Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomicro Lett ; 13(1): 125, 2021 May 12.
Article in English | MEDLINE | ID: mdl-34138373

ABSTRACT

Efficient and robust single-atom catalysts (SACs) based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia (NRR) under ambient conditions. Herein, for the first time, a Mn-N-C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy. The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation. Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix, the catalyst exhibits excellent activity for NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at - 0.45 V versus reversible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N2 adsorption, activation and selective reduction to NH3 by the distal mechanism. This work provides a simple synthesis process for Mn-N-C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.

2.
ACS Appl Mater Interfaces ; 12(47): 52624-52634, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170611

ABSTRACT

N-doped carbon materials are well known as promising metal-free catalysts and applied in innumerable industrial synthetics. However, most of the N-doped carbon materials obtained by conventional synthetic means exhibit generally low mesoporosity, and their reported pore volumes reached only 1-3 cm3 g-1, which greatly limits their further industrial application in heterogeneous catalysis. Especially for oxidation reaction of alkylbenzenes, this type of reaction is almost always accompanied by many different byproducts, while the reaction activity and selectivity are mainly affected by mesoporosity of catalysts. Traditionally, graphitic carbon nitride (GCN) is commonly considered as a self-sacrificed nitrogen source together with multifarious organic compounds to obtain N-doped carbon materials by a co-pyrolysis process. However, the mechanisms of formation process are still complex and uncontrollable to date. In this work, we present a novel co-pyrolysis synthetic strategy by a facile chemical vapor deposition method for preparing a series of ultrathin N-doped carbon nanosheets with high mesoporosity. More importantly, it is found that GCN containing abundant hydrogen bonds can be irreversibly anchored by carbonaceous gas fragments (CxHy+) released from various organic substances via thermogravimetry-differential thermal analysis coupled with mass spectrometry and X-ray photoelectron spectroscopy analysis, and the CxHy+ fragments exhibit a non-negligible role during the transformation. Our results further demonstrated that the residue of incompletely decomposed GCN is a key point to enlarge porosity in final products which are obtained via mixing pyrolysis between an organic precursor and GCN (or GCN precursors). Benefitting from the outstanding mesoporosity and ultrathin morphology, the representative ABCNS-900 exhibits excellent catalytic performance for oxidizing ethylbenzene to acetophenone with extremely low dosage and high selectivity. Our findings show a universal synthetic strategy for ultrathin N-rich carbon nanosheets with a high mesopore volume, further promoting the application of N-doped carbon materials in heterogeneous catalytic industry.

SELECTION OF CITATIONS
SEARCH DETAIL