Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters











Publication year range
1.
JACC Basic Transl Sci ; 8(1): 55-67, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36777173

ABSTRACT

Using the Cre-loxP system, we generated the first mouse model in which estrogen receptor-α non-nuclear signaling was inactivated in endothelial cells. Estrogen protection against mechanical vascular injury was impaired in this model. This result indicates the pivotal role of endothelial estrogen receptor-α non-nuclear signaling in the vasculoprotective effects of estrogen.

2.
Food Waterborne Parasitol ; 27: e00164, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35615625

ABSTRACT

Trichinella spiralis is a unique parasite in that both the adults and larvae survive in two different intracellular niches in the same host. The immune response, albeit intense, is highly modulated to ensure the survival of both the host and the parasite. It is skewed to T helper 2 and regulatory arms. Diverse cells from both the innate and adaptive compartments of immunity, including dendritic cells, T regulatory cells, and alternatively activated macrophages are thought to mediate such immunomodulation. The parasite has also an outstanding ability to evade the immune system by several elaborate processes. The molecules derived from the parasites including Trichinella, particularly the components of the excretory-secretory products, are being continually identified and explored for the potential of ameliorating the immunopathology in animal models of diverse inflammatory and autoimmune human diseases. Herein we discuss the various aspects of Trichinella-induced immunomodulation with a special reference to the practical implications of the immune system manipulation in alleviating or possibly curing human diseases.

3.
Phytomed Plus ; 2(2): 100252, 2022 May.
Article in English | MEDLINE | ID: mdl-35403089

ABSTRACT

Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.

4.
JID Innov ; 1(3): 100038, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34909734

ABSTRACT

Acupuncture treatment is based on acupoint stimulation; however, the biological basis is not understood. We stimulated one acupoint with catgut embedding for 8 weeks and then used isobaric tags for relative and absolute quantitation to screen proteins with altered expression in adjacent acupoints of Sprague Dawley rats. We found that kininogen expression was significantly upregulated in the stimulated and the nonstimulated adjacent acupoints along the same meridian. The enhanced kininogen expression was meridian dependent and was most apparent among small vessels in the subcutaneous layer. Enhanced signals of nitric oxide synthases, cGMP-dependent protein kinase, and myosin light chain were also observed at the nonstimulated adjacent acupoints along the same meridian. These findings uncover biological changes at acupoints and suggest the critical role of the kininogen-nitric oxide signaling pathway in acupoint activation.

5.
J Mass Spectrom Adv Clin Lab ; 19: 34-45, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34820664

ABSTRACT

BACKGROUND: Nitric oxide (NO) plays an important role in endothelial homeostasis. Asymmetric dimethyl arginine (ADMA), L-N monomethyl arginine (L-NMMA) and symmetric dimethyl arginine (SDMA), which are derivatives of methylarginine, directly or indirectly reduce NO production. Therefore, these metabolites are an important risk factor for various diseases, including cardiovascular diseases. Numerous methods have been developed for the measurement of methylarginine derivatives, but various difficulties have been encountered. This study aimed to develop a reliable, fast and cost-effective method for the analysis and measurement of methylarginine derivatives (ADMA, SDMA, L-NMMA) and related metabolites (arginine, citrulline, homoarginine, ornithine), and to validate this method according to Clinical and Laboratory Standards Institute (CLSI) protocols. METHODS: For the analysis of ADMA, SDMA, L-NMMA, arginine, homoarginine, citrulline, ornithine, 200 Âµl of serum were precipitated with methanol, and subsequently derivatized with a butanol solution containing 5% acetyl chloride. Butyl derivatives were separated using a C18 reverse phase column with a 5 min run time. Detection of analytes was achieved by utilising the specific fragmentation patterns identified through tandem mass spectrometry. RESULTS: The method was linear for ADMA, SDMA, L-NMMA, ornithine, arginine, homoarginine and citrulline in the ranges of 0.023-6.0, 0.021-5.5, 0.019-5.0, 0.015-250, 0.015-250, 0.019-5 and 0.015-250 µM, respectively. The inter-assay CV% values for all analytes was less than 9.8%. CONCLUSIONS: Data obtained from method validation studies shows that the developed method is highly sensitive, precise and accurate. Short analysis time, cost-effectiveness, and multiplexed analysis of these metabolites, with the same pretreatment steps, are the main advantages of the method.

6.
Mol Genet Metab Rep ; 29: 100791, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34471603

ABSTRACT

The urea cycle generates arginine that is one of the major precursors for creatine biosynthesis. Here we evaluate levels of creatine and guanidinoacetate (the precursor in the synthesis of creatine) in plasma samples (ns = 207) of patients (np = 73) with different types of urea cycle disorders (ornithine transcarbamylase deficiency (ns = 22; np = 7), citrullinemia type 1 (ns = 60; np = 22), argininosuccinic aciduria (ns = 81; np = 31), arginase deficiency (ns = 44; np = 13)). The concentration of plasma guanidinoacetate positively correlated (p < 0.001, R2 = 0.64) with levels of arginine, but not with glycine in all patients with urea cycle defects, rising to levels above normal in most samples (34 out of 44) of patients with arginase deficiency. In contrast to patients with guanidinoacetate methyltransferase deficiency (a disorder of creatine synthesis characterized by elevated guanidinoacetate concentrations), creatine levels were normal (32 out of 44) or above normal (12 out of 44) in samples from patients with arginase deficiency. Creatine levels correlated significantly, but poorly (p < 0.01, R2 = 0.1) with guanidinoacetate levels and, despite being overall in the normal range in patients with all other urea cycle disorders, were occasionally below normal in some patients with argininosuccinic acid synthase and lyase deficiency. Creatine levels positively correlated with levels of methionine (p < 0.001, R2 = 0.16), the donor of the methyl group for creatine synthesis. The direct correlation of arginine levels with guanidinoacetate in patients with urea cycle disorders explains the increased concentration of guanidino compounds in arginase deficiency. Low creatine levels in some patients with other urea cycle defects might be explained by low protein intake (creatine is naturally present in meat) and relative or absolute intracellular arginine deficiency.

7.
Acta Pharm Sin B ; 11(7): 1767-1788, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34386320

ABSTRACT

Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.

8.
Int J Cardiol ; 340: 68-78, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34400167

ABSTRACT

The purpose of this study was to assess whether short-term, mild exercise induces protection against myocardial infarction and, if so, what role the eNOS-PKCε-iNOS axis plays. Mice were subjected to 2 bouts/day of treadmill exercise (60 min at 15 m/min) for 2 consecutive days. At 24 h after the last bout of exercise, mice were subjected to a 30-min coronary artery occlusion and 24 h of reperfusion. In the exercise group (group III, wild-type mice), infarct size (25.5 ± 8.8% of risk region) was significantly (P < 0.05) reduced compared with the control groups (sham exercise, group II [63.4 ± 7.8%] and acute myocardial infarction, group I [58.6 ± 7.0%]). This effect was abolished by pretreatment with the NOS inhibitor L-NA (group VI, 56.1 ± 16.2%) and the PKC inhibitor chelerythrine (group VIII, 57.9 ± 12.5%). Moreover, the late PC effect of exercise was completely abrogated in eNOS-/- mice (group XIII, 61.0 ± 11.2%). The myocardial phosphorylated eNOS at Ser-1177 was significantly increased at 30 min after treadmill training (exercise group) compared with sham-exercised hearts. PKCε translocation was significantly increased at 30 min after exercise in WT mice but not in eNOS-/- mice. At 24 h after exercise, iNOS protein was upregulated compared with sham-exercised hearts. The protection of late PC was abrogated in iNOS-/- mice (group XVI, 56.4 ± 12.9%) and in wildtype mice given the selective iNOS inhibitor 1400 W prior to ischemia (group X 62.0 ± 8.8% of risk region). We conclude that 1) even short, mild exercise induces a delayed PC effect that affords powerful protection against infarction; 2) this cardioprotective effect is dependent on activation of eNOS, eNOS-derived NO generation, and subsequent PKCε activation during PC; 3) the translocation of PKCε is dependent on eNOS; 4) the protection 24 h later is dependent on iNOS activity. Thus, eNOS is the trigger and iNOS the mediator of PC induced by mild exercise.


Subject(s)
Ischemic Preconditioning, Myocardial , Myocardial Infarction , Animals , Mice , Myocardial Infarction/prevention & control , Myocardium , Nitric Oxide , Nitric Oxide Synthase Type II , Nitric Oxide Synthase Type III , Protein Kinase C-epsilon
9.
Transl Res ; 238: 36-48, 2021 12.
Article in English | MEDLINE | ID: mdl-34332154

ABSTRACT

Little is known about the mechanisms of aging on vascular beds and its relationship with tetra and di-hydrobiopterin (BH4 and BH2) levels. This observational clinical study analyzed the impact of aging on plasma and platelet biopterins, cutaneous blood flow (CBF), and coronary flow reserve (CFR) in healthy adults. The study enrolled healthy adults in 3 age groups: 18-30, 50-59, and 60-70 years (n = 25/group). Biopterins were assessed by LC-MS/MS using newly defined pre-analytical conditions limiting BH4 oxidation and improving long-term stability. CBF was measured by Laser Speckle Contrast Imaging coupled with acetylcholine-iontophoresis and CFR by adenosine stress cardiac magnetic resonance. In healthy adults, aging (60-70 years vs 18-30 years) significantly increased platelet BH2 (+75%, P = 0.033) and BH2 + BH4 (+31%, P = 0.033), and to a lesser extent plasma BH2 (+29%, P = 0.009) without affecting BH4 and BH4/BH2. Simultaneously, CBF was decreased (-23%, P = 0.004) but not CFR, CBF being inversely correlated with platelet BH2 (r = -0.42, P = 0.001) and BH2 + BH4 (r = -0.41, P = 0.002). The proportion of adults with abnormal platelet BH2 increased with age (+28% in 60-70y). These abnormal BH2 levels were significantly associated with reduced CBF and CFR (-16%, P = 0.03 and -26%, P = 0.02). In conclusion, our study showed that age-related peripheral endothelial dysfunction was associated with an increase in circulating BH2 without decreasing BH4, the effect being more marked in platelets, the most relevant blood compartment to assess biopterin bioavailability. Peripheral but not coronary vascular function is progressively impaired with aging in healthy adults. All these findings support biopterins as therapeutic targets to improve vascular function.


Subject(s)
Aging/physiology , Biopterins/analogs & derivatives , Endothelium, Vascular/physiopathology , Adolescent , Adult , Aged , Animals , Biopterins/blood , Blood Platelets/metabolism , Blood Vessels/physiology , Endothelium, Vascular/physiology , Female , Humans , Male , Middle Aged , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Zucker , Young Adult
10.
JACC Basic Transl Sci ; 6(3): 202-218, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33649738

ABSTRACT

The authors hypothesized that the cytokine storm described in COVID-19 patients may lead to consistent cell-based tissue factor (TF)-mediated activation of coagulation, procoagulant microvesicles (MVs) release, and massive platelet activation. COVID-19 patients have higher levels of TF+ platelets, TF+ granulocytes, and TF+ MVs than healthy subjects and coronary artery disease patients. Plasma MV-associated thrombin generation is present in prophylactic anticoagulated patients. A sustained platelet activation in terms of P-selectin expression and platelet-leukocyte aggregate formation, and altered nitric oxide/prostacyclin synthesis are also observed. COVID-19 plasma, added to the blood of healthy subjects, induces platelet activation similar to that observed in vivo. This effect was blunted by pre-incubation with tocilizumab, aspirin, or a P2Y12 inhibitor.

11.
J Tradit Complement Med ; 11(1): 22-26, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33511058

ABSTRACT

Epilepsy is identified as a brain disorder and characterized by unpredictable disruption of normal brain function. Due to adverse side effect associated with antiepileptic drugs and also resistance profile, improvement of antiepileptic medications with more beneficial anticonvulsant activity is essential. Natural products have demonstrated their therapeutic properties such as anxiolytic, antidepressant and anticonvulsant activities and a source for identification of novel lead compounds. Therefore, the purpose of this study was to evaluate the effects of Onopordon acanthium secondary metabolite, onopordia, on pentylenetetrazole (PTZ)-induced seizure in male mice and investigate the possible role of nitric oxide pathway. Different doses of onopordia (0.1, 1 and 10 mg/kg) and phenobarbital (20 mg/kg) were administered intraperitoneally (i.p., 30, 60 and 120 min) prior to induction of epileptic seizure and compared to control groups. Onopordia demonstrated anticonvulsant effects when administrated at dose of 10 mg/kg, i.p. and optimum time 60 min prior to induction of seizure. Anticonvulsant effect of onopordia was blocked by applying a single dose of a non-selective nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME; 10 mg/kg, i.p.), and also a single dose of a selective neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI; 30 mg/kg, i.p.). Administration of ketamine as a N-Methyl-d-aspartic acid (NMDA) receptor antagonist (0.5 mg/kg; i.p.) with onopordia did not change the anticonvulsant effect of onopordia. The results of the present study demonstrated the anticonvulsant effect of onopordia as a new lead compound and also contribution of NO/nNOS pathway on PTZ-induced seizure in mice.

12.
Cereb Circ Cogn Behav ; 2: 100025, 2021.
Article in English | MEDLINE | ID: mdl-36324713

ABSTRACT

Sleep takes up a large percentage of our lives and the full functions of this state are still not understood. However, over the last 10 years a new and important function has emerged as a mediator of brain clearance. Removal of toxic metabolites and proteins from the brain parenchyma generated during waking activity and high levels of synaptic processing is critical to normal brain function and only enabled during deep sleep. Understanding of this process is revealing how impaired sleep contributes an important and likely causative role in the accumulation and aggregation of aberrant proteins such as ß-amyloid and phosphorylated tau, as well as inflammation and neuronal damage. We are also beginning to understand how brain slow-wave activity interacts with vascular function allowing the flow of CSF and interstitial fluid to drain into the body's lymphatic system. New methodology is enabling visualization of this process in both animals and humans and is revealing how these processes break down during ageing and disease. With this understanding we can begin to envisage novel therapeutic approaches to the treatment of neurodegeneration, and how reversing sleep impairment in the correct manner may provide a way to slow these processes and improve brain function.

13.
Appl Mater Today ; 22: 100887, 2021 Mar.
Article in English | MEDLINE | ID: mdl-38620577

ABSTRACT

Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting viral replication in host defense and warrants investigation for the development of antiviral therapeutics. With increased incidence of global pandemics concerning several respiratory-based viral infections, it is necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more efficient host clearance, as well as to fabricate new materials for deterring viral transmission from medical devices. Recent developments in creating stabilized NO donor compounds and their incorporation into macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. Despite this abundance of research, there has been little consideration of NO-releasing scaffolds and substrates for reducing passive transmission of viral infections or for treating several respiratory viral infections. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, and NO donor compounds for antiviral therapies; discuss the limitations of NO as an antiviral agent; and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral platforms.

14.
Saudi Pharm J ; 28(11): 1353-1363, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33250642

ABSTRACT

Atorvastatin (ATO) is of the statin class and is used as an orally administered lipid-lowering drug. ATO is a reversible synthetic competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase thus leading to a reduction in cholesterol synthesis. It has recently been demonstrated that ATO has different pharmacological actions, which are unrelated to its lipid-lowering effects and has the ability to treat chronic airway diseases. This paper reviews the potential of ATO as an anti-inflammatory, antioxidant, and anti-proliferative agent after oral or inhaled administration. This paper discusses the advantages and disadvantages of using ATO under conditions associated with those found in the airways. This treatment could potentially be used to support the formulating of ATO as an inhaler for the treatment of chronic respiratory diseases.

15.
Mayo Clin Proc Innov Qual Outcomes ; 4(3): 315-338, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32542223

ABSTRACT

An understanding of the molecular basis of liver regeneration will open new horizons for the development of novel therapies for chronic liver failure. Such therapies would solve the drawbacks associated with liver transplant, including the shortage of donor organs, long waitlist time, high medical costs, and lifelong use of immunosuppressive agents. Regeneration after partial hepatectomy has been studied in animal models, particularly fumarylacetoacetate hydrolase-deficient (FAH -/-) mice and pigs. The process of regeneration is distinctive, complex, and well coordinated, and it depends on the interplay among several signaling pathways (eg, nuclear factor κß, Notch, Hippo), cytokines (eg, tumor necrosis factor α, interleukin 6), and growth factors (eg, hepatocyte growth factor, epidermal growth factor, vascular endothelial growth factor), and other components. Furthermore, endocrinal hormones (eg, norepinephrine, growth hormone, insulin, thyroid hormones) also can influence the aforementioned pathways and factors. We believe that these endocrinal hormones are important hepatic mitogens that strongly induce and accelerate hepatocyte proliferation (regeneration) by directly and indirectly triggering the activity of the involved signaling pathways, cytokines, growth factors, and transcription factors. The subsequent induction of cyclins and associated cyclin-dependent kinase complexes allow hepatocytes to enter the cell cycle. In this review article, we comprehensively summarize the current knowledge regarding the roles and mechanisms of these hormones in liver regeneration. Articles used for this review were identified by searching MEDLINE and EMBASE databases from inception through June 1, 2019.

16.
J Adv Res ; 24: 273-279, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32382447

ABSTRACT

Vasodilators are important pharmacologic agents for managing and/or treating hypertension. Medicinal plants are considered as valuable source of bioactive compounds. We used a bioguided approach to isolate, identify, and investigate the possible vasodilation activities and mechanism(s) of the prepared methanol extract from aerial parts of Psiadia punctulata (MAPP), its bioactive fraction and active compounds. Vascular effects of MAPP were studied using isolated artery technique in the presence or absence of specific candidate pathways inhibitors, and found to produce a significant vasodilation of phenylephrine preconstricted rat aortae. The bioactive chloroform fraction yielded five methoxylated flavonoids: umuhengerin (1), gardenin A (2), gardenin B (3), luteolin-3',4' -dimethyl ether (4), and 5,3'-dihydroxy-6,7,4',5'-tetramethoxyflavone (5). Metabolites 1, 4, and 5 produced a significant vasodilation. Removal of the endothelium significantly inhibited MAPP vasodilation. Nitric oxide synthase inhibition and not prostacycline inhibition or K+ channel blocking, was found to cause the observed vasodilation inhibition. Both guanylate cyclase and adenylate cyclase inhibitions markedly inhibited MAPP vasodilation. In conclusion MAPP possesses vasodilation activities that is mediated through endothelial nitric oxide pathway, calcium dependent endothelial nitric oxide synthase activation, and interference with the depolarization process through calcium channel blocking activity.

17.
Anim Feed Sci Technol ; 261: 114392, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32288071

ABSTRACT

Nutritional intervention in older dogs aims to increase lifespan and improve life quality as well as delay the development of diseases related to ageing. It is believed that active fractions of mannoproteins (AFMs) obtained through extraction and fractionation of yeast cell walls (Saccharomyces cerevisiae) may beneficially modulate the immune system. However, studies that have evaluated this component and the effects of ageing on the immune system of dogs are scarce. This study aimed to evaluate the immunological effects of AFMs in adult and elderly dogs. Three extruded iso-nutrient experimental diets were formulated: without addition of AFM (T0); with AFM at 400 mg/kg (T400); and with AFM at 800 mg/kg (T800). Thirty-six beagle dogs were used, and six experimental treatments, resulting in combinations of age (adult and elderly) and diet (T0, T400, and T800), were evaluated. On days zero, 14, and 28, blood samples were obtained for leucocyte phenotyping and phagocytosis assays. On days zero and 28, a lymphoproliferation test, quantification of reactive oxygen (H2O2) and nitrogen (NO) intermediate production, evaluation of faecal immunoglobulin A (IgA) content, and a delayed cutaneous hypersensitivity test (DCHT) were performed. Statistical analyses were performed with SAS software. Repeated measure variance analyses were performed, and means were compared by the Tukey test. Values of P ≤ 0.05 were considered significant, and values of P ≤ 0.10 were considered tendencies. Dogs fed T400 tended to have higher neutrophilic phagocytic activity than dogs fed T800 (P = 0.073). Regarding reactive oxygen intermediates, bacterial lipopolysaccharide (LPS)-stimulated neutrophils from animals that were fed T400 had a tendency to produce more H2O2 than those from animals fed the control diet (P = 0.093). Elderly dogs, when compared to adult dogs, had lower absolute T and B lymphocyte counts, lower auxiliary T lymphocyte counts, and higher cytotoxic T lymphocyte counts (P < 0.05). A significant effect of diet, age, and time with saline inoculation was noted for the DCHT. There was no effect of diet or age on faecal IgA content in dogs. This study suggests beneficial effects of mannoproteins on the specific and nonspecific immune responses in adult and elderly dogs.

18.
Toxicol Rep ; 7: 101-108, 2020.
Article in English | MEDLINE | ID: mdl-31921600

ABSTRACT

Infective endocarditis (IE) is an illness where the heart is invaded by bacteria, like Streptococcal and Staphylococcal species that contain lipoteichoic acid (LTA) related to an essential role in this disease. This study is the first in evaluating antioxidant enzyme levels in embryonic cardiomyocyte cell line (H9c2) induced by LTA from Streptococcus sanguinis. LTA increased reactive oxygen species (ROS) and reduced the levels of the antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD)-1 and catalase (CAT) but did not affect glutathione content. At the highest LTA concentration (15 µg/ml), SOD-1 and CAT levels did not change, and this effect was related to the induction of mRNA levels of Nrf2 induced by LTA. These results suggest that low antioxidant enzyme levels and ROS production could be related to IE.

19.
Acta Pharm Sin B ; 10(1): 33-41, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993305

ABSTRACT

Sepsis is an infection-induced systemic inflammatory syndrome. The immune response in sepsis is characterized by the activation of both proinflammatory and anti-inflammatory pathways. When sepsis occurs, the expression and activity of many inflammatory cytokines are markedly affected. Xenobiotic receptors are chemical-sensing transcription factors that play essential roles in the transcriptional regulation of drug-metabolizing enzymes (DMEs). Xenobiotic receptors mediate the functional crosstalk between sepsis and drug metabolism because the inflammatory cytokines released during sepsis can affect the expression and activity of xenobiotic receptors and thus impact the expression and activity of DMEs. Xenobiotic receptors in turn may affect the clinical outcomes of sepsis. This review focuses on the sepsis-induced inflammatory response and xenobiotic receptors such as pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), glucocorticoid receptor (GR), and constitutive androstane receptor (CAR), DMEs such as CYP1A, CYP2B6, CYP2C9, and CYP3A4, and drug transporters such as p-glycoprotein (P-gp), and multidrug resistance-associated protein (MRPs) that are affected by sepsis. Understanding the xenobiotic receptor-mediated effect of sepsis on drug metabolism will help to improve the safe use of drugs in sepsis patients and the development of new xenobiotic receptor-based therapeutic strategies for sepsis.

20.
JACC Basic Transl Sci ; 4(4): 509-523, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31468006

ABSTRACT

This study aimed to identify a mechanism for statin-induced myopathy that explains its prevalence and selectivity for skeletal muscle, and to understand its interaction with moderate exercise. Statin-associated adverse muscle symptoms reduce adherence to statin therapy; this limits the effectiveness of statins in reducing cardiovascular risk. The issue is further compounded by perceived interactions between statin treatment and exercise. This study examined muscles from individuals taking statins and rats treated with statins for 4 weeks. In skeletal muscle, statin treatment caused dissociation of the stabilizing protein FK506 binding protein (FKBP12) from the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, the ryanodine receptor 1, which was associated with pro-apoptotic signaling and reactive nitrogen species/reactive oxygen species (RNS/ROS)-dependent spontaneous SR Ca2+ release events (Ca2+ sparks). Statin treatment had no effect on Ca2+ spark frequency in cardiac myocytes. Despite potentially deleterious effects of statins on skeletal muscle, there was no impact on force production or SR Ca2+ release in electrically stimulated muscle fibers. Statin-treated rats with access to a running wheel ran further than control rats; this exercise normalized FKBP12 binding to ryanodine receptor 1, preventing the increase in Ca2+ sparks and pro-apoptotic signaling. Statin-mediated RNS/ROS-dependent destabilization of SR Ca2+ handling has the potential to initiate skeletal (but not cardiac) myopathy in susceptible individuals. Importantly, although exercise increases RNS/ROS, it did not trigger deleterious statin effects on skeletal muscle. Indeed, our results indicate that moderate exercise might benefit individuals who take statins.

SELECTION OF CITATIONS
SEARCH DETAIL