.25 wt% of the novel nanocomposite modifier, and the water contact angle of the membrane with 0.5 wt% decreased from 65° to 38° compared to the pristine PES membrane. Besides, the anti-fouling properties were exceptionally improved in the membranes modified by the introduced UiO-66-NH2@MXene nanocomposite modifier.


Subject(s)
Membranes, Artificial , Nanocomposites , Water Purification , Nanocomposites/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Filtration/methods , Metal-Organic Frameworks/chemistry , Coloring Agents/chemistry , Polymers/chemistry , Methylene Blue/chemistry
2.
Chemosphere ; 364: 143272, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39243905

ABSTRACT

Rare-earth elements (REEs) play a crucial role in state-of-the-art technologies and sustainable energy generation. However, conventional production methods of REE often instigate detrimental impacts on environment. Hence, the development of efficient and sustainable hydrometallurgical methods for REE recovery from complex solution has become a crucial research focus. This study investigates a mixed-matrix membrane composed of a highly europium selective metal-organic framework-based adsorbent, Cr-MIL-PMIDA, embedded in sulfonated poly(ether ketone) (SPEK) polymer membrane matrix to preferentially concentrate europium (Eu3+) ions in the presence of other competing cations. The activated membrane notably reduced ionic conductivity for Eu3+ compared to other multivalent ions. Membrane extraction experiments further confirmed the selective behavior, demonstrating slower diffusion for Eu3+ compared to Mg2+ and Zn2+ cations. Especially, at pH 5, Mg2⁺ and Zn2⁺ recovery was greater than 30%, whereas Eu³âº recovery remained lower than 4%. We propose that the strong chemical affinity between the phosphate group and Eu3+ help partition of the Eu3+ ions in the membrane phase and inhibit the diffusion and further partitioning of the Eu3+ ion from bulk solution. Furthermore, we demonstrate the stability of the composite membrane and the embedded MOF particles in aqueous solution for up to 12 days without degradation, attributing it to the robust chemical stability of the MOF structure.


Subject(s)
Europium , Metal-Organic Frameworks , Europium/chemistry , Metal-Organic Frameworks/chemistry , Adsorption , Membranes, Artificial , Metals, Rare Earth/chemistry , Water Pollutants, Chemical/chemistry
3.
Environ Sci Pollut Res Int ; 31(44): 56314-56331, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39271613

ABSTRACT

In this work, the phase inversion approach is used to synthesize a blended mixed matrix membrane from cellulose acetate polymer and sugarcane bagasse biochar. The experiments were carried out to estimate the extent of chlorpyrifos (CPS) pesticide removal. The results showed that the removal rate was more than 99% in making the filtered water suitable enough for domestic use. The physical and functional characteristics of the membranes, such as permeability, and contact angle were identified. The changes in the membrane characteristics were observed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction both before and after the experimental trials. Experiments were conducted to assess not only the rejection characteristics of CPS, as a function feed concentration, but also the effect co-ions on the rejection used to analyze the composition both before and after filtration. The effects of initial CPS concentration, biochar loading, and co-ions on the membrane were investigated. The membranes showed contact angles between 70° and 97° and a permeability between 0.25 × 1010 m Pa-1 s-1 and 0.31 × 1010 m Pa-1 s-1. The effective removal of CPS from the contaminated aqueous stream was attributed to a combination of adsorptive uptake and membrane-based separation. CPS was found to get adsorbed onto the membrane matrix through an intraparticle diffusion mechanism along with an irreversible monolayer adsorption. The membrane-solute adsorptive interaction was represented by Langmuir isotherm and intraparticle diffusion models with a maximum adsorption capacity of 192.3 mg g-1. The findings indicated the efficacy of biochar-cellulose acetate mixed matrix membrane for sustainable and eco-friendly treatment of chlorpyrifos contaminated water.


Subject(s)
Cellulose , Charcoal , Chlorpyrifos , Water Pollutants, Chemical , Charcoal/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Water Pollutants, Chemical/chemistry , Adsorption , Membranes, Artificial , Decontamination/methods , Water Purification/methods
4.
Article in English | MEDLINE | ID: mdl-39327069

ABSTRACT

In human life and production, excessive oily wastewaters containing detergents are produced and discharged, causing severe environmental pollution and water resource problems. A metal-organic framework (MOF)-based membrane is an economical and environmentally friendly tool for emulsion separation but is limited by a complex preparation process and poor flexibility. Herein, we developed a simple method to synthesize a MOF-based mixed-matrix membrane (MMM) by spray and fabricated the membrane on poly(vinylidene fluoride) (PVDF) fibers via postdeposition and in situ growth manners. The prepared ZIF-8/PVA MMMs have uniform distribution of ZIF-8 particles and poly(vinyl alcohol) (PVA) on the PVDF fibers. PVA improved the adhesion between the ZIF-8 particles and between the MOF layer and PVDF fiber, endowing the separation membrane with high flexibility and bendability. The prepared ZIF-8/PVA membrane exhibited hydrophilicity and underwater superoleophobicity, which showed high separation efficiency and considerable water flux for emulsions, emulsion containing dye, and surfactant-stabilized emulsion. In addition, the fabricated ZIF-8/PVA/PVDF fibers exhibited good antifouling property and flexibility and can maintain stable separation efficiency after working several times and even under bending, demonstrating the stability and potentiality of the ZIF-8/PVA/PVDF fibers in practical applications. This work paves a new avenue for the synthesis and application of MOF-based MMMs.

5.
Environ Sci Pollut Res Int ; 31(40): 53424-53436, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39190248

ABSTRACT

This work is primarily focused on overcoming the limitations of polymeric membranes in achieving the balance between permeability and selectivity of the separation performance. The filler, Zeolitic imidazole framework -67 (ZIF-67) nanoparticles were synthesised in cubical morphology using hexadecyltrimethylammonium bromide (CTAB) as a surfactant via the wet-chemical method. The uniform particles with particle sizes ranging between 120-180 nm were incorporated into the polyvinylidene fluoride (PVDF) matrix to fabricate mixed matrix membranes via the phase inversion method. These mixed matrix membranes were systematically characterised to confirm the chemical, structural and morphological properties of the materials and membranes. Furthermore, the membranes showed a 56.5% improvement in their mechanical properties. The results confirm that 5 wt.% ZIF-67/PVDF membrane showed the best separation results compared to its pure counterpart. The permeability of H2 gas was reported to be 1,094,511 Barrer, with selectivities of 3.03 for H2/CO2 and 3.06 for H2/N2. This represents a 210.6% increase in the permeability of H2 gas. These results demonstrate the influence of ZIF-67 loading in the PVDF polymer matrix along with the potential of ZIF-67/PVDF mixed matrix membranes in the field of hydrogen separation and purification.


Subject(s)
Hydrogen , Membranes, Artificial , Polyvinyls , Zeolites , Polyvinyls/chemistry , Zeolites/chemistry , Hydrogen/chemistry , Permeability , Polymers/chemistry , Imidazoles/chemistry , Fluorocarbon Polymers
6.
J Environ Manage ; 368: 122169, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128354

ABSTRACT

Nitrogen, phosphorus and potassium are essential for crop growth, which are abundant in urine. Although numerous studies have developed techniques to recover ammonium and phosphorus from urine, limited research made efforts on the recovery of potassium, which is a non-renewable resource with uneven global distribution. In this study, we explored the possibility of zeolite based mixed matrix membranes (MMMs) to selectively recover ammonium and potassium from urine, with minimal detention of sodium. The findings demonstrated that upon the pre-treatment of zeolites with sodium chloride solution, a 70 wt% zeolite loaded MMM could achieve 69.3 % recovery of potassium and almost full recovery of ammonium. By varying the desorption temperatures and MMMs production process, it was discovered that stepwise backwash at low temperature (276 K) greatly lowered sodium recovery whilst simultaneously enhancing the recovery of potassium and ammonium. This study demonstrates the potential of recovering potassium and ammonium from urine using zeolite-loaded MMMs, coupled with achieving low-sodium recovery.


Subject(s)
Ammonium Compounds , Potassium , Zeolites , Zeolites/chemistry , Potassium/urine , Potassium/chemistry , Ammonium Compounds/chemistry , Urine/chemistry , Phosphorus/chemistry , Sodium/urine , Sodium/chemistry
7.
ChemSusChem ; : e202401463, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39188076

ABSTRACT

Creation of an efficient and cost-effective proton exchange membrane (PEM) has emerged as a propitious solution to address the challenges of renewable energy development. Coordination polymers (CPs) have garnered significant interest due to their multifunctional applications and moldability, along with long-range order. To leverage the potential of CPs in fuel cells, it is essential to integrate microcrystalline CPs into organic polymers to prepare membranes and avoid grain boundary issues. In this study, we designed and synthesized CPs containing imidazole and sulfonate moieties via gel-to-crystal transformation. The integration of CPs into the PVDF-PVP matrix resulted in superprotonic conductivity in the order of 10-2 S cm-1 at room temperature (30 ºC) and 98% RH. The proton conductivity achieved with CP-integrated composite membrane was 4.69 × 10-2 S cm-1 at 80 °C and 98% RH, the highest among all CP/MOF-integrated PVDF-PVP membranes under hydrous conditions. The excellent compatibility of CPs with PVDF-PVP produced highly flexible membranes with superior mechanical, chemical, and thermal stability. About 25 times higher proton conductivity value was achieved with membrane, compared to intrinsic CPs, at RT and 98% RH. Thus, we present a cost-effective CP-integrated mixed-matrix membrane with superprotonic conductivity and long-term durability for cutting-edge fuel cell development.

8.
Chempluschem ; : e202400456, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194134

ABSTRACT

Mixed matrix membranes (MMMs) constitute a type of molecular separation membranes in which a nanomaterial type filler is dispersed in a given polymer to enhance its selective permeation ability. The key issue in MMMs is the establishing of a proper filler-polymer interaction to avoid non-selective transport paths while increasing permeability but also to improve other membrane properties such as aging and plasticization. Along the pass years several strategies have been applied to enhance the physicochemical interaction between the fillers (e.g. silicas, zeolites, porous coordination polymers, carbonaceous materials, etc.) and the membrane polymers: increase of external surface area, priming, use of intrinsically more compatible fillers, in situ synthesis of filler, in situ polymerization, polymer side-chain modification and post-synthetic modification of filler.

9.
Membranes (Basel) ; 14(8)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39195422

ABSTRACT

Hydrotalcite exhibits the capability to adsorb CO2 at elevated temperatures. High surface area and favorable coating properties are essential to harness its potential for practical applications. Stable alcohol-based dispersions are needed for thin film applications of mixed membranes containing hydrotalcite. Currently, producing such dispersions without the need for delamination and dispersing agents is a challenging task. This work introduces, for the first time, a manufacturing approach to overcoming the drawbacks mentioned above. It includes a synthesis of hydrotalcite nanoparticles, followed by agent-free delamination of their layers and final dispersion into alcohol without dispersing agents. Further, the hydrotalcite-derived sorption agent is dispersed in a matrix based on organo-silica gels derived from 1,2-bis(triethoxysilyl)ethane (BTESE). The analytical results indicate that the interconnection between hydrotalcite and BTESE-derived gel occurs via forming a strong hydrogen bonding system between the interlayer species (OH groups, CO32-) of hydrotalcite and oxygen and silanol active gel centers. These findings lay the foundation for applications involving incorporating hydrotalcite-like compounds into silica matrices, ultimately enabling the development of materials with exceptional mass transfer properties. In part 2 of this study, the gas separation performance of the organo-silica and the hydrotalcite-like materials and their combined form will be investigated.

10.
Macromol Rapid Commun ; : e2400384, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096156

ABSTRACT

A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m-2 h-1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL