Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
1.
J Mol Biol ; : 168772, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222679

ABSTRACT

The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90ß, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1-/- cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90's client specificity.

2.
Inn Med (Heidelb) ; 2024 Aug 06.
Article in German | MEDLINE | ID: mdl-39105759

ABSTRACT

Fabry's disease is a rare X chromosome-linked inherited lysosomal storage disease characterized by insufficient metabolism of the substrate globotriaosylceramide (Gb3) due to reduced alpha-galactosidase A (AGAL) activity. Lysosomal Gb3 accumulation causes a multisystemic disease which, if untreated, reduces the life expectancy in females and males by around 10 and 20 years, respectively, due to progressive renal dysfunction, hypertrophic cardiomyopathy, cardiac arrhythmia and early occurrence of cerebral infarction. The diagnosis is confirmed by determining the reduced AGAL activity in leukocytes in males and molecular genetic detection of a -mutation causing the disease in females. The treatment comprises enzyme replacement therapy (ERT), agalsidase alfa, 0.2 mg/kg body weight (BW), agalsidase beta 1.0 mg/kg BW or pegunigalsidase alfa 1.0 mg/kg BW every 2 weeks i.v. or oral chaperone therapy (one capsule of migalastat 123 mg every other day) in the presence of amenable mutations. This article summarizes the data on the treatment of Fabry's disease and on complications in practice. The current guideline recommendations are addressed and new study results that could expand the therapeutic repertoire in the future are discussed.

3.
J Agric Food Chem ; 72(36): 19985-19993, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39207302

ABSTRACT

Ovalbumin (OVA) is a high-quality protein for humans. Modifying microorganisms to produce proteins offers a solution to potential food protein shortages. In this study, OVA was expressed in Saccharomyces cerevisiae. Initially, screening signal peptides led to extracellular OVA reaching 3.4 mg/L using the INU1 signal peptide. Coexpressing Kar2 and PDI increased OVA production to 5.1 mg/L. Optimizing the expression levels of regulators OPI1, INO2, and INO4 expanded the endoplasmic reticulum membrane, raising yield to 5.5 mg/L. Combining both strategies increased OVA production to 6.2 mg/L, 82% higher than control. This strategy also enhanced secretion of other proteins. Finally, fed-batch fermentation in a 3-L bioreactor significantly boosted OVA production to 116.3 mg/L. This study provides insights for the heterologous synthesis of other high-quality proteins for future food applications.


Subject(s)
Endoplasmic Reticulum , Ovalbumin , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ovalbumin/metabolism , Fermentation , Animals , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
4.
J Recept Signal Transduct Res ; : 1-13, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189140

ABSTRACT

Hsp27 is a member of the small heat-shock proteins (sHSPs) - the known cellular line of defence against abnormal protein folding behaviors. Nevertheless, its upregulation is linked to a variety of pathological disorders, including several types of cancers. The ceramide synthases (CerS) mediate the synthesis of ceramide, a critical structural and signaling lipid. Functionally, downstream ceramide metabolites are implicated in the apoptosis process and their abnormal functionality has been linked to anticancer resistance. Studies showed that CerS1 are possibly inhibited by Hsp27 leading to biochemical anticancer effects in vitro. Nevertheless, the nature of such protein-protein interaction (PPI) has not been considerably investigated in molecular terms, hence, we present the first description of the dynamics CerS1-Hsp27 interaction landscapes using molecular dynamics simulations. Time-scale molecular dynamics simulation analysis indicated a system-wide conformational events of decreased stability, increased flexibility, reduced compactness, and decreased folding of CerS1. Analysis of binding energy showed a favorable interaction entailing 56 residues at the interface and a total stabilizing energy of -158 KJ/mol. The CerS1 catalytic domain experienced an opposite trend compared to the protein backbone. Yet, these residues adopted a highly compact conformation as per DCCM and DSSP analysis. Furthermore, conserved residues (SER 212, ASP 213, ALA 240, GLY 243, ASP 319) comprising the substrate shuttling machinery showed notable rigidity implying a restrained ceramide precursor access and assembly; hence, a possible inhibitory mechanism. Findings from this report would streamline a better molecular understanding of CerS1-Hsp27 interactions and decipher its potential avenue toward unexplored anti-cancer mechanisms and therapy.

5.
Curr Biol ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39181128

ABSTRACT

Proteome maintenance in contracting skeletal and cardiac muscles depends on the chaperone-regulating protein BAG3. Reduced BAG3 activity leads to muscle weakness and heart failure in animal models and patients. BAG3 and its chaperone partners recognize mechanically damaged muscle proteins and initiate their disposal through chaperone-assisted selective autophagy (CASA). However, molecular details of the force-dependent regulation of BAG3 have remained elusive so far. Here, we demonstrate that mechanical stress triggers the dephosphorylation of BAG3 in human muscle and in isolated cells. We identify force-regulated phospho-switches in BAG3 that control CASA complex assembly and CASA activity. Differential proteomics reveal RAB GTPases, which organize membrane traffic and fusion, as dephosphorylation-dependent interactors of BAG3. In fact, RAB7A and RAB11B are shown here to be essential for CASA in skeletal muscle cells. Moreover, BAG3 dephosphorylation is also observed upon induction of mitophagy, suggesting an involvement of the cochaperone in the RAB7A-dependent autophagic engulfment of damaged mitochondria in exercised muscle. Cooperation of BAG3 with RAB7A relies on a direct interaction of both proteins, which is regulated by the nucleotide state of the GTPase and by association with the autophagosome membrane protein LC3B. Finally, we provide evidence that BAG3 and RAB7A also cooperate in non-muscle cells and propose that overactivation of CASA in RAB7A-L129F patients contributes to the loss of peripheral neurons in Charcot-Marie-Tooth neuropathy.

6.
Sleep Biol Rhythms ; 22(3): 363-372, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962802

ABSTRACT

Currently hypoglossal nerve-genioglossus axis is the major research core of OSA pathogenesis. The pathogenesis of OSA incidence changes before and after menopause needs to be clarified further. Little is known about the influences of ovariectomy on hypoglossal motoneurons. In the research, we utilized a rat ovariectomy model to evaluate the expression changes of 5-HT2A and α1-Adrenergic receptors in the hypoglossal nucleus and to explore the involvement of BDNF/TrkB signaling and endoplasmic reticulum molecular chaperones in the hypoglossal nucleus. Results indicated that the expression of 5-HT2A and α1-Adrenergic receptors reduced dramatically in the hypoglossal nucleus of ovariectomized rats. The apoptosis level of hypoglossal motor neurons increased markedly in the OVX groups. The up-regulated expression of BDNF and down-regulated expression of TrkB were found in the OVX groups. Ovarian insufficiency resulted in the activation of UPR and the loss of CANX-CALR cycle. Estrogen replacement could restore these changes partially. Estrogen level influences the expression of neurotransmitter receptors, and regulates BDNF/TrkB signaling compensation and endoplasmic reticulum homeostasis, which might be one of the pathogenesis of menopausal female OSA. The results reveal a new perspective for studying female OSA from the view of hypoglossal nerve and hormonal changes and attempt to propel 17ß-estradiol toward a feasible therapy for female OSA. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-024-00520-5.

7.
Cerebellum ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052145

ABSTRACT

Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.

8.
Int J Biol Macromol ; 273(Pt 2): 133113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885870

ABSTRACT

Transglutaminase (TGase) from Streptomyces mobaraensis commonly used to improve protein-based foods due to its unique enzymatic reactions, which imply considerable attention in its production. Recently, TGase exhibit broad market potential in non-food industries. However, achieving efficient synthesis of TGase remains a significant challenge. Herein, we achieved a substantial amount of a fully functional and kinetically stable TGase produced by Komagataella phaffii (Pichia pastoris) using multiple strategies including Geneticin (G418) screening, combinatorial mutations, promoter optimization, and co-expression. The active TGase expression reached a maximum of 10.1 U mL-1 in shake flask upon 96 h of induction, which was 3.8-fold of the wild type. Also, the engineered strain exhibited a 6.4-fold increase in half-life and a 2-fold increase in specific activity, reaching 172.67 min at 60 °C (t1/2(60 °C)) and 65.3 U mg-1, respectively. Moreover, the high-cell density cultivation in 5-L fermenter was also applied to test the productivity at large scale. Following optimization at a fermenter, the secretory yield of TGase reached 47.96 U mL-1 in the culture supernatant. Given the complexity inherent in protein expression and secretion, our research is of great significance and offers a comprehensive guide for improving the production of a wide range of heterologous proteins.


Subject(s)
Streptomyces , Transglutaminases , Streptomyces/genetics , Streptomyces/enzymology , Transglutaminases/genetics , Transglutaminases/metabolism , Transglutaminases/biosynthesis , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Fermentation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis , Kinetics , Promoter Regions, Genetic
9.
Mol Cell ; 84(13): 2455-2471.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38908370

ABSTRACT

Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.


Subject(s)
Escherichia coli Proteins , Escherichia coli , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Protein Biosynthesis , Protein Folding , Ribosomes , Ribosomes/metabolism , Ribosomes/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Protein Binding , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Models, Molecular , Protein Conformation , Peptidylprolyl Isomerase
10.
Mol Neurobiol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896156

ABSTRACT

Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.

11.
Mol Cell Biochem ; 479(7): 1627-1642, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38771378

ABSTRACT

Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.


Subject(s)
Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Humans , Animals , Protein Interaction Maps , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Cell Membrane/metabolism
12.
Cell Stress Chaperones ; 29(2): 326-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518861

ABSTRACT

Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.


Subject(s)
Antimalarials , Malaria , Humans , Heat-Shock Proteins/metabolism , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/chemistry , HSP70 Heat-Shock Proteins/metabolism , Protozoan Proteins/metabolism
13.
Mol Cell ; 84(8): 1512-1526.e9, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38508184

ABSTRACT

J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified ß-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the ß-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP ß-hairpin as a highly specific target for cancer therapeutics.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/metabolism , Protein Folding
14.
Trends Cell Biol ; 34(8): 646-656, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38423854

ABSTRACT

Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.


Subject(s)
Aging , Protein Biosynthesis , Proteostasis , Humans , Aging/metabolism , Animals , Ribosomes/metabolism , Homeostasis
15.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38311120

ABSTRACT

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Subject(s)
Heat-Shock Proteins , Medicine , Biology , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , Molecular Chaperones/metabolism
16.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38361426

ABSTRACT

Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Proteome/metabolism , Protein Folding , RNA/metabolism , Solubility , Proteomics , Isoelectric Point , Protein Aggregates , Escherichia coli Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mass Spectrometry
17.
Eur J Pharmacol ; 967: 176387, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38311278

ABSTRACT

The emergence of targeted therapies and immunotherapies has improved the overall survival of patients with nonsmall cell lung cancer (NSCLC), but the 5-year survival rate remains low. New drugs are needed to overcome this dilemma. Moreover, the significant correlation between various client proteins of heat-shock protein (HSP) 90 and tumor occurrence, progression, and drug resistance suggests that HSP90 is a potential therapeutic target for NSCLC. However, the outcomes of clinical trials for HSP90 inhibitors have been disappointing, indicating significant toxicity of these drugs and that further screening of the beneficiary population is required. NSCLC patients with oncogenic-driven gene mutations or those at advanced stages who are resistant to multi-line treatments may benefit from HSP90 inhibitors. Enhancing the therapeutic efficacy and reducing the toxicity of HSP90 inhibitors can be achieved via the optimization of their drug structure, using them in combination therapies with low-dose HSP90 inhibitors and other drugs, and via targeted administration to tumor lesions. Here, we provide a review of the recent research on the role of HSP90 in NSCLC and summarize relevant studies of HSP90 inhibitors in NSCLC.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , HSP90 Heat-Shock Proteins/metabolism , Mutation , Cell Line, Tumor
18.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339064

ABSTRACT

Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer's Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aß aggregation and toxicity. This suggests a potential protective role for S100B at the onset of Aß proteotoxicity, occurring in a complex biochemical environment prone to oxidative damage. Herein, we report an investigation in which extracellular oxidative conditions are mimicked to test if the susceptibility of S100B to oxidation influences its protective activities. Resorting to mild oxidation of S100B, we observed methionine oxidation as inferred from mass spectrometry, but no cysteine-mediated crosslinking. Structural analysis showed that the folding, structure, and stability of oxidized S100B were not affected, and nor was its quaternary structure. However, studies on Aß aggregation kinetics indicated that oxidized S100B was more effective in preventing aggregation, potentially linked to the oxidation of Met residues within the S100:Aß binding cleft that favors interactions. Using a cell culture model to analyze the S100B functions in a highly oxidative milieu, as in AD, we observed that Aß toxicity is rescued by the co-administration of oxidized S100B to a greater extent than by S100B. Additionally, results suggest a disrupted positive feedback loop involving S100B which is caused by its oxidation, leading to the downstream regulation of IL-17 and IFN-α2 expression as mediated by S100B.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Oxidative Stress , Protein Aggregates , Oxidation-Reduction , S100 Calcium Binding Protein beta Subunit/metabolism
19.
Cancers (Basel) ; 16(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339390

ABSTRACT

Heat shock proteins (HSPs) are developmentally conserved families of protein found in both prokaryotic and eukaryotic organisms. HSPs are engaged in a diverse range of physiological processes, including molecular chaperone activity to assist the initial protein folding or promote the unfolding and refolding of misfolded intermediates to acquire the normal or native conformation and its translocation and prevent protein aggregation as well as in immunity, apoptosis, and autophagy. These molecular chaperonins are classified into various families according to their molecular size or weight, encompassing small HSPs (e.g., HSP10 and HSP27), HSP40, HSP60, HSP70, HSP90, and the category of large HSPs that include HSP100 and ClpB proteins. The overexpression of HSPs is induced to counteract cell stress at elevated levels in a variety of solid tumors, including anticancer chemotherapy, and is closely related to a worse prognosis and therapeutic resistance to cancer cells. HSPs are also involved in anti-apoptotic properties and are associated with processes of cancer progression and development, such as metastasis, invasion, and cell proliferation. This review outlines the previously mentioned HSPs and their significant involvement in diverse mechanisms of tumor advancement and metastasis, as well as their contribution to identifying potential targets for therapeutic interventions.

20.
J Alzheimers Dis ; 97(3): 1421-1433, 2024.
Article in English | MEDLINE | ID: mdl-38277298

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a widespread neurodegenerative disorder characterized by progressive cognitive decline, affecting a significant portion of the aging population. While the cerebral cortex and hippocampus have been the primary focus of AD research, accumulating evidence suggests that white matter lesions in the brain, particularly in the corpus callosum, play an important role in the pathogenesis of the disease. OBJECTIVE: This study aims to investigate the gene expression changes in the corpus callosum of 5xFAD transgenic mice, a widely used AD mouse model. METHODS: We conducted behavioral tests for spatial learning and memory in 5xFAD transgenic mice and performed RNA sequencing analyses on the corpus callosum to examine transcriptomic changes. RESULTS: Our results show cognitive decline and demyelination in the corpus callosum of 5xFAD transgenic mice. Transcriptomic analysis reveals a predominance of upregulated genes in AD mice, particularly those associated with immune cells, including microglia. Conversely, downregulation of genes related to chaperone function and clock genes such as Per1, Per2, and Cry1 is also observed. CONCLUSIONS: This study suggests that activation of neuroinflammation, disruption of chaperone function, and circadian dysfunction are involved in the pathogenesis of white matter lesions in AD. The findings provide insights into potential therapeutic targets and highlight the importance of addressing white matter pathology and circadian dysfunction in AD treatment strategies.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Mice, Transgenic , Corpus Callosum/pathology , Neuroinflammatory Diseases , Disease Models, Animal , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL