Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 646
Filter
1.
J Exp Bot ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129663

ABSTRACT

With the advent of genomic and other omics technologies the last decades have witnessed a series of steady and important breakthroughs in the understanding of the genetic determinants of the different reproductive systems of vascular plants and especially on how sexual reproduction shaped their evolution. In contrast, the molecular mechanisms of these fundamental aspects of the biology of bryophytes, a group of non-vascular embryophyte plants sister to all tracheophytes, are still largely obscure. The recent characterization of the sex chromosomes and genetic switches determining sex in bryophytes as well as emerging approaches for molecular sexing of gametophytes hold great promise for elucidation of the evolutionary history as well as the conservation of this species-rich but understudied group of land plants.

2.
J Exp Bot ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082751

ABSTRACT

Water-to-land transition is a hallmark of terrestrialization for land plants and requires molecular adaptation to resist water deficiency. Lineages- or species-specific genes are widespread across eukaryotes, and yet the majority of those are functionally unknown and not annotated. Recent studies have revealed that some of such genes could play a role in adapting to environmental stress responses. Here, we identified a novel gene PpBCG1 (Bryophyte Co-retained Gene 1) in the moss Physcomitrium patens that was responsive to dehydration and rehydration. Under de- and rehydration treatments, PpBCG1 was significantly co-expressed with the dehydrin-encoding gene PpDHNA. Microarray data revealed that PpBCG1 was highly expressed in tissues of spores, female organ archegonia, and mature sporophytes. In addition, the Ppbcg1 mutant showed reduced ability of dehydration tolerance, whose plants were accompanied by a relatively low level of chlorophyll content during recovery. Comprehensive transcriptomics uncovered a detailed set of regulatory processes that were affected by the PpBCG1 disruption. Moreover, experimental evidence showed that PpBCG1 might function in the antioxidant activity, abscisic acid (ABA) pathway, and intracellular calcium (Ca2+) homeostasis to resist desiccation. Together, our study provides insights into the roles of one bryophyte co-retained gene in the desiccation tolerance.

3.
Sci Rep ; 14(1): 17754, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39085365

ABSTRACT

The hyperaccumulation potential of zinc (Zn) and cadmium (Cd) and their synergistic effects were examined in relation to Christmas moss (Vesicularia montagnei (Bél) Broth., Hypnaceae), an aquatic and terrestrial moss, dosed with Cd (Cd1 and Cd2), Zn (Zn1 and Zn2) and combined Zn and Cd (Cd1Zn1 and Cd2Zn2). Zinc promoted plant growth and development, particularly in the highest Zn and combined Zn/Cd treatments (Zn2 and Cd2Zn2). The Zn treatment resulted in substantial moss chlorophyll content and highest percentage relative growth rate in biomass value (0.23 mg L-1 and 106.8%, respectively); however, the Cd2Zn2 treatment achieved maximal production of chlorophyll a and total chlorophyll (0.29 and 0.51 mg L-1, respectively) due to synergistic effects. These findings suggest that Christmas moss is a highly metal-tolerant and adaptable bryophyte species. Zinc was essential for reducing the detrimental effects of Cd while simultaneously promoting moss growth and biomass development. Furthermore, Christmas moss exhibited hyperaccumulation potential for Cd and Zn in the Cd2Zn2 and Zn alone treatments, as evidenced by highest Cd and Zn values in gametophores (1002 and 18,596 mg per colony volume, respectively). Using energy dispersive X-ray fluorescence (EDXRF) spectrometry, atomic percentages of element concentrations in moss gametophores in the Zn2, Cd2 and combined Zn/Cd treatments were generally in the order: K > Ca > P > Zn > Cd. When comparing the atomic percentages of Zn and Cd in gametophores, it is likely that the higher atomic percentage of Zn was because this element is essential for plant growth and development.


Subject(s)
Biodegradation, Environmental , Cadmium , Zinc , Zinc/metabolism , Cadmium/metabolism , Biodegradation, Environmental/drug effects , Chlorophyll/metabolism , Biomass , Bryopsida/drug effects , Bryopsida/metabolism , Bryopsida/growth & development , Bryophyta/growth & development , Bryophyta/metabolism , Bryophyta/drug effects
4.
Sci Rep ; 14(1): 16793, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039156

ABSTRACT

Global warming and increased atmospheric nitrogen (N) deposition can adversely impact Sphagnum moss populations and ecological functions in peatlands. Based on the anticipated increases in temperature and N levels at global scale, we investigated the effects of simultaneous warming and N treatment on growth and ecophysiological activity of Sphagnum papillosum, a predominant moss at mid-latitudes, utilizing a growth chamber experiment. Warming treatments increased the maximum yield of photosystem II (Fv/Fm) of S. papillosum while decreasing the stable carbon isotope ratio. However, warming treatment alone did not cause significant changes in the biomass increase from that of the control. Regarding N treatment, the low N treatment decreased Fv/Fm under the current temperature but did not affect the biomass increase. In contrast to these results, a simultaneous warming and high N treatment significantly enhanced the biomass production compared to that of the control, exhibiting additive effect of warming and high N treatment on Sphagnum biomass production. These responses were attributed to the improved photosynthetic performances by warming and N treatment. The results of this study contribute to the prediction of Sphagnum responses to warming and changes in N deposition.


Subject(s)
Biomass , Global Warming , Nitrogen , Photosynthesis , Sphagnopsida , Nitrogen/metabolism , Sphagnopsida/metabolism , Sphagnopsida/growth & development , Temperature , Carbon Isotopes , Photosystem II Protein Complex/metabolism
5.
Plant J ; 119(3): 1481-1493, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38858852

ABSTRACT

Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.


Subject(s)
Bryopsida , Plant Proteins , Plant Proteins/metabolism , Plant Proteins/genetics , Bryopsida/genetics , Bryopsida/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomes, Plant/genetics , Protein Binding
6.
Chemosphere ; 362: 142684, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909864

ABSTRACT

Anthropogenic reactive nitrogen (N) deposition has increased significantly since the industrial revolution. Northern China has become a global hotspot for N deposition. However, few studies have been conducted to quantify the historical changes of atmospheric N deposition fluxes and source contributions in Northern China. By investigating N contents and δ15N values of mosses at Mount Tai (Northern China) in 1984 and 2021, we reconstructed fluxes and source contributions of wet inorganic N deposition and evaluated their historical changes. Compared with 1984, moss N contents (from 1.7 ± 0.3% to 2.1 ± 0.4%) showed a significant increase in 2021, which was mainly attributed to a significant increase in nitrate N deposition fluxes at Mount Tai. Moss δ15N values (from -5.9 ± 0.9‰ to -5.2 ± 2.4‰) showed a slight increase from 1984 to 2021 at Mount Tai. The importance of combustion-related NH3 (including vehicle exhaust, coal combustion, and biomass burning) in 2021 (51.2%) were higher than those in 1984 (43.9%), while the importance of volatilization NH3 sources (including waste and fertilizers) in 2021 (48.8%) were lower than those in 1984 (56.1%). It was fossil-fuel NOx (from vehicle exhaust and coal combustion) (54.1%) rather than non-fossil fuel NOx (from biomass burning and microbial N cycles) (45.9%) dominated NOx emissions in both 1984 and 2021. Our results revealed significant contributions of combustion-related NH3 and fossil-fuel NOx sources emissions to the elevation of N deposition at Mount Tai in Northern China, which are beneficial for mitigating N emissions and conducting ecological benefit assessments in Northern China.


Subject(s)
Air Pollutants , Bryophyta , Environmental Monitoring , Nitrogen , China , Bryophyta/chemistry , Environmental Monitoring/methods , Air Pollutants/analysis , Nitrogen/analysis , Nitrates/analysis
7.
Article in English | MEDLINE | ID: mdl-38903021

ABSTRACT

In this study, the average values of vertical velocity of particles emitted from an aluminum smelter in the surface layer of the atmosphere were estimated using a semi-empirical method. The method is based on regression analysis of the horizontal profile of pollutants measured along the selected direction using moss bioindicators. The selection of epiphytic mosses Sanionia uncinata was carried out in 2013 in the zone of influence of a metallurgical industry enterprise in the city of Kandalaksha, Murmansk region. The concentrations of As, Si, Ni, Zn, Ti, Cd, Na, Pb, Co, K, Ba, Ca, Mg, Mn, Sr, Fe, Al, V, Cr, Cu were determined using atomic emission spectrometry. The conducted assessments showed that the average particle velocity toward the Earth's surface, when considering large spatial and temporal scales, is tens of times higher than gravitational settling velocities.


Subject(s)
Air Pollutants , Aluminum , Environmental Monitoring , Metallurgy , Aluminum/analysis , Aluminum/chemistry , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollutants/chemistry , Particle Size , Particulate Matter/analysis , Particulate Matter/chemistry , Bryophyta/chemistry
8.
Materials (Basel) ; 17(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930276

ABSTRACT

In this work, we report on the fabrication of ZnO thin films doped with Ge via the ALD method. With an optimized amount of Ge doping, there was an improvement in the conductivity of the films owing to an increase in the carrier concentration. The optical properties of the films doped with Ge show improved transmittance and reduced reflectance, making them more attractive for opto-electronic applications. The band gap of the films exhibits a blue shift with Ge doping due to the Burstein-Moss effect. The variations in the band gap and the work function of ZnO depend strongly on the carrier density of the films. From the surface studies carried out using XPS, we could confirm that Ge replaces some of the Zn in the wurtzite structure. In the films containing Ge, the concentration of oxygen vacancies is also high, which is somehow related to the poor electrical properties of the films at higher Ge concentrations.

9.
Nat Prod Res ; : 1-7, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907648

ABSTRACT

A novel polyphenolic compound named Polycommunin A (1) was discovered in the aerial part of the common haircap moss (Polýtrichum commune) widely spread in boreal and temperate climate zones. Aqueous ethanol and extraction of the plant material with further isolation of polyphenolic fraction and preparative HPLC separation allowed obtaining individual compound and identifying it as dimeric dihydrocinnamoyl bibenzyl by NMR spectroscopy and high-resolution tandem mass spectrometry. Polycommunin A demonstrated high in vitro antioxidant activity determined by FRAP and PCL assays and comparable to that of Trolox and Quercetin.

10.
Plants (Basel) ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891247

ABSTRACT

The two accessions of the polytrichaceous moss species Polytrichum formosum, namely German and Serbian genotypes, were subjected to salt stress, aiming to study the species' developmental and physiological features. Various concentrations of sodium chloride were applied to an axenic in vitro culture of the two moss genotypes, and the growth parameters as well as physiological feature changes were followed. As inferred by the morpho-developmental parameters and survival index, the Serbian genotype showed higher resistance to salt stress as compared to the German one. However, both moss genotypes survived the highest applied concentration (500 mM). As expected, short exposures to salt were rather easily overcome. No clear patterns in sugar content and changes were observed during the stress, but they are surely included in salt stress response and tolerance in P. formosum. Longer stress increased total chlorophyll content in both genotypes. In short-term applied salt stress, the Serbian genotype had a higher total chlorophyll concentration to control unstressed plants, while the German genotype decreased the total amount of chlorophyll. Similarly, carotenoids were shown to be significantly higher in the Serbian genotype, both in unstressed and treated plants, compared to the German one. The contents of tocopherols were higher in the Serbian genotype in controlled unstressed and subsequently short- and long-stressed plantlets compared to the German accession. In general, we can assume that P. formosum is unexpectedly tolerant to salt stress and that there are differences within various accessions of overall European populations, as referred by two randomly selected genotypes, which is most probably a consequence of different genetic structure.

11.
Plants (Basel) ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732425

ABSTRACT

Mosses host diverse bacterial communities essential for their fitness, nutrient acquisition, stress tolerance, and pathogen defense. Understanding the microbiome's taxonomic composition is the first step, but unraveling their functional capabilities is crucial for grasping their ecological significance. Metagenomics characterizes microbial communities by composition, while metatranscriptomics explores gene expression, providing insights into microbiome functionality beyond the structure. Here, we present for the first time a metatranscriptomic study of two moss species, Hypnum cupressiforme (Hedw.) and Platyhypnidium riparioides (Hedw.) Dixon., renowned as key biomonitors of atmospheric and water pollution. Our investigation extends beyond taxonomic profiling and offers a profound exploration of moss bacterial communities. Pseudomonadota and Actinobacteria are the dominant bacterial phyla in both moss species, but their proportions differ. In H. cupressiforme, Actinobacteria make up 62.45% and Pseudomonadota 32.48%, while in P. riparioides, Actinobacteria account for only 25.67% and Pseudomonadota 69.08%. This phylum-level contrast is reflected in genus-level differences. Our study also shows the expression of most genes related to nitrogen cycling across both microbiomes. Additionally, functional annotation highlights disparities in pathway prevalence, including carbon dioxide fixation, photosynthesis, and fatty acid biosynthesis, among others. These findings hint at potential metabolic distinctions between microbial communities associated with different moss species, influenced by their specific genotypes and habitats. The integration of metatranscriptomic data holds promise for enhancing our understanding of bryophyte-microbe partnerships, opening avenues for novel applications in conservation, bioremediation, and sustainable agriculture.

12.
Glob Chang Biol ; 30(5): e17295, 2024 May.
Article in English | MEDLINE | ID: mdl-38804108

ABSTRACT

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.


Subject(s)
Embryophyta , Microbiota , Soil Microbiology , Biodiversity , Soil/chemistry
13.
J Environ Radioact ; 276: 107448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749215

ABSTRACT

Among environment contaminants, 210Pb and 210Po have gained significant research attention due to their radioactive toxicity. Moss, with its exceptional adsorption capability for these radionuclides, serves as an indicator for environmental 210Pb and 210Po pollution. The paper reviews a total of 138 articles, summarizing the common methods and analytical results of 210Pb and 210Po research in moss. It elucidates the accumulation characteristics of 210Pb and 210Po in moss, discusses current research challenges, potential solutions, and future prospects in this field. Existing literature indicates limitations in common measurement techniques for 210Pb and 210Po in moss, characterized by high detection limits or lengthy sample processing. The concentration of 210Pb and 210Po within moss display substantial variations across different regions worldwide, ranging from

Subject(s)
Bryophyta , Lead Radioisotopes , Polonium , Radiation Monitoring , Lead Radioisotopes/analysis , Polonium/analysis , Bryophyta/chemistry , Radiation Monitoring/methods
14.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38571393

ABSTRACT

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Subject(s)
Bryopsida , Ethylenes , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Proteins , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Bryopsida/growth & development , Bryopsida/genetics , Bryopsida/drug effects , Bryopsida/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Germ Cells, Plant/metabolism , Germ Cells, Plant/growth & development , Germ Cells, Plant/drug effects , Mutation/genetics
15.
Environ Monit Assess ; 196(5): 481, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683240

ABSTRACT

The continuous expansion of the global vehicle fleet poses a growing threat to environmental quality through heavy metal contamination. In this scenario, monitoring to safeguard public health in urban areas is necessary. Our study involved the collection of 36 street dust and 29 moss samples from roads of a Brazilian metropolis (Recife) with varying traffic intensities as follows: natural reserve (0 vehicles per day), low (< 15,000 vehicles per day), medium (15,000-30,000 vehicles per day), and high (> 30,000 vehicles per day). ICP-AES analysis was performed to determine the concentrations of nine potentially toxic metals (Ba, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) to assess the influence of vehicular flow on urban contamination. In the street dust samples, the mean metal concentrations (mg kg-1) exhibited the following order: Ba (503.7) > Mn (303.0) > Zn (144.4) > Cu (95.3) > Cr (56.1) > Pb (34.2) > V (28.7) > Ni (11.3) > Cd (1.5). Conversely, in the moss samples, the metal concentration order was as follows (mg kg-1): Mn (63.8) > Zn (62.5) > Ba (61.0) > Cu (17.7) > Cr (8.0) > V (7.3) > Pb (7.0) > Ni (2.9) > Cd (0.3). Roads with higher traffic volumes exhibited the highest metal enrichments in moss samples for all metals and in dust samples for Cd, Cr, Mn, Ni, and V. However, dust from low-flow roads had higher enrichments for Ba, Cu, and Zn, indicating the influential role of other traffic-related factors in metal deposition. Our findings highlight traffic flow as the predominant source of pollution in urban centers, with both street dust and moss serving as sensitive indicators of metal input attributable to vehicular traffic. These indicators offer valuable insights for urban quality monitoring and pollution control efforts.


Subject(s)
Cities , Dust , Environmental Monitoring , Metals, Heavy , Metals, Heavy/analysis , Brazil , Environmental Monitoring/methods , Dust/analysis , Environmental Pollutants/analysis , Vehicle Emissions/analysis , Air Pollutants/analysis
16.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38629612

ABSTRACT

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Subject(s)
Myosins , Plant Cells , Myosins/metabolism , Plant Cells/metabolism , Bryopsida/metabolism , Bryopsida/growth & development , Plant Proteins/metabolism , Actin Cytoskeleton/metabolism , Marchantia/metabolism , Marchantia/growth & development , Plant Development/physiology
17.
Plants (Basel) ; 13(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38592873

ABSTRACT

The genus Pogonatum stands out as the most diverse within the family Polytrichaceae, encompassing over 50 species. Pogonatum tahitense has been recorded across various Pacific regions, including Hawaii in the United States and Tahiti in French Polynesia, as well as in Asia, such as in Taiwan in China, Java in Indonesia, and Sabah in Malaysia. In the current study, a specimen collected in Tibet, China, is described, confirming its taxonomic classification as P. tahitense through a comprehensive analysis integrating morphological evidence and molecular study based on sequences from the plastid (rbcL, rps4, trnL-F), mitochondrial (nad5), and nuclear (ITS2) regions. This documentation represents the first record of the species within mainland China. A time-calibrated, molecular-based phylogenetic analysis was conducted, employing various approaches for ancestral range inference. The findings suggest that P. tahitense originated during the Pleistocene epoch, approximately 1.8 mya, in Tibet, China.

18.
Front Plant Sci ; 15: 1334328, 2024.
Article in English | MEDLINE | ID: mdl-38601303

ABSTRACT

Rhizosphere pH determines nutrient bioavailability, but this pH is difficult to measure. Standard pH tests require adding water to growth media. This dilutes hydrogen ion activity and increases pH. We used a novel, in situ, pointed-tip electrode to estimate rhizosphere pH without dilution. Measurements from this electrode matched a research-grade pH meter in hydroponic nutrient solutions. We then compared measurements from this electrode to saturated paste and pour-through methods in peat moss, coconut coir, and pine bark. The pointed-tip electrode was unable to accurately measure pH in the highly-porous pine bark media. Adding deionized water to the other media at container capacity using the saturated paste method resulted in a pH that was 0.59 ± 0.30 units higher than the initial in situ measurement at the top of the container. This increase aligns with established solution chemistry principles. Measurements of pH using the pour-through method were 0.38 ± 0.24 pH units higher than in situ measurements at the bottom of the container. We conclude that in situ pH measurements are not subject to dilution and are thus more representative of the rhizosphere pH than the saturated paste and pour-through techniques.

19.
Plants (Basel) ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674470

ABSTRACT

Peatlands have become a focal point in climate mitigation strategies as these ecosystems have significant carbon sequestration capacities when healthy but release CO2 and other greenhouse gases when damaged. However, as drought episodes become more frequent and prolonged, organisms key to the functioning of some peatlands are increasingly under pressure from desiccation. The Sphagnum mosses, which tend to keep their ecosystem waterlogged and many of whom promote peat formation, are only mildly desiccation-tolerant in comparison to other mosses. The role of Sphagnum anatomy and colony structure is poorly understood in the context of desiccation resilience. Using four different Sphagnum species belonging to four different subgenera and positions along the gradient of the water table, we show that plant morphological traits and colony density are important determinants of water storage capacity. Our results show that, as previously postulated, the majority of the water is stored in an easily exchangeable form, probably extracellularly, and that plant morphological traits, specifically the type and presence of branches, are major contributors to water storage and can explain some of the interspecies variation. We also show that plant density is another important determinant for water storage capacity as higher densities hold larger quantities of water per unit of biomass for all four species, which increases resilience to desiccation. The results presented here suggest that species choice and planting density should receive more attention when considering peatland restoration strategies.

20.
J Hazard Mater ; 470: 134266, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626682

ABSTRACT

The role of forest ecosystems in the global mercury (Hg) biogeochemical cycle is widely recognized; however, using litterfall as a surrogate to assess the Hg sink function of forests encounters limitations. We investigated the accumulation characteristics and influencing factors of Hg in mosses from two remote subalpine forests in southwestern China. The results indicated that there was high Hg accumulation in subalpine forest mosses, with average concentrations of 82 ± 49 ng g-1 for total mercury (THg) and 1.3 ± 0.8 ng g-1 for methylmercury (MeHg). We demonstrated that the accumulation capacity of Hg in mosses was significantly dependent on species and substrates (micro-habitats), the mosses on tree trunks exhibited significantly elevated Hg accumulation levels (THg 132 ± 56 ng g-1, MeHg 1.6 ± 0.2 ng g-1) compared to mosses in other substrates. The surface morphologies and biochemical components of leaf (phyllidia), such as cation exchange capacity (CEC), pectin, uronic acid, and metallothionein, play a crucial role in the accumulation of Hg by mosses. These findings provide valuable insights into Hg accumulation in forest mosses. Suggesting that the contribution of mosses Hg accumulation should be considered when assessing atmospheric Hg sinks of forests.


Subject(s)
Bryophyta , Forests , Mercury , Methylmercury Compounds , China , Mercury/metabolism , Mercury/analysis , Methylmercury Compounds/metabolism , Methylmercury Compounds/analysis , Bryophyta/metabolism , Bryophyta/chemistry , Environmental Monitoring , Air Pollutants/analysis , Air Pollutants/metabolism , Plant Leaves/metabolism , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL