Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters











Publication year range
1.
Food Sci Nutr ; 12(6): 4173-4184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873468

ABSTRACT

Diabetic nephropathy (DN) is a primary diabetic complication ascribed to the pathological changes in renal microvessels. This study investigated the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch ECH associating protein (Keap1)/antioxidant response element (ARE) signaling pathway impact of chitooligosaccharides (COS) with a certain degree of polymerization (DP) on DN mouse models and high glucose-damaged human kidney 2 (HK-2) cells. The findings indicated that COS effectively reduced the renal function indexes (uric acid [UA], urinary albumin excretion rate [UAER], urine albumin-to-creatinine ratio [UACR], blood urea nitrogen [BUN], and creatinine [Cre]) of DN mice. It increased (p < .05) the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) antioxidant enzyme activity in the serum and kidneys, and decreased (p < .05) the malondialdehyde (MDA) content. The mechanistic investigation showed that COS significantly increased (p < .05) Nrf2 and downstream target gene (GCLM, GCLC, HO-1, and NQO-1) expression, and substantially decreased (p < .05) Keap1 expression. The protein level was consistent with the messenger RNA (mRNA) level in in vitro and in vivo models. The docking data indicated that COS and Keap1 protein binding included six hydrogen bond formation processes (Gly364, Arg415, Arg483, His436, Ser431, and Arg380). The COS intervention mechanism may be related to the Nrf2/Keap1/ARE antioxidant pathway. Therefore, it provides a scientific basis for COS application in developing special medical food for DN patients.

2.
J Pharm Pharmacol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642915

ABSTRACT

OBJECTIVES: Trilobatin, a glycosylated dihydrochalcone, has been reported to have anti-diabetic properties. However, the underlying mechanism remains unexplained. METHODS: In this investigation, the regulation of trilobatin on glucose metabolism of insulin resistance (IR)-HepG2 cells and streptozocin (STZ)-induced mice and its mechanism were evaluated. KEY FINDINGS: Different doses of trilobatin (5, 10 and 20 µM) increased glucose consumption, glycogen content, hexokinase (HK), and pyruvate kinase (PK) activity in IR-HepG2 cells. Among them, the HK and PK activity in IR-HepG2 cells treated with 20 µM trilobatin were 1.84 and 2.05 times than those of the IR-group. The overeating, body and tissue weight, insulin levels, liver damage, and lipid accumulation of STZ-induced mice were improved after feeding with different doses of trilobatin (10, 50, and 100 mg/kg/d) for 4 weeks. Compared with STZ-induced mice, fasting blood glucose decreased by 61.11% and fasting insulin (FINS) increased by 48.6% after feeding trilobatin (100 mg/kg/d). Meanwhile, data from quantitative real-time polymerase chain reaction (qRT-PCR) revealed trilobatin ameliorated glycogen synthesis via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway in IR-HepG2 cells and in STZ-induced mice. Furthermore, in vitro and in vivo experiments showed that trilobatin ameliorated oxidative stress by regulating the mRNA expression of nuclear erythroid-2 related factor 2 (Nrf2)/kelch-like ECH associated protein-1 (Keap-1) pathway as well as heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1). CONCLUSIONS: Our research reveals a novel pharmacological activity of trilobatin: regulating glucose metabolism through PI3K/Akt/GSK-3ß and Nrf2/Keap-1 signaling pathways, improving insulin resistance and reducing oxidative stress. Trilobatin can be used as a reliable drug resource for the treatment of glucose metabolism disorders.

3.
Environ Toxicol Pharmacol ; 107: 104396, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395243

ABSTRACT

Genotoxic and hepatotoxic potentials of Pb at an environmentally relevant concentration (5 ppm) in zebrafish were investigated in the present study. Erythrocytic nuclear abnormality tests revealed the increased frequencies of abnormal erythrocytes after Pb exposure, indicating a strong genotoxic potential of Pb. Multiple stress-related parameters were further evaluated in liver, the major detoxifying organ. Pb caused increased production of ROS, which in turn caused severe oxidative stress. As a result, lipid peroxidation was increased, whereas reduced glutathione level and catalase activity was decreased. Alterations in liver histoarchitecture also served as evidence of Pb-induced hepatotoxicity. Pb-induced ROS stress triggered upregulation of Nrf2, Nqo1, Ho1; downregulation of Keap1, and altered mRNA expressions of Mn-sod, Cu/Zn-sod, gpx1, cyp1a, ucp2 suggesting involvement of Nrf2-Keap1-ARE signaling in cellular defence. Nrf2-keap1 is a sensitive biomarker of Pb-induced ROS stress. Overexpression of Hsp70 and other genes in hepatocytes might help cell survival under oxidative stress generation.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lead , Oxidative Stress , DNA Damage , Chemical and Drug Induced Liver Injury/genetics , Biomarkers/metabolism
4.
J Biomol Struct Dyn ; 42(4): 1875-1900, 2024.
Article in English | MEDLINE | ID: mdl-37160694

ABSTRACT

Among the major altered pathways in head and neck squamous cell carcinoma, AKT/mTORC1/S6K and NRF2/KEAP1 pathway are quite significant. The overexpression and overstimulation of proteins from both these pathways makes them the promising candidates in cancer therapeutics. Inhibiting mTOR has been in research from past several decades but the tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms, encourages to explore other downstream targets for inhibiting the pathway. One such downstream effectors of mTOR is S6K2. It is reported to be overexpressed in cancers such as head and neck cancer, breast cancer and prostate cancer. In case of NRF2/KEAP1 pathway, nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2) is overexpressed in ∼90% of head and neck squamous cell carcinoma (HNSCC) cases. It associates with poor survival rate and therapeutic resistance in HNSCC treatment. NRF2 pathway is the primary antioxidant pathway in the cell which also serves pro-tumorigenic functions, such as repression of apoptosis, cell proliferation support and chemoresistance. The aim of this work was to explore S6K2 and NRF2 and identify novel and potential inhibitors against them for treating head and neck squamous cell carcinoma. Since the crystal structure of S6K2 was not available at the time of this study, we modelled its structure using homology modelling and performed high throughput screening, molecular dynamics simulations, free energy calculations and protein-ligand interaction studies to identify the inhibitors. We identified natural compounds Crocin and Gypenoside XVII against S6K2 and Chebulinic acid and Sennoside A against NRF2. This study provides a significant in-depth understanding of the two studied pathways and therefore can be used in the development of potential therapeutics against HNSCC.Communicated by Ramaswamy H. Sarma.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Male , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , TOR Serine-Threonine Kinases/metabolism , Head and Neck Neoplasms/drug therapy , Cell Line, Tumor
5.
Nanomedicine (Lond) ; 18(21): 1421-1439, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37933634

ABSTRACT

Background: Excessive reactive oxygen species (ROS) and subsequent mitochondrial dysfunction are pivotal in initiating cardiac hypertrophy. To explore nano-selenium's (SeNP's) preventive potential against this condition, the authors evaluated chemically synthesized chitosan-SeNPs and biosynthesized Bacillus cereus YC-3-SeNPs in an angiotensin II (Ang II)-induced cardiac hypertrophy model. Methods: This investigation encompassed ROS measurement, mitochondrial membrane potential analysis, transmission electron microscopy, gene and protein expression analyses, protein carbonylation assays, serum antioxidant quantification and histological staining. Results: SeNPs effectively countered Ang II-induced cardiac hypertrophy by reducing ROS, restoring mitochondrial and protein kinase 2α (CK2-α) function, activating antioxidant pathways and enhancing serum antioxidant levels. Conclusion: This finding underscores SeNPs' role in attenuating Ang II-induced myocardial hypertrophy both in vitro and in vivo.


Enlargement of the heart is called cardiac hypertrophy; this is caused by too many reactive oxygen species, which are compounds that damage the mitochondria of cells. The mitochondria provide energy to cells and their disruption can cause a significantly negative effect on cells and the tissues and organs cells make up. Selenium is a type of metal that must be consumed in small amounts to stay healthy; it has antioxidant effects, meaning it can stop reactive oxygen species and potentially prevent cardiac hypertrophy. Nano-selenium (SeNP), consisting of tiny, spherical particles containing selenium, may be a more effective way of delivering selenium as an antioxidant to prevent cardiac hypertrophy. SeNPs were made synthetically and from a type of bacterium called Bacillus cereus; both SeNPs demonstrated antioxidant effects in heart cells taken from chicken embryos and live chickens. These results suggest that SeNPs could be developed into medication to combat cardiac hypertrophy.


Subject(s)
Nanoparticles , Selenium , Selenium/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Oxidative Stress , Mitochondria/metabolism
6.
Toxicol Appl Pharmacol ; 481: 116750, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37980962

ABSTRACT

Aflatoxin B1 (AFB1) is the most hazardous aflatoxin that causes significant damage to the male reproductive system. Genkwanin (GNK) is a bioactive flavonoid that shows antioxidant and anti-inflammatory potential. Therefore, the current study was planned to evaluate the effects of GNK against AFB1-induced testicular toxicity. Forty-eight male rats were distributed into four groups (n = 12 rats). AFB1 (50 µg/kg) and GNK (20 mg/kg) were administered to the rats for eight weeks. Results of the current study revealed that AFB1 exposure induced adverse effects on the Nrf2/Keap1 pathway and reduced the expressions and activities of antioxidant enzymes. Additionally, it increased the levels of oxidative stress markers. Furthermore, expressions of steroidogenic enzymes were down-regulated by AFB1 intoxication. Besides, AFB1 exposure reduced the levels of gonadotropins and plasma testosterone, which subsequently reduced the epididymal sperm count, motility, and hypo-osmotic swelled (HOS) sperms, while increasing the number of dead sperms and causing morphological anomalies of the head, midpiece, and tail of the sperms. In addition, AFB1 decreased the activities of testicular function marker enzymes and the levels of inflammatory markers. Moreover, it severely affected the apoptotic profile by up-regulating the expressions of Bax and Casp3, while down-regulating the Bcl2 expression. Besides, AFB1 significantly damaged the histoarchitecture of testicular tissues. However, GNK treatment reversed all the AFB1-induced damages in the rats. Taken together, the current study reports the potential use of GNK as a therapeutic agent to prevent AFB1-induced testicular toxicity due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.


Subject(s)
Aflatoxin B1 , Antioxidants , Male , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Semen/metabolism , Oxidative Stress , Anti-Inflammatory Agents/pharmacology
7.
Curr Issues Mol Biol ; 45(10): 8071-8090, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37886953

ABSTRACT

Parabiotics, including L-EPSs, have been administered to patients with neurodegenerative disorders. However, the antioxidant properties of L-EPSs against H2O2-induced oxidative stress in PC12 cells have not been studied. Herein, we aimed to investigate the antioxidant properties of the L-EPSs, their plausible targets, and their mechanism of action. We first determined the amount of L-EPSs in Lactobacillus delbrueckii ssp. bulgaricus B3 and Lactiplantibacillus plantarum GD2 using spectrophotometry. Afterwards, we studied their effects on TDH, TOS/TAS, antioxidant enzyme activities, and intracellular ROS level. Finally, we used qRT-PCR and ELISA to determine the effects of L-EPSs on the NRF2-KEAP1 pathway. According to our results, the L-EPS groups exhibited significantly higher total thiol activity, native thiol activity, disulfide activity, TAS levels, antioxidant enzyme levels, and gene expression levels (GCLC, HO-1, NRF2, and NQO1) than did the H2O2 group. Additionally, the L-EPS groups caused significant reductions in TOS levels and KEAP1 gene expression levels compared with those in the H2O2 group. Our results indicate that H2O2-induced oxidative stress was modified by L-EPSs. Thus, we revealed that L-EPSs, which regulate H2O2-induced oxidative stress, could have applications in the field of neurochemistry.

8.
Animals (Basel) ; 13(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37835751

ABSTRACT

Malondialdehyde (MDA) is the dominant component of lipid peroxidation products. Improper storage and transportation can elevate the lipid deterioration MDA content of diets to values that are unsafe for aquatic animals and even hazardous to human health. The study aimed to investigate the effect of dietary MDA on growth performance and digestive function of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu♂). Six isoproteic and isolipidic diets were formulated to contain 0.03, 1.11, 2.21, 4.43, 8.86 and 17.72 mg/kg MDA, respectively. The study shows that the increased dietary MDA content linearly reduced the growth rate, feed utilization, body index and body lipid content of hybrid grouper, while the low dose of dietary MDA (≤2.21 mg/kg) created no difference. Similarly, dietary MDA inclusion linearly depressed the activities of intestinal digestive and absorptive enzymes as well as antioxidant enzymes, enhanced the serum diamine oxidase activity, endotoxin level and intestinal MDA content. A high dose of MDA (≥4.43 mg/kg) generally impaired the gastric and intestinal mucosa, up-regulated the relative expression of Kelch-like ECH-associated protein 1 but down-regulated the relative expression of nuclear factor erythroid 2-related factor 2 in hindgut. In conclusion, the effect of MDA on hybrid grouper showed a dose-dependent effect in this study. A low dose of dietary MDA had limited effects on growth performance and intestinal health of hybrid grouper, while a high concentration damaged the gastrointestinal structure, depressed the intestinal digestive and antioxidant functions, and thereby impaired the growth and health of hybrid grouper.

9.
Aquat Toxicol ; 263: 106708, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37776712

ABSTRACT

Glutathione S-transferase is a crucial phase II metabolic enzyme involved in detoxification and metabolism in aquatic organisms. This study aimed to investigate the regulation of Nrf2/Keap1 pathway on microcystin-induced CpGST-Mu expression and CpGST-Mu resistance to hydrogen peroxide. A mu class GST from Cristaria plicata (CpGST-Mu) was identified. The full-length cDNA was 1026 bp, with an open reading frame of 558 bp. Subcellular localization revealed that CpGST-Mu was localized in cytoplasm. The optimum pH and temperature for the catalytic activity of CpGST-Mu protein was pH 6 and 40 °C, respectively. The results of Real-time quantitative PCR showed that CpGST-Mu mRNA was constitutively expressed in tissues, with the highest expression level in hepatopancreas and the lowest expression level in gill. The mRNA level of CpGST-Mu was significantly increased under the stress of microcystins and hydrogen peroxide. CpGST-Mu had an antagonistic effect on hydrogen peroxide. In the knockdown experiments, the mRNA levels of CpGST-Mu exhibited corresponding changes while Nrf2 and Keap1 genes were individually knocked down. These findings indicated that GST-Mu exhibited antioxidant properties and its expression was regulated by Nrf2/Keap1 signaling pathway. The study provided new information on the function of GST-Mu and could contribute to future studies on how to excrete microcystins in molluscs.


Subject(s)
Unionidae , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Microcystins/toxicity , Microcystins/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Hydrogen Peroxide/metabolism , Water Pollutants, Chemical/toxicity , Glutathione Transferase/metabolism , RNA, Messenger
10.
Sci Total Environ ; 900: 166441, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37604367

ABSTRACT

Salinomycin (SAL) has caused widespread pollution as a feed additive and growth promoter in livestock such as pigs, exerting a negative impact on public health. The toxicity mechanism of SAL has been widely studied in chickens, but the underlying mechanisms of SAL-induced toxicity to pigs and the ecosystem remain undefined. In this study, we explored the potential damage of SAL in IPEC-J2 cells to identify the effects of excessive SAL on the interplay between mitophagy and oxidative stress. The results showed that a concentration-dependent response was observed for SAL in altering cellular morphology and inducing cell death in IPEC-J2 cells, including the induction of cell cycle arrest and lactic dehydrogenase (LDH) release. Meanwhile, we found that excessive SAL led to oxidative damage by activating the Nrf2/Keap1/HO-1 pathway, accompanied by reactive oxygen species (ROS) elevation and the reduction of antioxidant enzyme activity. We also found that PINK1/Parkin-dependent mitophagy was activated by SAL exposure, particularly with mitochondrial membrane potential reduction. Interestingly, SAL-induced oxidative damages were prevented after the autophagy inhibitor 3-methyladenine (3-MA) treatment, and mitophagy was alleviated following ROS scavenger (N-acetylcysteine, NAC) treatment. Overall, our findings showed that SAL stimulated oxidative stress and mitophagy in IPEC-J2 cells resulting in cellular injury, and there was a strong connection between SAL-induced oxidative stress and mitophagy. Targeting ROS/PINK1/Parkin-dependent mitophagy and oxidative stress could be a novel protective mechanism in SAL-induced cell damage.


Subject(s)
Ecosystem , Mitophagy , Animals , Swine , Kelch-Like ECH-Associated Protein 1 , Reactive Oxygen Species , Chickens , NF-E2-Related Factor 2 , Antioxidants , Oxidative Stress , Protein Kinases
11.
Trends Mol Med ; 29(10): 830-842, 2023 10.
Article in English | MEDLINE | ID: mdl-37558549

ABSTRACT

Oxidative stress (OS) is an important pathophysiological mechanism in inflammatory bowel disease (IBD). However, clinical trials investigating compounds directly targeting OS in IBD yielded mixed results. The NRF2 (nuclear factor erythroid 2-related factor 2)/Keap1 (Kelch-like ECH-associated protein 1) pathway orchestrates cellular responses to OS, and dysregulation of this pathway has been implicated in IBD. Activation of the NRF2/Keap1 pathway may enhance antioxidant responses. Although this approach could help to attenuate OS and potentially improve clinical outcomes, an overview of human evidence for modulating the NRF2/Keap1 axis and more recent developments in IBD is lacking. This review explores the NRF2/Keap1 pathway as potential therapeutic target in IBD and presents compounds activating this pathway for future clinical applications.


Subject(s)
Inflammatory Bowel Diseases , NF-E2-Related Factor 2 , Humans , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress , Antioxidants/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/etiology
12.
Diabetol Metab Syndr ; 15(1): 149, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37403164

ABSTRACT

BACKGROUND: Exosomes from adipose-derived stem cells (ADSCs-Exos) have exhibited a therapeutic role in diabetic nephropathy (DN). Further studies are needed to investigate how ADSCs-Exos regulate oxidative stress and inflammation in high glucose-induced podocyte injury. METHODS: An enzyme-linked immunosorbent assay (ELISA) was used to detect cellular inflammation. Reactive oxygen species (ROS) levels were assessed using flow cytometry in podocytes with different treatments. A malondialdehyde (MDA) kit was used to evaluate the lipid peroxidation levels in podocytes and kidney tissues of mice. Western blotting and co-immunoprecipitation were performed to detect protein expression and protein-protein interactions. RESULTS: ADSCs-Exos reversed oxidative stress and inflammation in podocytes and kidney tissues of DN mice induced by high glucose levels in vitro and in vivo. Interference with heme oxygenase-1 expression could reverse the improvement effect of ADSCs-Exos on oxidative stress induced by high glucose levels. Furthermore, high glucose inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression and promoted Kelch-like ECH-associated protein 1 (Keap1) protein expression in podocytes, as well as their binding ability. As a potential target for Nrf2/Keap1 pathway regulation, FAM129B expression in podocytes is regulated by high glucose and ADSCs-Exos. Moreover, FAM129B siRNA blocked the inhibitory effect of ADSCs-Exos on intracellular ROS and MDA upregulation induced by high glucose in podocytes. CONCLUSION: ADSCs-Exos regulate the Nrf2/Keap1 pathway to alleviate inflammation and oxidative stress in DN by targeting FAM129B, which may provide a potential therapeutic strategy for DN.

13.
Food Sci Nutr ; 11(7): 4233-4245, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457170

ABSTRACT

The hard-shelled mussel (Mytilus coruscus) has been used as a traditional Chinese medicine and health food in China for centuries. Polysaccharides from mussel has been reported to have multiple biological functions, however, it remains unclear whether mussel polysaccharide (MP) exerts protective effects in intestinal functions, and the underlying mechanisms of action remain unclear. The aim of this study was to investigate the protective effects and mechanism of MP on intestinal oxidative injury in mice. In this study, 40 male BALB/C mice were used, with 30 utilized to produce an animal model of intestinal oxidative injury with intraperitoneal injection of cyclophosphamide (Cy) for four consecutive days. The protective effects of two different doses of MP (300 and 600 mg/kg) were assessed by investigating the change in body weight, visceral index, and observing colon histomorphology. Moreover, the underlying molecular mechanisms were investigated by measuring the antioxidant enzymes and related signaling molecules through ELISA, real-time PCR, and western blot methods. The results showed that MP pretreatment effectively protected the intestinal from Cy-induced injury: improved the colon tissue morphology and villus structure, increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, and reduced malondialdehyde (MDA) content in serum and colon tissues. Meanwhile, MP also significantly increased the expression levels of SOD, GSH-Px, heme oxygenase-1 (HO-1), and nuclear factor E2-related factor 2 (Nrf2) mRNA in colon tissues. Further, western blot results showed that the expression of Nrf2 protein was significantly upregulated while kelch-like ECH-associated protein 1 (Keap1) was significantly downregulated by MP in the colonic tissues. This study indicates that MP can ameliorate Cy-induced oxidative stress injury in mice, and Nrf2-Keap1 signaling pathway may mediate these protective effects.

14.
Sci Total Environ ; 890: 164395, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37257624

ABSTRACT

Chromium (Cr) is prevalently found in trivalent and hexavalent forms. Though the former is toxicologically benign due to its poor cellular permeability, hexavalent chromium i.e. Cr [VI] crosses the biological membrane and induces toxic effects in organisms. While Cr [VI] toxicity in humans is a subject of occupational exposure at industries involved in ferrochrome production, leather tanning, textile dyeing etc., aquatic abundance of Cr [VI] due to discharge of Cr-laden effluents by these industries lead to extensive toxicity in piscine species. The present review aims to discuss the mode of Cr [VI] entry in fish and the several inimical effects that it imparts on fish health. Such effects have been reported in various studies through behavioral, hormonal and hematological alterations. Bio-accumulation of Cr [VI] in vital organs and subsequent perturbation of the oxidative homeostasis leads to organotoxic effects like changes in organo-somatic indices and histo-architecture. At cellular level, Cr [VI] induced genotoxicity is often found to trigger cellular demise including apoptosis. This review also highlights the stress response in fish against Cr [VI] induced toxicity that is mediated through the expressional alteration of a myriad of anti-oxidant and xenobiotic-metabolizing proteins which is, in turn, a function of activated transcription programs including the Nrf2-ARE pathway.


Subject(s)
Chromium , Ecotoxicology , Humans , Animals , Chromium/toxicity , Fishes , Antioxidants
15.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978795

ABSTRACT

Oxidative stress is recognized as a significant contributor to the development and progression of inflammation and disruptions in the balance of gut microflora, commonly referred to as intestinal dysbiosis. It is crucial that safe and effective antioxidant and anti-inflammatory agents are identified to address these conditions. Ampelopsis grossedentata, a natural plant abundant in flavonoids and primarily found in southern China, has demonstrated potent antioxidant properties. However, the extent to which flavonoids in A. grossedentata impact intestinal inflammation and alter the composition of the gut microbiome remains to be fully understood. The purpose of this study was to explore the potential benefits of using A. grossedentata as an antioxidant and anti-inflammatory agent in the context of intestinal inflammation, both in vitro and in vivo. We first conducted an initial comparison of the effects of dihydromyricetin (DMY), an alcohol extract of A. grossedentata (AEA, 82% total flavonoids), and a water extract of A. grossedentata (WEA, 57% total flavonoids) on the cell viability and intestinal barrier integrity of porcine epithelial cells IPEC-J2. Although the total flavonoid content is much lower in WEA than in AEA, the results show that they have similar effects. Subsequently, the antioxidant properties of WEA were compared with those of commonly utilized antioxidants in vitro. Lastly, the antioxidant and anti-inflammatory properties of WEA, as well as its impacts on gut microbiota, were evaluated in animal models, including mice and Drosophila. In summary, the results of our study indicate that WEA, due to its antioxidant properties, exhibits a protective effect on the intestinal barrier function in porcine epithelial cell line IPEC-J2. Additionally, WEA demonstrates a positive correlation with DPPH, ABTS radical scavenging rate, FRAP, and reducing power under in vitro settings. Furthermore, WEA was shown to effectively alleviate oxidative stress in animal models by reducing the levels of pro-inflammatory cytokines and increasing the antioxidant enzyme activity in the liver, as well as by activating the Nrf2 signaling pathway in the duodenum. Additionally, WEA was able to regulate gut microbiota, promoting the growth of beneficial bacteria and inhibiting harmful microbes, as well as extending the lifespan of Drosophila. Overall, these findings suggest that WEA may serve as a valuable dietary supplement for addressing oxidative stress and inflammation through its anti-inflammatory and prebiotic effects, which are conferred via the Nrf2/Keap1 pathway.

16.
Cell Metab ; 35(3): 487-503.e7, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36841242

ABSTRACT

Multiple cancers regulate oxidative stress by activating the transcription factor NRF2 through mutation of its negative regulator, KEAP1. NRF2 has been studied extensively in KEAP1-mutant cancers; however, the role of this pathway in cancers with wild-type KEAP1 remains poorly understood. To answer this question, we induced NRF2 via pharmacological inactivation of KEAP1 in a panel of 50+ non-small cell lung cancer cell lines. Unexpectedly, marked decreases in viability were observed in >13% of the cell lines-an effect that was rescued by NRF2 ablation. Genome-wide and targeted CRISPR screens revealed that NRF2 induces NADH-reductive stress, through the upregulation of the NAD+-consuming enzyme ALDH3A1. Leveraging these findings, we show that cells treated with KEAP1 inhibitors or those with endogenous KEAP1 mutations are selectively vulnerable to Complex I inhibition, which impairs NADH oxidation capacity and potentiates reductive stress. Thus, we identify reductive stress as a metabolic vulnerability in NRF2-activated lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , NF-E2-Related Factor 2 , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , NAD/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Signal Transduction
17.
Antioxid Redox Signal ; 38(13-15): 959-973, 2023 05.
Article in English | MEDLINE | ID: mdl-36734409

ABSTRACT

Aims: T cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated Keap1-knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that Keap1-KO CD4+ T cell immunotherapy protects from kidney IRI. Results: CD4+ T cell Keap1-KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit. Keap1-KO cells displayed no signs of exhaustion, and had significantly lower levels of interleukin 2 (IL2) and IL6 in normoxic conditions, but increased interferon gamma in hypoxic conditions in vitro. In vivo, adoptive transfer of Keap1-KO CD4+ T cells before IRI improved kidney function in T cell-deficient nu/nu mice compared with mice receiving unedited control CD4+ T cells. Keap1-KO CD4+ T cells isolated from recipient kidneys 24 h post IR were less activated compared with unedited CD4+ T cells, isolated from control kidneys. Innovation: Editing Nrf2/Keap1 pathway in murine T cells using CRISPR/Cas9 is an innovative and promising immunotherapy approach for kidney IRI and possibly other solid organ IRI. Conclusion: CRISPR/Cas9-mediated Keap1-KO increased Nrf2-regulated antioxidant gene expression in murine CD4+ T cells, modified responses to in vitro hypoxia and in vivo kidney IRI. Gene editing targeting the Nrf2/Keap1 pathway in T cells is a promising approach for immune-mediated kidney diseases.


Subject(s)
Antioxidants , Reperfusion Injury , Mice , Animals , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , CRISPR-Cas Systems , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Gene Editing , Kidney/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Oxidative Stress
18.
Front Nutr ; 9: 961922, 2022.
Article in English | MEDLINE | ID: mdl-35938097

ABSTRACT

Chinese pond turtle is a traditional nourishing food with high nutritional value and bioactivity and has been considered a dietary remedy for prolonging the lifespan since ancient times. However, only limited information about their effects on longevity is available. This study was performed to assess the antioxidant activities and antiaging potential of Chinese pond turtle peptide (CPTP) using Drosophila melanogaster model and uncover the possible mechanisms underlying the beneficial effects. CPTP exhibited excellent antioxidant capability in vitro with IC 50 values of 3.31, 1.93, and 9.52 mg/ml for 1,1-diphenyl-2-pycryl-hydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazo-line-6-sulfonic acid) diammonium salt (ABTS), and hydroxyl radical scavenging, respectively. In vivo, 0.8% of CPTP significantly extended the mean and median lifespan of female flies by 7.66 and 7.85%, followed by enhanced resistance to oxidative and heat stress. Besides, CPTP remarkably increased the antioxidant enzyme activities and diminished the peroxide product accumulation. Furthermore, CPTP upregulated the relative mRNA expression of antioxidant-related genes, including nuclear factor-erythroid-2-like 2 (Nrf2) and its downstream target genes, while downregulated the expression of Kelch-like ECH-associated protein 1 (Keap1). Taken together, CPTP displayed promising potential in both antioxidant and antiaging effects on flies by targeting the Nrf2/Keap1 pathway. Further peptide sequence determination revealed that 89.23% of peptides from the identified sequences in CPTP could exert potential inhibitory effects on Keap1. Among these peptides, ten representative peptide sequences could actively interact with the binding sites of Keap1-Nrf2 interaction through hydrogen bonds, van der Walls, hydrophobic interactions, and electrostatic interactions. Conclusively, CPTP could be utilized as health-promoting bioactive peptide with antioxidant and antiaging capacities.

19.
Cells ; 11(15)2022 08 04.
Article in English | MEDLINE | ID: mdl-35954245

ABSTRACT

The NRF2-KEAP1 system is a fundamental component of the cellular response that controls a great variety of transcriptional targets that are mainly involved in the regulation of redox homeostasis and multiple cytoprotective mechanisms that confer adaptation to the stress conditions. The pleiotropic response orchestrated by NRF2 is particularly relevant in the context of oncogenic activation, wherein this transcription factor acts as a key driver of tumor progression and cancer cells' resistance to treatment. For this reason, NRF2 has emerged as a promising therapeutic target in cancer cells, stimulating extensive research aimed at the identification of natural, as well as chemical, NRF2 inhibitors. Excitingly, the influence of NRF2 on cancer cells' biology extends far beyond its mere antioxidant function and rather encompasses a functional crosstalk with the mitochondrial network that can influence crucial aspects of mitochondrial homeostasis, including biogenesis, oxidative phosphorylation, metabolic reprogramming, and mitophagy. In the present review, we summarize the current knowledge of the reciprocal interrelation between NRF2 and mitochondria, with a focus on malignant tumors and cancer stem cells.


Subject(s)
Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasms , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism
20.
Front Pharmacol ; 13: 969892, 2022.
Article in English | MEDLINE | ID: mdl-36034823

ABSTRACT

Cadmium (Cd) is a toxic heavy metal extensively used in industrial and agricultural production. Among the main mechanisms of Cd-induced liver damage is oxidative stress. Quercetin (QE) is a natural antioxidant. Herein, the protective effect of QE on Cd-induced hepatocyte injury was investigated. BRL-3A cells were treated with 12.5 µmol/L CdCl2 and/or 5 µmol/L QE for 24 h. The cells and medium supernatant were collected, and the ALT, AST, and LDH contents of the medium supernatant were detected. The activities or contents of SOD, CAT, GSH, and MDA in cells were determined. Intracellular ROS levels were examined by flow cytometry. Apoptosis rate and mitochondrial-membrane potential (ΔΨm) were detected by Hoechst 33,258 and JC-1 methods, respectively. The mRNA and protein expression levels of Nrf2, NQO1, Keap1, CytC, caspase-9, caspase-3, Bax, and Bcl-2 were determined by real-time PCR (RT-PCR) and Western blot methods. Results showed that Cd exposure injured BRL-3A cells, the activity of antioxidant enzymes decreased and the cell ROS level increased, whereas the ΔΨm decreased, and the expression of apoptotic genes increased. Cd inhibited the Nrf2-Keap1 pathway, decreased Nrf2 and NQO1, or increased Keap1 mRNA and protein expression. Through the combined action of Cd and QE, QE activated the Nrf2-Keap1 pathway. Consequently, antioxidant-enzyme activity decreased, cellular ROS level decreased, ΔΨm increased, Cd-induced BRL-3A cell damage was alleviated, and cell apoptosis was inhibited. After the combined action of QE and Cd, Nrf2 and NQO1 mRNA and protein expression increased, Keap1 mRNA and protein expression decreased. Therefore, QE exerted an antioxidant effect by activating the Nrf2-Keap1 pathway in BRL-3A cells.

SELECTION OF CITATIONS
SEARCH DETAIL