Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.085
Filter
1.
Infect Genet Evol ; 123: 105640, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002874

ABSTRACT

The Klebsiella oxytoca complex comprises diverse opportunistic bacterial pathogens associated with hospital and community-acquired infections with growing alarming antimicrobial resistance. We aimed to uncover the genomic features underlying the virulence and antimicrobial resistance of isolates from Mulago National Hospital in Uganda. We coupled whole genome sequencing with Pathogenwatch multilocus sequence typing (MLST) and downstream bioinformatic analysis to delineate sequence types (STs) capsular polysaccharide K- and O-antigen loci, along with antimicrobial resistance (AMR) profiles of eight clinical isolates from the National Referral Hospital of Uganda. Our findings revealed that only two isolates (RSM6774 and RSM7756) possess a known capsular polysaccharide K-locus (KL74). The rest carry various unknown K-loci (KL115, KL128, KLI52, KL161 and KLI63). We also found that two isolates possess unknown loci for the lipopolysaccharide O-antigen (O1/O2v1 type OL104 and unknown O1). The rest possess known O1 and O3 serotypes. From MLST, we found four novel sequence types (STs), carrying novel alleles for the housekeeping genes glyceraldehyde-6-phosphate dehydrogenase A (gapA), glucose-6-phosphate isomerase (pgi), and RNA polymerase subunit beta (rpoB). Our AMR analysis revealed that all the isolates are resistant to ampicillin and ceftriaxone, with varied resistance to other antibiotics, but all carry genes for extended-spectrum beta-lactamases (ESBLs). Notably, one strain (RSM7756) possesses outstanding chromosomal and plasmid-encoded AMR to beta-lactams, cephalosporins, fluoroquinolones and methoprims. Conclusively, clinical samples from Mulago National Referral Hospital harbor novel STs and multidrug resistant K. oxytoca strains, with significant public health importance, which could have been underrated.

2.
Iran J Parasitol ; 19(2): 171-182, 2024.
Article in English | MEDLINE | ID: mdl-39011539

ABSTRACT

Background: Leishmaniasis is an important public health parasitic infection, which is endemic in many parts of the world, including Iran. We aimed to investigate genetic diversity and phylogenetic relationship among different Leishmania isolates using multi-locus sequence typing (MLST). Methods: Totally, 41 isolates collected either from patients referred to Leishmaniasis Diagnostics and Treatment Center at Tehran University of Medical Sciences, Tehran, Iran or from animals during 2019-2021, were subjected to the study. They included L. major and L. tropica from human, L. infantum from canine, and L. turanica from rodents from different endemic foci of Iran analyzed using MLST including gp63, g6pdh, lack, nagt, and hsp70 genes. Results: A total of 5010 bps was analyzed from each isolate. The three targets, nagt, lack, and g6pdh, generated better topology comparing to the other genes. In the 44 isolates, 22 haplotypes (STs) were identified. Leishmania tropica contained the highest number of haplotypes (n=12) comparing to L. major (n=8), L. infantum (n=1) and L. turanica (n=1). All five genomic loci caused separation of Iranian Leishmania species at the species level, indicating conservation of these genes in the Leishmania parasite. Conclusion: The highest number of haplotypes belonged to L. tropica, indicating that the genetic diversity of this species is higher than that of L. major. It was further confirmed that the MLST is a suitable method to examine genetic variation of Leishmania parasites with respect to evolutionary and epidemiological studies.

3.
Front Microbiol ; 15: 1399743, 2024.
Article in English | MEDLINE | ID: mdl-39021621

ABSTRACT

Little has been known about symbiotic relationships and host specificity for symbionts in the human gut microbiome so far. Bifidobacteria are a paragon of the symbiotic bacteria biota in the human gut. In this study, we characterized the population genetic structure of three bifidobacteria species from 58 healthy mother-infant pairs of three ethnic groups in China, geographically isolated, by Rep-PCR, multi-locus sequence analysis (MLSA), and in vitro carbohydrate utilization. One hundred strains tested were incorporated into 50 sequence types (STs), of which 29 STs, 17 STs, and 4 STs belong to B. longum subsp. longum, B. breve, and B. animalis subsp. lactis, respectively. The conspecific strains from the same mother-child pair were genetically very similar, supporting the vertical transmission of Bifidobacterium phylotypes from mother to offspring. In particular, results based on allele profiles and phylogeny showed that B. longum subsp. longum and B. breve exhibited considerable intraspecies genetic heterogeneity across three ethnic groups, and strains were clustered into ethnicity-specific lineages. Yet almost all strains of B. animalis subsp. lactis were incorporated into the same phylogenetic clade, regardless of ethnic origin. Our findings support the hypothesis of co-evolution between human gut symbionts and their respective populations, which is closely linked to the lifestyle of specific bacterial lineages. Hence, the natural and evolutionary history of Bifidobacterium species would be an additional consideration when selecting bifidobacterial strains for industrial and therapeutic applications.

4.
Int J Med Microbiol ; 316: 151631, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39024723

ABSTRACT

BACKGROUND: Clostridioides difficile infection (CDI) is an increasingly common disease in healthcare facilities and community settings. However, there are limited reports of community-onset CDI (CO-CDI) in China. METHODS: We collected diarrheal stool samples from 3885 patients who went to outpatient department or emergency department in a tertiary hospital in China during 2010-2023, analyzed the correlation between patients' basic information and the detection rate of CDI. Besides, all stool samples from 3885 outpatients included were tested by culturing. Moreover, we randomly selected 89 patients' stools during the 14 years and isolated 126 C. difficile strains from them. The presence of toxin genes (tcdA, tcdB, cdtA, and cdtB) were confirmed by PCR. Toxigenic strains were typed using multilocus sequence typing (MLST). Susceptibility to 9 antimicrobials was evaluated using the E-test. RESULTS: 528 of 3885 patients (13.6 %) with diarrhea were finally diagnosed as CDI. The median age of patients included was 51 years (6 months-95 years), while the median of patients with CDI was older than patients with negative results [55.5 years (6 months-93 years) vs. 50 years (9 months -95 years), p < 0.001]. In winter, patients with diarrhea might be more likely to have CDI. The detection rate of CDI of patients in emergency department was much higher than those in other outpatients (20.7 % vs. 12.4 %, p < 0.001), and did differ from each outpatient departments (p < 0.05). There were 95 isolated strains detected as toxigenic C. difficile. Among these strains, 82 (86.3 %) had the tcdA and tcdB genes (A+B+) and 5 of these 82 strains were positive for the binary toxin genes (cdtA and cdtB) (A+B+CDT+). There were 15 different sequence types (STs) by multilocus sequence typing (MLST), while the most ST was ST-54 (23.2 %). ST types composition was relatively stable over the time span of this study. Some strains had high resistance to ciprofloxacin, clindamycin, and erythromycin. Twenty-three isolates (24.2 %) were multidrug-resistant. CONCLUSIONS: Outpatients with CDI were common among patients having diarrhea during this period in our hospital. Elderly patients and patients went to emergency department may be susceptible to CDI. Based on MLST, the result revealed that the C. difficile isolates had high genetic diversity and maintained stability in this period. All isolates were susceptible to metronidazole and vancomycin, and nearly one quarter of all isolates had multidrug resistance.

5.
BMC Infect Dis ; 24(1): 740, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060964

ABSTRACT

BACKGROUND: Group B Streptococcus (GBS) causes invasive infections in newborns and elderly individuals, but is a noninvasive commensal bacterium in most immunocompetent people. Recently, the incidence of invasive GBS infections has increased worldwide, and there is growing interest in the molecular genetic characteristics of invasive GBS strains. Vaccines against GBS are expected in the near future. Here, we aimed to analyze the molecular epidemiology of GBS according to the invasiveness in South Korea. METHODS: We analyzed GBS isolates collected and stored in two hospitals in South Korea between January 2015 and December 2020. The invasiveness of these isolates was determined via a retrospective review of clinical episodes. Totally, 120 GBS isolates from 55 children and 65 adults were analyzed. Serotype and sequence type (ST) were determined using multiplex polymerase chain reaction (PCR) and multilocus sequence typing, respectively. Fourteen virulence factor-encoding genes of GBS were analyzed using multiplex PCR. RESULTS: Forty one (34.2%) were invasive infection-related GBS isolates (iGBS). The most frequently detected serotype was III (39/120, 32.5%), and it accounted for a high proportion of iGBS (21/41, 51.2%). The most frequent ST was ST19 (18/120, 15.0%), followed by ST2 (17/120, 14.2%). Serotype III/ST17 was predominant in iGBS (12/41, 29.3%), and all 17 ST2 strains were noninvasive. The distribution of most of the investigated virulence factors was not significantly related to invasiveness; noteworthily, most of the serotype III/ST17 iGBS carried pilus island (PI) 2b (10/12, 83.3%), and the prevalence of fbsB was significantly low compared with noninvasive GBS isolates (P = 0.004). Characteristically, the combination of bca(+)-cspA(+)-pavA(+)-fbsB(-)-rib(+)-bac(-) was predominant in iGBS (24.4%, 10/41). CONCLUSIONS: Serotype III/ST17 GBS carrying PI-2b was frequently detected in iGBS. There was no significant association between invasiveness and the pattern of virulence factors; however, a specific combination of virulence factors was predominant in iGBS.


Subject(s)
Molecular Epidemiology , Multilocus Sequence Typing , Serogroup , Streptococcal Infections , Streptococcus agalactiae , Virulence Factors , Humans , Republic of Korea/epidemiology , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Virulence Factors/genetics , Streptococcus agalactiae/genetics , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/classification , Streptococcus agalactiae/isolation & purification , Adult , Retrospective Studies , Child , Female , Male , Child, Preschool , Middle Aged , Aged , Multiplex Polymerase Chain Reaction , Infant , Young Adult , Adolescent , Infant, Newborn
6.
Med Microbiol Immunol ; 213(1): 12, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954065

ABSTRACT

Streptococcus pneumoniae infection is a major public health concern with high morbidity and mortality rates. This study aimed to evaluate the serotype distribution, antimicrobial resistance changes, clonal composition, and virulence factors of S. pneumoniae isolates causing pneumococcal disease in northeast China from 2000 to 2021. A total of 1,454 S. pneumoniae isolates were included, with 568 invasive strains and 886 non-invasive strains. The patients from whom the S. pneumoniae were isolated ranged in age from 26 days to 95 years, with those ≤ 5 years old comprising the largest group (67.19%). 19 F, 19 A, 23 F, 14, and 6B were the most common serotypes, of which 19 A and 19 F were the main serotypes of invasive and non-invasive S. pneumoniae, respectively. CC271 was the most common multilocus sequence type. Serotype 14 had the lowest expression of cbpA, rrgA, and psrP genes, but expression levels of 19 A and 19 F genes were similar. All isolates were sensitive to ertapenem, moxifloxacin, linezolid, and vancomycin but highly resistant to macrolides, tetracyclines, and cotrimoxazole. Simultaneous resistance to erythromycin, clindamycin, tetracyclines, and trimethoprim/sulfamethoxazole was common pattern among multidrug-resistant isolates. Non-invasive S. pneumoniae had higher resistance to ß-lactam antibiotics than invasive strains. 19 A and 19 F were the main strains of penicillin-resistant S. pneumoniae. The resistance rate of ß-lactam antibiotics decreased from 2017 to 2021 compared to previous periods. Including PCV13 in the national immunization program can reduce the morbidity and mortality rates of pneumococcal disease effectively.


Subject(s)
Anti-Bacterial Agents , Multilocus Sequence Typing , Pneumococcal Infections , Serogroup , Streptococcus pneumoniae , Virulence Factors , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/pathogenicity , Streptococcus pneumoniae/isolation & purification , Humans , China/epidemiology , Virulence Factors/genetics , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Child, Preschool , Infant , Middle Aged , Adolescent , Anti-Bacterial Agents/pharmacology , Adult , Child , Aged , Young Adult , Aged, 80 and over , Infant, Newborn , Microbial Sensitivity Tests , Female , Male , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial/genetics
7.
Foodborne Pathog Dis ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957999

ABSTRACT

Goats are often asymptomatic carriers of Campylobacter, including the foodborne pathogen Campylobacter jejuni. Infections can have significant and economically detrimental health outcomes in both humans and animals. The primary objective of this study was to estimate the prevalence of Campylobacter in U.S. goat herds. Campylobacter species were isolated from 106 of 3,959 individual animals and from 42 of 277 goat operations that participated in fecal sample collection as part of the National Animal Health Monitoring System Goat 2019 study. Weighted animal-level prevalence was 2.3% (SE = 0.5%) and operation prevalence was 13.0% (SE = 3.2%). Animal-level prevalence ranged widely from 0 to 70.0%, however, 52.4% of positive operations (22/42) had only a single isolate. C. jejuni was the most frequently isolated species (68.9%; 73/106), followed by C. coli (29.3%, 31/106). A total of 46.2% (36/78) of viable isolates were pan-susceptible to 8 antimicrobials. Resistance to tetracycline (TET) was observed in 44.9% (35/78) of isolates, while 12.8% (10/78) were resistant to ciprofloxacin (CIP) and nalidixic acid (NAL). Among all isolates, a single resistance profile CIP-NAL-TET was observed in 3.8% (3/78) of isolates. A total of 35 unique sequence types (STs) were identified, 11 of which are potentially new. Multiple C. jejuni STs were observed in 48.1% (13/27) of positive operations. Goats with access to surface water, operations reporting antibiotics in the feed or water (excluding ionophores and coccidiostats), and operations reporting abortions and without postabortion management tasks had significantly greater odds of being Campylobacter positive. This snapshot of the U.S. goat population enriches the limited pool of knowledge on Campylobacter species presence in U.S. goats.

8.
Emerg Infect Dis ; 30(8): 1692-1696, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043456

ABSTRACT

Before the COVID-19 pandemic, Mycoplasma pneumoniae infections emerged during spring to summer yearly in Taiwan, but infections were few during the pandemic. M. pneumoniae macrolide resistance soared to 85.7% in 2020 but declined to 0% during 2022-2023. Continued molecular surveillance is necessary to monitor trends in macrolide-resistant M. pneumoniae.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Drug Resistance, Bacterial , Macrolides , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , SARS-CoV-2 , Humans , Taiwan/epidemiology , Macrolides/pharmacology , Macrolides/therapeutic use , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , COVID-19/epidemiology , Child , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Child, Preschool , Pandemics , Male , Female , Infant , Adolescent , Microbial Sensitivity Tests
9.
Foodborne Pathog Dis ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045774

ABSTRACT

Carbapenem-resistant Escherichia coli (CREC) is a global threat to public health; therefore, alternative treatment options are urgently needed. Bacteriophages have emerged as promising candidates for combating CREC infections. This study aimed to investigate the genetic basis of phage sensitivity in CREC by evaluating carbapenem resistance among multidrug-resistant (MDR) E. coli isolated in Daegu, South Korea and analyzing their sequence types (STs) with phage susceptibility spectra. Among the 60 MDR E. coli isolates, 80.4% were identified as CREC, with 77.0% demonstrating resistance to imipenem and 66.6% to meropenem. Moreover, 70 lytic E. coli bacteriophages were isolated from hospital sewage water and evaluated against those 60 E. coli isolates. The phages exhibited lytic activity of 33%-60%, with average titers ranging from 5.6 × 1012 to 2.4 × 1013 PFU/mL (Plaque-Forming Unit). Furthermore, multilocus sequence typing (MLST) analysis of the bacterial isolates revealed 14 distinct STs, mostly belonging to ST131, ST410, and ST648. Notably, the phage susceptibility spectra of ST73, ST13003, ST648, ST2311, ST167, ST405, ST607, ST7962, and ST131 were significantly different. Thus, the isolated phages can effectively lyse CREC isolates, particularly those with clinically dominant STs. Conversely, ST410 exhibited a 14.2%-87.14% susceptibility spectrum, whereas ST1139, ST1487, ST10, and ST206 did not lyse, suggesting the presence of more resistant STs. Future studies are warranted to identify the reasons behind this resistance and address it. Ultimately, this study will aid in developing focused treatments to address these pressing global health issues.

10.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891969

ABSTRACT

The increasing problem of antimicrobial resistance in N. gonorrhoeae necessitates the development of molecular typing schemes that are suitable for rapid and mass screening. The objective of this study was to design and validate a mini-MLST scheme for N. gonorrhoeae based on global pathogen population data. Using sequences of seven housekeeping genes of 21,402 isolates with known MLSTs from the PubMLST database, we identified eighteen informative polymorphisms and obtained mini-MLST nucleotide profiles to predict MLSTs of isolates. We proposed a new MLST grouping system for N. gonorrhoeae based on mini-MLST profiles. Phylogenetic analysis revealed that MLST genogroups are a stable characteristic of the N. gonorrhoeae global population. The proposed grouping system has been shown to bring together isolates with similar antimicrobial susceptibility, as demonstrated by the characteristics of major genogroups. Established MLST prediction algorithms based on nucleotide profiles are now publicly available. The mini-MLST scheme was evaluated using a MLST detection/prediction method based on the original hydrogel DNA microarray. The results confirmed a high predictive ability up to the MLST genogroup. The proposed holistic approach to gonococcal population analysis can be used for the continuous surveillance of known and emerging resistant N. gonorrhoeae isolates.


Subject(s)
Gonorrhea , Multilocus Sequence Typing , Neisseria gonorrhoeae , Phylogeny , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/classification , Multilocus Sequence Typing/methods , Gonorrhea/microbiology , Gonorrhea/diagnosis , Humans , Bacterial Typing Techniques/methods
11.
Iran J Microbiol ; 16(2): 176-186, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38854980

ABSTRACT

Background and Objectives: Multi-drug-resistant pathogens pose a significant threat as they can rapidly spread, leading to severe healthcare-associated invasive infections. In developing countries, diarrheagenic Escherichia coli (DEC) is a major bacterial pathogen responsible for causing diarrhea. However, the outbreak of resistant strains has made the treatment of DEC infections much more challenging. This study aimed to investigate the relationship between antibiotic resistance genes and other virulence categories in E. coli strains that cause diarrhea, particularly DEC. Materials and Methods: The phylogenetic grouping was defined using PCR and multi-locus sequence type (MLST) methods. Results: Among the isolates analyzed, 14 were identified as resistant and were classified into eight distinct sequence types: ST3, ST53, ST77, ST483, ST512, ST636, ST833, and ST774, indicating genetic diversity among the resistant strains. Certain sequence types, notably ST512 and ST636, were found to be associated with multiple antibiotic resistance in DEC. Regarding antibiotic susceptibility, strains showed the highest resistance to amoxicillin, suggesting that this antibiotic may not be effective in treating DEC infections. On the other hand, the isolates demonstrated susceptibility to amikacin and chloramphenicol, implying that these antibiotics could be more suitable treatment options for DEC infections. Conclusion: The findings underscore the importance of promptly identifying antibiotic resistance patterns and their correlation with specific pathogenic virulence categories, as this knowledge can aid in selecting the most appropriate antibiotics for treating DEC infections. Considering the antibiotic resistance profiles and associated resistance genes is crucial in managing and containing diarrheal outbreaks and in selecting effective antibiotic therapies for DEC infections.

12.
J Infect Chemother ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825003

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is a typical cystitis-causing organism that can migrate from the vagina to the bladder and cause recurrent cystitis (RC). Few reports have compared the characteristics of urinary and vaginal UPEC in patients with RC. We carried out molecular biological analyses of Escherichia coli (E. coli) strains and their antimicrobial susceptibility to assess the association between urinary and vaginally UPEC. We included E. coli isolated from urinary and vaginal samples at the onset of cystitis in postmenopausal women with RC between 2014 and 2019 in our hospital. Pulsed-field gel electrophoresis (PFGE) was performed using a restriction enzyme (Xba I). These sequences were compared with 17 antimicrobial susceptibilities determined by a micro-liquid dilution method. Multilocus sequence typing (MLST) and classification of extended-spectrum ß-lactamase (ESBL) genotypes by multiplex polymerase chain reaction (PCR) were performed on ESBL-producing E. coli. We analyzed 14 specimens (each seven urine and vaginal) from seven patients in total. On PFGE, the similarity of urinary and vaginal E. coli per patient ranged from 89.5 to 100 %, including four patients with 100 % matches. MLST demonstrated that 29 % (4/14 specimens) were strain sequence type 131. Two specimens contained ESBL-producing strains and identified the CTX-M-27 genotype for each specimen. For each patient, antimicrobial susceptibilities between urinary and vaginal E. coli were mostly identical. Thus, urinary- and vaginally-derived E. coli were identical in postmenopausal women with RC. Management targeting both urinary and vaginal UPEC is essential for RC, indicating the importance of a vagina-targeted approach.

13.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 998-1003, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862459

ABSTRACT

OBJECTIVE: To investigate the characteristics of Clostridioides difficile infection (CDI) in patients hospitalized for diarrhea and analyze the risk factors for CDI. METHODS: Stool samples were collected from 306 patients with diarrhea hospitalized in 3 university hospitals in a mid-south city of China from October to December, 2020. C. difficile was isolated by anaerobic culture, and qRT-PCR was used to detect the expressions of toxin A (tcdA) and B (tcdB) genes and the binary toxin genes (cdtA and cdtB). Multilocus sequence typing (MLST) was performed for the isolated strains without contaminating strains as confirmed by 16S rDNA sequencing. Etest strips were used to determine the drug resistance profiles of the isolated strains, and the risk factors of CDI in the patients were analyzed. RESULTS: CDI was detected in 25 (8.17%) out of the 306 patients. All the patients tested positive for tcdA and tcdB but negative for the binary toxin genes. Seven noncontaminated C. difficile strains with 5 ST types were isolated, including 3 ST54 strains and one strain of ST129, ST98, ST53, and ST631 types each, all belonging to clade 1 and sensitive to metronidazole and vancomycin. Hospitalization within the past 6 months (OR= 3.675; 95% CI: 1.405-9.612), use of PPIs (OR=7.107; 95% CI: 2.575-19.613), antibiotics for ≥1 week (OR=7.306; 95% CI: 2.274-23.472), non-steroidal anti-inflammatory drugs (OR=4.754; 95% CI: 1.504-15.031) in the past month, and gastrointestinal disorders (OR=5.050; 95% CI: 1.826-13.968) were all risk factors for CDI in the patients hospitalized for diarrhea. CONCLUSION: The CDI rate remains low in the hospitalized patients with diarrhea in the investigated hospitals, but early precaution measures are recommended when exposure to the risk factors is reported to reduce the risk of CDI in the hospitalized patients.


Subject(s)
Clostridioides difficile , Clostridium Infections , Diarrhea , Hospitals, University , Multilocus Sequence Typing , Humans , Diarrhea/microbiology , Diarrhea/epidemiology , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Risk Factors , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , China/epidemiology , Bacterial Toxins/genetics , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Hospitalization , Bacterial Proteins/genetics , Enterotoxins/genetics , Male , Female , Middle Aged
14.
Animals (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929427

ABSTRACT

Blastocystis spp. and Giardia duodenalis are two prevalent zoonotic intestinal parasites that can cause severe diarrhea and intestinal diseases in humans and many animals. Black goat (Capra hircus) farming is increasingly important in China due to the remarkable adaptability, high reproductive performance, rapid growth rate, and significant economic value of black goats. A number of studies have indicated that black goats are the potential reservoir of multiple zoonotic protozoans in China; however, the prevalence and zoonotic status of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province is still unknown. Thus, a total of 1200 fecal samples of black goats were collected from several representative regions at different altitudes in Shanxi Province and were examined for the presence and genotypes of G. duodenallis and Blastocystis spp. by amplifying the beta-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi) loci of G. duodenalis and SSU rRNA of Blastocystis spp. using PCR and sequence analysis methods, respectively. The overall prevalence of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province were 7.5% and 3.5%, respectively. Two assemblages (B and E) of G. duodenalis and four subtypes (ST5, ST10, ST14, and ST30) of Blastocystis spp. were identified, with assemblage E and ST10 as the prevalent genotype and subtype in black goats, respectively. One novel multilocus genotype (MLG) was identified in MLG-E and was designated as MLG-E12. For both G. duodenalis and Blastocystis spp., the prevalence was significantly related to the region and age groups (p < 0.05). This is the first report on the prevalence of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province. These results not only provide baseline data for the prevention and control of both parasites in black goats in Shanxi Province, but also enhance our understanding of the genetic composition and zoonotic potential of these two parasites.

15.
Infect Drug Resist ; 17: 2555-2566, 2024.
Article in English | MEDLINE | ID: mdl-38933775

ABSTRACT

Objective: To analyze the antibiotic resistance profile, virulence genes, and molecular typing of Staphylococcus aureus (S. aureus) strains isolated in skin and soft tissue infections at the First Affiliated Hospital, Gannan Medical University, to better understand the molecular epidemiological characteristics of S. aureus. Methods: In 2023, 65 S. aureus strains were isolated from patients with skin and soft tissue infections. Strain identification and susceptibility tests were performed using VITEK 2 and gram-positive bacteria identification cards. DNA was extracted using a DNA extraction kit, and all genes were amplified using polymerase chain reaction. Multilocus sequence typing (MLST) was used for molecular typing. Results: In this study, of the 65 S. aureus strains were tested for their susceptibility to 16 antibiotics, the highest resistance rate to penicillin G was 95.4%. None of the staphylococcal isolates showed resistance to ceftaroline, daptomycin, linezolid, tigecycline, teicoplanin, or vancomycin. fnbA was the most prevalent virulence gene (100%) in S. aureus strains isolated in skin and soft tissue infections, followed by arcA (98.5%). Statistical analyses showed that the resistance rates of methicillin-resistant S. aureus isolates to various antibiotics were significantly higher than those of methicillin-susceptible S. aureus isolates. Fifty sequence types (STs), including 44 new ones, were identified by MLST. Conclusion: In this study, the high resistance rate to penicillin G and the high carrying rate of virulence gene fnbA and arcA of S.aureus were determine, and 44 new STs were identified, which may be associated with the geographical location of southern Jiangxi and local trends in antibiotic use. The study of the clonal lineage and evolutionary relationships of S. aureus in these regions may help in understanding the molecular epidemiology and provide the experimental basis for pathogenic bacteria prevention and treatment.

16.
J Glob Antimicrob Resist ; 38: 27-34, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821444

ABSTRACT

OBJECTIVES: Campylobacter is a significant zoonotic pathogen primarily transmitted through poultry. Our study aimed to assess antimicrobial resistance and genetic relationships among Campylobacter isolates from retail chicken meat and humans in Taiwan. METHODS: Campylobacter isolates were analysed using whole-genome sequencing to investigate their antimicrobial resistance, genetic determinants of resistance, and genotypes. RESULTS: Campylobacter coli and Campylobacter jejuni accounted for 44.9% and 55.1% of chicken meat isolates, and 11.4% and 88.6% of human isolates, respectively. C. coli displayed significantly higher resistance levels. Furthermore, isolates from chicken meat exhibited higher levels of resistance to most tested antimicrobials compared to isolates from humans. Multidrug resistance was observed in 96.3% of C. coli and 43.3% of C. jejuni isolates from chicken meat and 80.6% of C. coli and 15.8% of C. jejuni isolates from humans. Macrolide resistance was observed in 85.5% of C. coli isolates, primarily attributed to the erm(B) rather than the A2075G mutation in 23S rRNA. Among the 511 genomes, we identified 133 conventional MLST sequence types, indicating significant diversity among Campylobacter strains. Notably, hierarchical Core-genome multilocus sequence typing clustering, including HC0, HC5, and HC10, revealed a significant proportion of closely related isolates from chicken meat and humans. CONCLUSIONS: Our research highlights significant associations in antimicrobial resistance and genetic relatedness between Campylobacter isolates from chicken meat and humans in Taiwan. The genetic analysis data suggest that campylobacteriosis outbreaks may occur more frequently in Taiwan than previously assumed. Our study emphasizes the need for strategies to control multidrug-resistant strains and enhance outbreak prevention.

17.
Arch Oral Biol ; 164: 106007, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795522

ABSTRACT

OBJECTIVE: This study investigated C. albicans strain diversity and maintenance in the oral cavity of HIV positive women over a 6 month period. STUDY DESIGN: C. albicans strains were isolated from 17 HIV positive women at Charlotte Maxeke Academic Hospital, Johannesburg at 3 intervals over a 6 month period. Strains were genotyped using ABC and Multilocus Sequence Typing (MLST) techniques. In the MLST technique, for each strain, a Diploid Sequence Type (DST) number was obtained. Using cluster analysis, an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram and a matrix of strain similarities were generated. Strains were also compared to the previous South African isolates documented in the MLST database. RESULTS: Ninety four percent of women carried the same ABC genotype for 6 months. MLST technique, showed that ten women (58.8%) carried the same DST at 2 visits, while seven (41.2%) carried different DST at all visits. Further analysis showed that 64.7% of women were recolonised with different strains and 35.3% carried the same strains of C. albicans with heterozygosity. A total of 40 diploid sequence types were identified of which 27 DSTs were unique to this study group that were added to the MLST database. Most of the strains were closely related to previously isolated strains from South Africa. CONCLUSION: Recolonization of the oral cavity with different strains and microevolution of the original strains of C. albicans can occur, which can be a potential problem for HIV patients, in whom highly virulent and drug resistant strains can emerge.


Subject(s)
Candida albicans , Candidiasis, Oral , Genotype , Multilocus Sequence Typing , Humans , Female , South Africa , Candida albicans/genetics , Candida albicans/isolation & purification , Adult , Candidiasis, Oral/microbiology , HIV Infections/microbiology , Mouth/microbiology , Genetic Variation , Mycological Typing Techniques/methods , Middle Aged
18.
J Food Prot ; 87(7): 100307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797247

ABSTRACT

Listeria monocytogenes are considered to be the major foodborne pathogen worldwide. To understand the prevalence and potential risk of L. monocytogenes in retail foods, a total of 1243 retail foods in 12 food categories were sampled and screened for L. monocytogenes from 2020 to 2022 in Huzhou, China. A total of 46 out of 1234 samples were confirmed to be L. monocytogenes positive with a total rate of 3.7%. The contamination rate of seasoned raw meat (15.2%) was the highest, followed by raw poultry meat and raw livestock meat (9.9%) and salmon sashimi (9.5%). The L. monocytogenes isolates belonged to four serotypes, 1/2a,1/2b, 1/2c, and 4b, with the most prevalent serotype being 1/2a (47.9%). All isolates were grouped into 15 sequence types (STs) belonging to 14 clonal complexes (CCs) via multilocus sequence typing (MLST). The most prevalent ST was ST9/CC9 (23.9%), followed by ST3/CC3 (19.6%) and ST121/CC121 (17.4%). Notably, 11 STs were detected from ready-to-eat (RTE) foods, some of them have been verified to be strongly associated with clinical origin listeriosis cases, such as ST3, ST2, ST5, ST8, and ST87. Listeria pathogenicity islands 1 (LIPI-1) and LIPI-2 were detected in approximately all L. monocytogenes isolates, whereas the distribution of both LIPI-3 genes and LIPI-4 genes exhibited association with specific ST, with LIPI-3 in ST3 and ST288, and LIPI-4 in ST87. The strains carrying LIPI-3 and LIPI-4 virulence genes in this study were all isolated from RTE foods. Antimicrobial susceptibility tests showed that >90% of isolates were susceptible to PEN, AMP, ERY, CIP, SXT, VAN, CHL, and GEN, indicating the antibiotic treatment might be still efficient for most of the L. monocytogenes strains. However, for the three clinical first-line antibiotics (PEN, AMP, and GEN), we also observed three and four strains showing MIC values greater than the susceptibility standards for PEN and AMP, respectively, and one strain showing resistance to GEN.


Subject(s)
Anti-Bacterial Agents , Food Contamination , Food Microbiology , Genotype , Listeria monocytogenes , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , China , Prevalence , Anti-Bacterial Agents/pharmacology , Food Contamination/analysis , Multilocus Sequence Typing , Microbial Sensitivity Tests , Humans , Animals , Drug Resistance, Bacterial
19.
Animals (Basel) ; 14(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791650

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is recognized as a zoonotic pathogen with an increasing threat to livestock and poultry. However, research on K. pneumoniae of animal origin remains limited. To address the gap, a comprehensive investigation was carried out by collecting a total of 311 samples from the farms of four animal species (dairy cow, chicken, sheep, and pig) in selected areas of Xinjiang, China. Isolates were identified by khe gene amplification and 16S rRNA gene sequencing. Genotyping of K. pneumonia isolates was performed using wzi typing and multilocus sequence typing (MLST). PCR was employed to identify virulence and resistance genes. An antibiotic susceptibility test was conducted using the Kirby-Bauer method. The findings revealed an isolation of 62 K. pneumoniae strains, with an average isolation rate of 19.94%, with the highest proportion originating from cattle sources (33.33%). Over 85.00% of these isolates harbored six virulence genes (wabG, uge, fimH, markD, entB, and ureA); while more than 75.00% of isolates possessed four resistance genes (blaTEM, blaSHV, oqxA, and gyrA). All isolates exhibited complete resistance to ampicillin and demonstrated substantial resistance to sulfisoxazole, amoxicillin/clavulanic acid, and enrofloxacin, with an antibiotic resistance rate of more than 50%. Furthermore, 48.39% (30/62) of isolates were classified as multidrug-resistant (MDR) strains, with a significantly higher isolation rate observed in the swine farms (66.67%) compared to other farms. Genetic characterization revealed the classification of the 62 isolates into 30 distinct wzi allele types or 35 different sequence types (STs). Notably, we identified K. pneumoniae strains of dairy and swine origin belonging to the same ST42 and wzi33-KL64 types, as well as strains of dairy and chicken origin belonging to the same wzi31-KL31-K31 type. These findings emphasize the widespread occurrence of drug-resistant K. pneumoniae across diverse animal sources in Xinjiang, underscoring the high prevalence of multidrug resistance. Additionally, our results suggest the potential for animal-to-animal transmission of K. pneumoniae and there was a correlation between virulence genes and antibiotic resistance genes. Moreover, the current study provides valuable data on the prevalence, antibiotic resistance, and genetic diversity of K. pneumoniae originating from diverse animal sources in Xinjiang, China.

20.
Microb Pathog ; 192: 106720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815778

ABSTRACT

Pseudomonas aeruginosa is a significant pathogen responsible for severe multisite infections with high morbidity and mortality rates. This study analyzed carbapenem-resistant Pseudomonas aeruginosa (CRPA) at a tertiary hospital in Shandong, China, using whole-genome sequencing (WGS). The objective was to explore the mechanisms and molecular characteristics of carbapenem resistance. A retrospective analysis of 91 isolates from January 2022 to March 2023 was performed, which included strain identification and antimicrobial susceptibility testing. WGS was utilized to determine the genome sequences of these CRPA strains, and the species were precisely identified using average nucleotide identification (ANI), with further analysis on multilocus sequence typing and strain relatedness. Some strains were found to carry the ampD and oprD genes, while only a few harbored carbapenemase genes or related genes. Notably, all strains possessed the mexA, mexE, and mexX genes. The major lineage identified was ST244, followed by ST235. The study revealed a diverse array of carbapenem resistance mechanisms among hospital isolates, differing from previous studies in mainland China. It highlighted that carbapenem resistance is not due to a single mechanism but rather a combination of enzyme-mediated resistance, AmpC overexpression, OprD dysfunction, and efflux pump overexpression. This research provides valuable insights into the evolutionary mechanisms and molecular features of CRPA resistance in this region, aiding in the national prevention and control of CRPA, and offering references for targeting and developing new drugs.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Microbial Sensitivity Tests , Multilocus Sequence Typing , Pseudomonas Infections , Pseudomonas aeruginosa , Whole Genome Sequencing , beta-Lactamases , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/isolation & purification , China , Carbapenems/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Pseudomonas Infections/microbiology , Retrospective Studies , beta-Lactamases/genetics , Porins/genetics , Genome, Bacterial/genetics , Membrane Transport Proteins/genetics , Tertiary Care Centers , Bacterial Outer Membrane Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL