Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000428

ABSTRACT

Muscle spindles have unique anatomical characteristics that can be directly affected by the surrounding tissues under physiological and pathological conditions. Understanding their spatial distribution and density in different muscles is imperative to unravel the complexity of motor function. In the present study, the distribution and number/density of muscle spindles in human and animal muscles were reviewed. We identified 56 articles focusing on muscle spindle distribution; 13 articles focused on human muscles and 43 focused on animal muscles. The results demonstrate that spindles are located at the nerve entry points and along distributed vessels and they relate to the intramuscular connective tissue. Muscles' deep layers and middle segments are the main topographic distribution areas. Eleven articles on humans and thirty-three articles on animals (totaling forty-four articles) focusing on muscle spindle quantity and density were identified. Hand and head muscles, such as the pronator teres/medial pterygoid muscle/masseter/flexor digitorum, were most commonly studied in the human studies. For animals, whole-body musculature was studied. The present study summarized the spindle quantity in 77 human and 189 animal muscles. We identified well-studied muscles and any as-yet unfound data. The current data fail to clarify the relationship between quantity/density and muscle characteristics. The intricate distribution of the muscle spindles and their density and quantity throughout the body present some unique patterns or correlations, according to the current data. However, it remains unclear whether muscles with fine motor control have more muscle spindles since the study standards are inconsistent and data on numerous muscles are missing. This study provides a comprehensive and exhaustive approach for clinicians and researchers to determine muscle spindle status.


Subject(s)
Muscle Spindles , Muscle, Skeletal , Muscle Spindles/physiology , Muscle Spindles/metabolism , Humans , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology
2.
Res Sq ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38978589

ABSTRACT

Background: Recent findings suggest increased excitatory heteronymous feedback from quadriceps onto soleus may contribute to abnormal coactivation of knee and ankle extensors after stroke. However, there is lack of consensus on whether persons post-stroke exhibit altered heteronymous reflexes and, when present, the origin of increased excitation (i.e. increased excitation alone and/or decreased inhibition). This study examined heteronymous excitation and inhibition from quadriceps onto soleus in paretic, nonparetic, and age-matched control limbs to determine whether increased excitation was due to excitatory and/or reduced inhibitory reflex circuits. A secondary purpose was to examine whether heteronymous reflex magnitudes were related to clinical measures of lower limb recovery, walking-speed, and dynamic balance. Methods: Heteronymous excitation and inhibition from quadriceps onto soleus were examined in fourteen persons post-stroke and fourteen age-matched unimpaired participants. Heteronymous feedback was elicited by femoral nerve and quadriceps muscle stimulation in separate trials while participants tonically activated soleus at 20% max. Fugl-Myer assessment of lower extremity, 10-meter walk test, and Mini-BESTest were assessed in stroke survivors. Results: Heteronymous excitation and inhibition onsets, durations, and magnitudes were not different between paretic, nonparetic or age-matched unimpaired limbs. Quadriceps stimulation elicited excitation that was half the magnitude of femoral nerve stimulation. Femoral nerve elicited paretic limb heteronymous excitation was positively correlated with walking speed but did not reach significance because only a subset of paretic limbs exhibited excitation (n = 8, Spearman r = 0.69, P = 0.058). Conclusions: Heteronymous feedback from quadriceps onto soleus assessed in a seated posture was not impaired in persons post-stroke. Despite being unable to identify whether reduced inhibition contributes to abnormal excitation reported in prior studies, our results indicate quadriceps stimulation may allow a better estimate of heteronymous inhibition in those that exhibit exaggerated excitation. Heteronymous excitation magnitude in the paretic limb was positively correlated with self-selected walking speed suggesting paretic limb excitation at the higher end of a normal range may facilitate walking ability after stroke. Future studies are needed to identify whether heteronymous feedback from Q onto SOL is altered after stroke in upright postures and during motor tasks as a necessary next step to identify mechanisms underlying motor impairment.

3.
Front Neuroanat ; 18: 1340468, 2024.
Article in English | MEDLINE | ID: mdl-38840810

ABSTRACT

Purpose: The overall distribution pattern of intramuscular nerves and the regions with the highest spindle abundance in deep cervical muscles have not been revealed. This study aimed to reveal neuromuscular compartmentalization and localize the body surface position and depth of the center of the region of highest muscle spindle abundance (CRHMSA) in the deep cervical muscles. Methods: This study included 36 adult cadavers (57.7 ± 11.5 years). The curved line joining the lowest point of the jugular notch and chin tip was designated as the longitudinal reference line (line L), and the curved line connecting the lowest point of the jugular notch and acromion was designated as the horizontal reference line (line H). Modified Sihler's staining, hematoxylin-eosin staining and computed tomography scanning were employed to determine the projection points (P) of the CRHMSAs on the anterior surfaces of the neck. The positions (PH and PL) of point P projected onto the H and L lines, and the depth of each CRHMSA, and puncture angle were determined using the Syngo system. Results: The scalenus posterior and longus capitis muscles were divided into two neuromuscular compartments, while the scalenus anterior and longus colli muscles were divided into three neuromuscular compartments. The scalenus medius muscle can be divided into five neuromuscular compartments. The PH of the CRHMSA of the scalenus muscles (anterior, medius, and posterior), and longus capitis and longus colli muscles, were located at 36.27, 39.18, 47.31, 35.67, and 42.71% of the H line, respectively. The PL positions were at 26.53, 32.65, 32.73, 68.32, and 51.15% of the L line, respectively. The depths of the CRHMSAs were 2.47 cm, 2.96 cm, 2.99 cm, 3.93 cm, and 3.17 cm, respectively, and the puncture angles were 87.13°, 85.92°, 88.21°, 58.08°, and 77.75°, respectively. Conclusion: Present research suggests that the deep cervical muscles can be divided into neuromuscular compartments; we recommend the locations of these CRHMSA as the optimal target for administering botulinum toxin A injections to treat deep cervical muscle dystonia.

4.
J Physiol ; 602(15): 3609-3612, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857461
5.
Ann Anat ; 255: 152283, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763330

ABSTRACT

Voice production has been an area of interest in science since ancient times, and although advancing research has improved our understanding of the anatomy and function of the larynx, there is still little general consensus on these two topics. This review aims to outline the main developments in this field and highlight the areas where further research is needed. The most important hypotheses are presented and discussed highlighting the four main lines of research in the anatomy of the human larynx and their most important findings: (1) the arrangement of the muscle fibers of the thyroarytenoid muscle is not parallel to the vocal folds in the internal part (vocalis muscle), leading to altered properties during contraction; (2) the histological structure of the human vocal cords differs from other striated muscles; (3) there is a specialized type of heavy myosin chains in the larynx; and (4) the neuromuscular system of the larynx has specific structures that form the basis of an intrinsic laryngeal nervous system. These approaches are discussed in the context of current physiological models of vocal fold vibration, and new avenues of investigation are proposed.


Subject(s)
Laryngeal Muscles , Vocal Cords , Voice , Humans , Laryngeal Muscles/anatomy & histology , Laryngeal Muscles/physiology , Laryngeal Muscles/innervation , Voice/physiology , Vocal Cords/anatomy & histology , Vocal Cords/physiology , Larynx/anatomy & histology , Larynx/physiology , Animals
6.
JFMS Open Rep ; 10(1): 20551169231224534, 2024.
Article in English | MEDLINE | ID: mdl-38357272

ABSTRACT

Case series summary: A 1-year-old castrated male domestic shorthair cat was suspected with myasthenia gravis (MG) based on neurological examination, complete blood count (CBC), serum biochemistry, radiography and electrophysiological examination. In addition, a 9-year-old spayed female domestic shorthair cat was diagnosed with MG based on neurological examination, CBC, serum biochemistry, radiography, ultrasonography and increased acetylcholine receptor antibody titre. Positioning head tilt (PHT) was observed at the time of diagnosis in both cats. Relevance and novel information: Although the pathophysiology of PHT in cats is not fully understood, the mechanism for PHT in cats with MG may be similar to that of cats with hypokalaemic myopathy, supporting our hypothesis that muscle spindle dysfunction causes PHT.

7.
Exp Physiol ; 109(1): 6-16, 2024 01.
Article in English | MEDLINE | ID: mdl-36628601

ABSTRACT

This paper is in two parts: 'There', which is a review of some of the major advances in the study of spindle structure and function during the past 50 years, serving as an introduction to the symposium entitled 'Mechanotransduction, Muscle Spindles and Proprioception' held in Munich in July 2022; and 'And Back Again', presenting new quantitative morphological results on the equatorial nuclei of intrafusal muscle fibres and of the primary sensory ending in relationship to passive stretch of the spindle.


Subject(s)
Mechanotransduction, Cellular , Muscle Fibers, Skeletal , Muscle Spindles/physiology
8.
Exp Physiol ; 109(1): 135-147, 2024 01.
Article in English | MEDLINE | ID: mdl-36951012

ABSTRACT

By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.


Subject(s)
Acid Sensing Ion Channels , Proprioception , Animals , Mice , Acid Sensing Ion Channels/metabolism , Muscle Spindles/physiology , Proprioception/physiology , Sensory Receptor Cells/metabolism
9.
Exp Physiol ; 109(1): 55-65, 2024 01.
Article in English | MEDLINE | ID: mdl-36966478

ABSTRACT

Muscle spindles encode mechanosensory information by mechanisms that remain only partially understood. Their complexity is expressed in mounting evidence of various molecular mechanisms that play essential roles in muscle mechanics, mechanotransduction and intrinsic modulation of muscle spindle firing behaviour. Biophysical modelling provides a tractable approach to achieve more comprehensive mechanistic understanding of such complex systems that would be difficult/impossible by more traditional, reductionist means. Our objective here was to construct the first integrative biophysical model of muscle spindle firing. We leveraged current knowledge of muscle spindle neuroanatomy and in vivo electrophysiology to develop and validate a biophysical model that reproduces key in vivo muscle spindle encoding characteristics. Crucially, to our knowledge, this is the first computational model of mammalian muscle spindle that integrates the asymmetric distribution of known voltage-gated ion channels (VGCs) with neuronal architecture to generate realistic firing profiles, both of which seem likely to be of great biophysical importance. Results predict that particular features of neuronal architecture regulate specific characteristics of Ia encoding. Computational simulations also predict that the asymmetric distribution and ratios of VGCs is a complementary and, in some instances, orthogonal means to regulate Ia encoding. These results generate testable hypotheses and highlight the integral role of peripheral neuronal structure and ion channel composition and distribution in somatosensory signalling.


Subject(s)
Mechanotransduction, Cellular , Muscle Spindles , Animals , Muscle Spindles/physiology , Neurons , Ion Channels , Electrophysiological Phenomena , Mammals
10.
Trends Genet ; 40(1): 20-23, 2024 01.
Article in English | MEDLINE | ID: mdl-37926636

ABSTRACT

Proprioception - the sense of body position in space - is intimately linked to motor control. Here, we briefly review the current knowledge of the proprioceptive system and how advances in the genetic characterisation of proprioceptive sensory neurons in mice promise to dissect its role in health and disease.


Subject(s)
Proprioception , Sensory Receptor Cells , Mice , Animals , Proprioception/physiology , Sensory Receptor Cells/physiology
11.
J Orthop Res ; 42(4): 788-797, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37975273

ABSTRACT

Individuals who have undergone anterior cruciate ligament reconstruction (ACLR) are at greater risk of developing knee osteoarthritis (OA). This elevated risk of knee OA is associated with high tibiofemoral (TF) compressive force, due to a combination of low knee flexion angles and increased co-contraction of the hamstrings and quadriceps during limb loading. Prolonged vibration of the hamstrings fatigues the intrafusal muscle fibers, which reduces autonomic reflexive excitation of the hamstrings and alleviates reciprocal inhibition to the quadriceps. The aim of this study was to examine the effect of prolonged hamstrings vibration on TF compressive force in individuals who have undergone ACL reconstruction. Fourteen participants with unilateral ACLR and 14 participants without knee injury performed a single-leg drop-land task before and after prolonged (20 min) vibration of the hamstrings. Peak TF compressive force, knee flexion angle, and hamstrings/quadriceps co-contraction were calculated during the deceleration phase of the drop-land task before and after vibration. The ACLR group experienced an 18% decrease in TF compressive force, a 32% increase in knee flexion angle, and a 38% decrease in hamstrings/quadriceps co-contraction after hamstrings vibration. There was no difference in any of the parameters in the noninjured group after vibration. These data suggest that acute prolonged hamstrings vibration has the potential to mitigate TF compressive force, which may protect the knee joint in the long term. Clinical significance: The results of this research are expected to lead to improved clinical care for ACLR patients because it holds promise for mitigating altered joint mechanics and perhaps slowing down the onset of posttraumatic knee osteoarthritis.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/surgery , Vibration , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena , Knee Joint/physiology , Quadriceps Muscle
12.
Exp Brain Res ; 242(1): 59-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37955706

ABSTRACT

Tendon vibration is used extensively to assess the role of peripheral mechanoreceptors in motor control, specifically, the muscle spindles. Periodic tendon vibration is known to activate muscle spindles and induce a kinesthetic illusion that the vibrated muscle is longer than it actually is. Noisy tendon vibration has been used to assess the frequency characteristics of proprioceptive reflex pathways during standing; however, it is unknown if it induces the same kinesthetic illusions as periodic vibration. The purpose of the current study was to assess the effects of both periodic and noisy tendon vibration in a kinesthetic targeting task. Participants (N = 15) made wrist extension movements to a series of visual targets without vision of the limb, while their wrist flexors were either vibrated with periodic vibration (20, 40, 60, 80, and 100 Hz), or with noisy vibration which consisted of filtered white noise with power between ~ 20 and 100 Hz. Overall, our results indicate that both periodic and noisy vibration can induce robust targeting errors during a wrist targeting task. Specifically, the vibration resulted in an undershooting error when moving to the target. The findings from this study have important implications for the use of noisy tendon vibration to assess proprioceptive reflex pathways and should be considered when designing future studies using noisy vibration.


Subject(s)
Illusions , Vibration , Humans , Tendons/physiology , Kinesthesis/physiology , Proprioception/physiology , Muscle Spindles/physiology , Movement/physiology , Illusions/physiology , Muscle, Skeletal/physiology
13.
Exp Physiol ; 109(1): 112-124, 2024 01.
Article in English | MEDLINE | ID: mdl-37428622

ABSTRACT

Computational models can be critical to linking complex properties of muscle spindle organs to the sensory information that they encode during behaviours such as postural sway and locomotion where few muscle spindle recordings exist. Here, we augment a biophysical muscle spindle model to predict the muscle spindle sensory signal. Muscle spindles comprise several intrafusal muscle fibres with varied myosin expression and are innervated by sensory neurons that fire during muscle stretch. We demonstrate how cross-bridge dynamics from thick and thin filament interactions affect the sensory receptor potential at the spike initiating region. Equivalent to the Ia afferent's instantaneous firing rate, the receptor potential is modelled as a linear sum of the force and rate change of force (yank) of a dynamic bag1 fibre and the force of a static bag2/chain fibre. We show the importance of inter-filament interactions in (i) generating large changes in force at stretch onset that drive initial bursts and (ii) faster recovery of bag fibre force and receptor potential following a shortening. We show how myosin attachment and detachment rates qualitatively alter the receptor potential. Finally, we show the effect of faster recovery of receptor potential on cyclic stretch-shorten cycles. Specifically, the model predicts history-dependence in muscle spindle receptor potentials as a function of inter-stretch interval (ISI), pre-stretch amplitude and the amplitude of sinusoidal stretches. This model provides a computational platform for predicting muscle spindle response in behaviourally relevant stretches and can link myosin expression seen in healthy and diseased intrafusal muscle fibres to muscle spindle function.


Subject(s)
Muscle Fibers, Skeletal , Muscle Spindles , Muscle Spindles/physiology , Sensory Receptor Cells , Sarcomeres , Myosins/metabolism
14.
Exp Physiol ; 109(1): 45-54, 2024 01.
Article in English | MEDLINE | ID: mdl-37417654

ABSTRACT

Proprioceptors are non-nociceptive low-threshold mechanoreceptors. However, recent studies have shown that proprioceptors are acid-sensitive and express a variety of proton-sensing ion channels and receptors. Accordingly, although proprioceptors are commonly known as mechanosensing neurons that monitor muscle contraction status and body position, they may have a role in the development of pain associated with tissue acidosis. In clinical practice, proprioception training is beneficial for pain relief. Here we summarize the current evidence to sketch a different role of proprioceptors in 'non-nociceptive pain' with a focus on their acid-sensing properties.


Subject(s)
Musculoskeletal Pain , Humans , Acid Sensing Ion Channels/physiology , Sensory Receptor Cells/physiology , Mechanoreceptors , Proprioception/physiology
15.
Exp Physiol ; 109(1): 81-99, 2024 01.
Article in English | MEDLINE | ID: mdl-37656490

ABSTRACT

A metabotropic glutamate receptor coupled to phospholipase D (PLD-mGluR) was discovered in the hippocampus over three decades ago. Its pharmacology and direct linkage to PLD activation are well established and indicate it is a highly atypical glutamate receptor. A receptor with the same pharmacology is present in spindle primary sensory terminals where its blockade can totally abolish, and its activation can double, the normal stretch-evoked firing. We report here the first identification of this PLD-mGluR protein, by capitalizing on its expression in primary mechanosensory terminals, developing an enriched source, pharmacological profiling to identify an optimal ligand, and then functionalizing it as a molecular tool. Evidence from immunofluorescence, western and far-western blotting indicates PLD-mGluR is homomeric GluK2, since GluK2 is the only glutamate receptor protein/receptor subunit present in spindle mechanosensory terminals. Its expression was also found in the lanceolate palisade ending of hair follicle, also known to contain the PLD-mGluR. Finally, in a mouse model with ionotropic function ablated in the GluK2 subunit, spindle glutamatergic responses were still present, confirming it acts purely metabotropically. We conclude the PLD-mGluR is a homomeric GluK2 kainate receptor signalling purely metabotropically and it is common to other, perhaps all, primary mechanosensory endings.


Subject(s)
Phospholipase D , Receptors, Metabotropic Glutamate , Animals , Mice , Hippocampus/metabolism , Nerve Endings/metabolism , Phospholipase D/metabolism , Receptors, Glutamate/metabolism , Receptors, Metabotropic Glutamate/metabolism
16.
Exp Physiol ; 109(1): 27-34, 2024 01.
Article in English | MEDLINE | ID: mdl-37029664

ABSTRACT

Hereditary sensory and autonomic neuropathy type III (HSAN III), also known as familial dysautonomia or Riley-Day syndrome, results from an autosomal recessive genetic mutation that causes a selective loss of specific sensory neurones, leading to greatly elevated pain and temperature thresholds, poor proprioception, marked ataxia and disturbances in blood pressure control. Stretch reflexes are absent throughout the body, which can be explained by the absence of functional muscle spindle afferents - assessed by intraneural microelectrodes inserted into peripheral nerves in the upper and lower limbs. This also explains the greatly compromised proprioception at the knee joint, as assessed by passive joint-angle matching. Moreover, there is a tight correlation between loss of proprioceptive acuity at the knee and the severity of gait impairment. Surprisingly, proprioception is normal at the elbow, suggesting that participants are relying more on sensory cues from the overlying skin; microelectrode recordings have shown that myelinated tactile afferents in the upper and lower limbs appear to be normal. Nevertheless, the lack of muscle spindles does affect sensorimotor control in the upper limb: in addition to poor performance in the finger-to-nose test, manual performance in the Purdue pegboard task is much worse than in age-matched healthy controls. Unlike those rare individuals with large-fibre sensory neuropathy, in which both muscle spindle and cutaneous afferents are absent, those with HSAN III present as a means of assessing sensorimotor control following the selective loss of muscle spindle afferents.


Subject(s)
Dysautonomia, Familial , Muscle Spindles , Humans , Muscle Spindles/physiology , Peripheral Nerves , Reflex, Stretch , Knee
17.
Exp Physiol ; 109(1): 35-44, 2024 01.
Article in English | MEDLINE | ID: mdl-37119460

ABSTRACT

Our objective was to evaluate an ex vivo muscle-nerve preparation used to study mechanosensory signalling by low threshold mechanosensory receptors (LTMRs). Specifically, we aimed to assess how well the ex vivo preparation represents in vivo firing behaviours of the three major LTMR subtypes of muscle primary sensory afferents, namely type Ia and II muscle spindle (MS) afferents and type Ib tendon organ afferents. Using published procedures for ex vivo study of LTMRs in mouse hindlimb muscles, we replicated earlier reports on afferent firing in response to conventional stretch paradigms applied to non-contracting, that is passive, muscle. Relative to in vivo studies, stretch-evoked firing for confirmed MS afferents in the ex vivo preparation was markedly reduced in firing rate and deficient in encoding dynamic features of muscle stretch. These deficiencies precluded conventional means of discriminating type Ia and II afferents. Muscle afferents, including confirmed Ib afferents were often indistinguishable based on their similar firing responses to the same physiologically relevant stretch paradigms. These observations raise uncertainty about conclusions drawn from earlier ex vivo studies that either attribute findings to specific afferent types or suggest an absence of treatment effects on dynamic firing. However, we found that replacing the recording solution with bicarbonate buffer resulted in afferent firing rates and profiles more like those seen in vivo. Improving representation of the distinctive sensory encoding properties in ex vivo muscle-nerve preparations will promote accuracy in assigning molecular markers and mechanisms to heterogeneous types of muscle mechanosensory neurons.


Subject(s)
Muscle Spindles , Tendons , Mice , Animals , Muscle Spindles/physiology , Signal Transduction , Neurons , Neurons, Afferent/physiology
18.
Exp Physiol ; 109(1): 100-111, 2024 01.
Article in English | MEDLINE | ID: mdl-38103003

ABSTRACT

The goals of this review are to improve understanding of the aetiology of chronic muscle pain and identify new targets for treatments. Muscle pain is usually associated with trigger points in syndromes such as fibromyalgia and myofascial syndrome, and with small spots associated with spontaneous electrical activity that seems to emanate from fibers inside muscle spindles in EMG studies. These observations, added to the reports that large-diameter primary afferents, such as those innervating muscle spindles, become hyperexcitable and develop spontaneous ectopic firing in conditions leading to neuropathic pain, suggest that changes in excitability of these afferents might make an important contribution to the development of pathological pain. Here, we review evidence that the muscle spindle afferents (MSAs) of the jaw-closing muscles become hyperexcitable in a model of chronic orofacial myalgia. In these afferents, as in other large-diameter primary afferents in dorsal root ganglia, firing emerges from fast membrane potential oscillations that are supported by a persistent sodium current (INaP ) mediated by Na+ channels containing the α-subunit NaV 1.6. The current flowing through NaV 1.6 channels increases when the extracellular Ca2+ concentration decreases, and studies have shown that INaP -driven firing is increased by S100ß, an astrocytic protein that chelates Ca2+ when released in the extracellular space. We review evidence of how astrocytes, which are known to be activated in pain conditions, might, through their regulation of extracellular Ca2+ , contribute to the generation of ectopic firing in MSAs. To explain how ectopic firing in MSAs might cause pain, we review evidence supporting the hypothesis that cross-talk between proprioceptive and nociceptive pathways might occur in the periphery, within the spindle capsule.


Subject(s)
Chronic Pain , Neuralgia , Humans , Muscle Spindles/physiology , Myalgia , Membrane Potentials , Neurons, Afferent/physiology
19.
J Anat ; 244(5): 803-814, 2024 May.
Article in English | MEDLINE | ID: mdl-38155435

ABSTRACT

The centre of the highest region of muscle spindle abundance (CHRMSA) in the intramuscular nerve-dense region has been suggested as the optimal target location for injecting botulinum toxin A to block muscle spasms. The anterior forearm muscles have a high incidence of spasticity. However, the CHRMSA in the intramuscular nerve-dense region of the forearm anterior muscle group has not been defined. This study aimed to accurately define the body surface position and the depth of CHRMSA in an intramuscular nerve-dense region of the anterior forearm muscles. Twenty-four adult cadavers (57.7 ± 11.5 years) were included in this study. The curved line close to the skin connecting the medial and lateral epicondyles of the humerus was designated as the horizontal reference line (H line), and the line connecting the medial epicondyle of the humerus and the ulnar styloid was defined as the longitudinal reference line (L line). Modified Sihler's staining, haematoxylin-eosin staining and computed tomography scanning were employed to determine the projection points (P and P') of the CHRMSAs on the anterior and posterior surfaces of the forearm. The positions (PH and PL) of point P projected onto the H and L lines, and the depth of each CHRMSA, were determined using the Syngo system. The PH of the CHRMSA of the ulnar head of pronator teres, humeral head of pronator teres, flexor carpi radialis, palmaris longus, flexor carpi ulnaris, ulnar part of flexor digitorum superficialis, radial part of flexor digitorum superficialis, flexor pollicis longus, ulnar part of flexor digitorum profundus, radial portion of flexor digitorum profundus and pronator quadratus muscles were located at 42.48%, 45.52%, 41.20%, 19.70%, 7.77%, 25.65%, 47.42%, 53.47%, 12.28%, 38.41% and 51.68% of the H line, respectively; the PL were located at 18.38%, 12.54%, 28.83%, 13.43%, 17.65%, 32.76%, 57.32%, 64.12%, 20.05%, 45.94% and 88.71% of the L line, respectively; the puncture depths were located at 21.92%, 27.25%, 23.76%, 18.04%, 15.49%, 31.36%, 26.59%, 41.28%, 38.72%, 45.14% and 53.58% of the PP' line, respectively. The percentage values are the means of individual values. We recommend that the body surface puncture position and depth of the CHRMSA are the preferred locations for the intramuscular injection of botulinum toxin A to block anterior forearm muscle spasms.


Subject(s)
Botulinum Toxins, Type A , Forearm , Adult , Humans , Muscle Spindles , Muscle, Skeletal , Cadaver , Spasm
20.
Article in English | MEDLINE | ID: mdl-38126259

ABSTRACT

The muscle spindle is an essential proprioceptor, significantly involved in sensing limb position and movement. Although biological spindle models exist for years, the gold-standard for motor control in biomechanics are still sensors built of homogenized spindle output models due to their simpler combination with neuro-musculoskeletal models. Aiming to improve biomechanical simulations, this work establishes a more physiological model of the muscle spindle, aligned to the advantage of easy integration into large-scale musculoskeletal models. We implemented four variations of a spindle model in Matlab/Simulink®: the Mileusnic et al. (2006) model, Mileusnic model without mass, our enhanced Hill-type model, and our enhanced Hill-type model with parallel damping element (PDE). Different stretches in the intrafusal fibers were simulated in all model variations following the spindle afferent recorded in previous experiments in feline soleus muscle. Additionally, the enhanced Hill-type models had their parameters extensively optimized to match the experimental conditions, and the resulting model was validated against data from rats' triceps surae muscle. As result, the Mileusnic models present a better overall performance generating the afferent firings compared to the common data evaluated. However, the enhanced Hill-type model with PDE exhibits a more stable performance than the original Mileusnic model, at the same time that presents a well-tuned Hill-type model as muscle spindle fibers, and also accounts for real sarcomere force-length and force-velocity aspects. Finally, our activation dynamics is similar to the one applied to Hill-type model for extrafusal fibers, making our proposed model more easily integrated in multi-body simulations.

SELECTION OF CITATIONS
SEARCH DETAIL