Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Angew Chem Int Ed Engl ; : e202410799, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185606

ABSTRACT

Dithiolopyrrolone (DTP) natural products are produced by several different bacteria and have potent antibacterial, antifungal and anticancer activities. While the amide of their DTP core can be methylated to fine-tune bioactivity, the enzyme responsible for the amide N-methylation has remained elusive in most taxa. Here, we identified the amide methyltransferase XrdM that is responsible for xenorhabdin (XRD) methylation in Xenorhabdus doucetiae but encoded outside of the XRD gene cluster. XrdM turned out to be isofunctional with the recently reported methyltransferase DtpM, that is involved in the biosynthesis of the DTP thiolutin, although its X-ray structure is unrelated to that of DtpM. To investigate the structural basis for ligand binding in both enzymes, we used X-ray crystallography, modeling, site-directed mutagenesis, and kinetic activity assays. Our study expands the limited knowledge of post-non-ribosomal peptide synthetase (NRPS) amide methylation in DTP biosynthesis and reveals an example of convergent evolution of two structurally completely different enzymes for the same reaction in different organisms.

2.
Methods Enzymol ; 702: 1-19, 2024.
Article in English | MEDLINE | ID: mdl-39155107

ABSTRACT

The biosynthesis of many bacterial siderophores employs a member of a family of ligases that have been defined as NRPS-independent siderophore (NIS) synthetases. These NIS synthetases use a molecule of ATP to produce an amide linkage between a carboxylate and an amine. Commonly used carboxylate substrates include citrate or α-ketoglutarate, or derivatives thereof, while the amines are often hydroxamate derivatives of lysine or ornithine, or their decarboxylated forms cadaverine and putrescine. Enzymes that employ three substrates to catalyze a reaction may proceed through alternate mechanisms. Some enzymes use sequential mechanisms in which all three substrates bind prior to any chemical steps. In such mechanisms, substrates can bind in a random, ordered, or mixed fashion. Alternately, other enzymes employ a ping-pong mechanism in which a chemical step occurs prior to the binding of all three substrates. Here we describe an enzyme assay that will distinguish among these different mechanisms for the NIS synthetase, using IucA, an enzyme involved in the production of aerobactin, as the model system.


Subject(s)
Peptide Synthases , Siderophores , Siderophores/metabolism , Siderophores/chemistry , Peptide Synthases/metabolism , Peptide Synthases/chemistry , Kinetics , Substrate Specificity , Enzyme Assays/methods , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Ketoglutaric Acids/metabolism , Ligases/metabolism , Ligases/chemistry
3.
Methods Enzymol ; 702: 89-119, 2024.
Article in English | MEDLINE | ID: mdl-39155122

ABSTRACT

Non-ribosomal peptide synthesis produces a wide range of bioactive peptide natural products and is reliant on a modular architecture based on repeating catalytic domains able to generate diverse peptide sequences. In this chapter we detail an in vitro biochemical assay to explore the substrate specificity of condensation domains, which are responsible for peptide elongation, from the biosynthetic machinery that produces from the siderophore fuscachelin. This assay removes the requirement to utilise the specificity of adjacent adenylation domains and allows the acceptance of a wide range of synthetic substrates to be explored.


Subject(s)
Siderophores , Substrate Specificity , Siderophores/chemistry , Siderophores/biosynthesis , Peptide Synthases/metabolism , Peptide Synthases/chemistry , Peptide Synthases/genetics , Peptides/chemistry , Peptides/metabolism , Peptide Biosynthesis, Nucleic Acid-Independent , Catalytic Domain
4.
ACS Synth Biol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116310

ABSTRACT

Epoxomicin is an epoxyketone proteasome inhibitor with synthetic derivatives approved or under investigation for treatment of multiple myeloma. To leverage the advantages of Escherichia coli as a rapidly growing and readily engineered host for the production of epoxomicin and analogues, we expressed codon-optimized versions of the epoxomicin biosynthetic genes, epxD, epxE, and epxF. Epoxomicin was detected, but the major product was a ketone resulting from α,ß-keto acid precursor decarboxylation. Epoxomicin yield was improved by altering the copy numbers of each gene and creating a fusion of epxE and epxF. Our optimized system offers promise for efficient engineering and biosynthesis of improved epoxomicin analogues.

5.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071397

ABSTRACT

Moon Snails lay eggs using a mixture of mucus and sediment to form an egg mass commonly referred to as an egg collar. These collars do not appear to experience micro-biofouling or predation and this observation led us to hypothesize that the egg collars possess a chemically-rich microbiota that protect the egg collars from pathogens. Herein, we sought to gain an understanding of the bacterial composition of the egg collars by amplifying and sequencing the 16S rRNA gene from egg collar and sediment samples collected at four distinct geographical regions in SW Florida. Relative abundance and non-metric multidimensional scaling plots revealed distinct differences in the bacterial composition between the egg collar and sediment samples. In addition, the egg collars had a lower α-diversity than the sediment, with specific genera being significantly enriched in the egg collars. Analysis of microorganisms consistent across two seasons suggests that Flavobacteriaceae make up a large portion of the core microbiota (36 - 58% of 16S sequences). We also investigated the natural product potential of the egg collar microbiota by sequencing a core biosynthetic gene, the adenylation domains (AD), within the gene clusters of non-ribosomal peptide synthetase (NRPS). AD sequences matched multiple modules within known bioactive NRPs biosynthetic gene clusters, suggesting production is possible within the egg collar system and lays the foundation for future studies into the chemical and ecological role of this microbiota.

6.
J Biol Chem ; 300(8): 107489, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908753

ABSTRACT

Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation, and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain of SulM, which catalyzes an unusual ß-lactam-forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the monobactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The position of variant lid helices results in an active site pocket that is quite constrained, a feature that is likely necessary to orient the substrate properly for ß-lactam formation. Modeling of a sulfazecin tripeptide into the active site identifies a plausible binding mode identifying potential interactions for the sulfamate and the peptide backbone with Arg2849 and Asn2819, respectively. The overall structure is similar to the ß-lactone-forming thioesterase domain that is responsible for similar ring closure in the production of obafluorin. We further use these insights to enable bioinformatic analysis to identify additional, uncharacterized ß-lactam-forming biosynthetic gene clusters by genome mining.


Subject(s)
Bacterial Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Domains , Catalytic Domain , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/genetics , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Peptide Synthases/genetics , Crystallography, X-Ray , Models, Molecular
7.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731473

ABSTRACT

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Subject(s)
Multigene Family , Peptide Synthases , Polyketide Synthases , Streptomyces , Streptomyces/genetics , Streptomyces/enzymology , Streptomyces/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Peptide Synthases/metabolism , Peptide Synthases/genetics , Peptide Synthases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
8.
Microb Cell Fact ; 23(1): 144, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773450

ABSTRACT

Fengycin is an important member of the lipopeptide family with a wide range of applications in the agricultural, food, medical and cosmetic industries. However, its commercial application is severely hindered by low productivity and high cost. Therefore, numerous studies have been devoted to improving the production of fengycin. We summarize these studies in this review with the aim of providing a reference and guidance for future researchers. This review begins with an overview of the synthesis mechanism of fengycin via the non-ribosomal peptide synthetases (NRPS), and then delves into the strategies for improving the fengycin production in recent years. These strategies mainly include fermentation optimization and metabolic engineering, and the metabolic engineering encompasses enhancement of precursor supply, application of regulatory factors, promoter engineering, and application of genome-engineering (genome shuffling and genome-scale metabolic network model). Finally, we conclude this review with a prospect of fengycin production.


Subject(s)
Lipopeptides , Metabolic Engineering , Metabolic Engineering/methods , Lipopeptides/biosynthesis , Lipopeptides/metabolism , Fermentation , Peptide Synthases/genetics , Peptide Synthases/metabolism
9.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 825-832, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38686460

ABSTRACT

Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.


Subject(s)
Fungi , Fungi/metabolism , Fungi/genetics , Secondary Metabolism , Carbon/metabolism , Biological Control Agents/metabolism , Pest Control, Biological/methods , Nitrogen/metabolism , Animals , Metabolomics/methods
10.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38617275

ABSTRACT

Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain that catalyzes an unusual ß-lactam forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the ß-lactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The structure illustrates a constrained active site that orients the substrate properly for ß-lactam formation. In this regard, the structure is similar to the ß-lactone forming thioesterase domain responsible for the production of obafluorin. Analysis of the structure identifies features that are responsible for this four-membered ring closure and enable bioinformatic analysis to identify additional, uncharacterized ß-lactam-forming biosynthetic gene clusters by genome mining.

11.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673861

ABSTRACT

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Subject(s)
Arabidopsis , Betaine , Peptide Synthases , Tylenchoidea , Betaine/metabolism , Animals , Tylenchoidea/metabolism , Tylenchoidea/genetics , Arabidopsis/parasitology , Arabidopsis/metabolism , Arabidopsis/genetics , Peptide Synthases/metabolism , Peptide Synthases/genetics , Host-Parasite Interactions , Plant Diseases/parasitology , Helminth Proteins/metabolism , Helminth Proteins/genetics , Nematoda/metabolism , Nematoda/genetics
12.
Angew Chem Int Ed Engl ; 63(20): e202317753, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38488324

ABSTRACT

In multi-domain nonribosomal peptide synthetases (NRPSs) the order of domains and their catalytic specificities dictate the structure of the peptide product. Peptidyl-carrier proteins (PCPs) bind activated amino acids and channel elongating peptidyl intermediates along the protein template. To this end, fine-tuned interactions with the catalytic domains and large-scale PCP translocations are necessary. Despite crystal structure snapshots of several PCP-domain interactions, the conformational dynamics under catalytic conditions in solution remain poorly understood. We report a FRET reporter of gramicidin S synthetase 1 (GrsA; with A-PCP-E domains) to study for the first time the interaction between PCP and adenylation (A) domain in the presence of an epimerization (E) domain, a competing downstream partner for the PCP. Bulk FRET measurements showed that upon PCP aminoacylation a conformational shift towards PCP binding to the A domain occurs, indicating the E domain acts on its PCP substrate out of a disfavored conformational equilibrium. Furthermore, the A domain was found to preferably bind the D-Phe-S-Ppant-PCP stereoisomer, suggesting it helps in establishing the stereoisomeric mixture in favor of the D-aminoacyl moiety. These observations surprisingly show that the conformational logic can deviate from the order of domains and thus reveal new principles in the multi-domain interplay of NRPSs.


Subject(s)
Fluorescence Resonance Energy Transfer , Peptide Synthases , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism
13.
Sci Rep ; 14(1): 5676, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38453942

ABSTRACT

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Subject(s)
Actinobacteria , Nocardia , Nocardia/genetics , Nocardia/metabolism , Siderophores/metabolism , Ecosystem , Antifungal Agents/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Actinobacteria/metabolism , Iron/metabolism , Bacteria/metabolism , Genomics , Metabolome , Soil
14.
Small ; 20(28): e2309882, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342670

ABSTRACT

Negative therapeutic feedback of inflammation would extensively attenuate the antitumor effect of photodynamic therapy (PDT). In this work, tumor homing chimeric peptide rhomboids (designated as NP-Mel) are fabricated to improve photodynamic performance by inhibiting PDT-upregulated cyclooxygenase-2 (COX-2). The hydrophobic photosensitizer of protoporphyrin IX (PpIX) and palmitic acid are conjugated onto the neuropilin receptors (NRPs) targeting peptide motif (CGNKRTR) to obtain tumor homing chimeric peptide (Palmitic-K(PpIX)CGNKRTR), which can encapsulate the COX-2 inhibitor of meloxicam. The well dispersed NP-Mel not only improves the drug stability and reactive oxygen species (ROS) production ability, but also increase the breast cancer targeted drug delivery to intensify the PDT effect. In vitro and in vivo studies verify that NP-Mel will decrease the secretion of prostaglandin E2 (PGE2) after PDT treatment, inducing the downregulation of IL-6 and TNF-α expressions to suppress PDT induced inflammation. Ultimately, an improved PDT performance of NP-Mel is achieved without inducing obvious systemic toxicity, which might inspire the development of sophisticated nanomedicine in consideration of the feedback induced therapeutic resistance.


Subject(s)
Cyclooxygenase 2 , Peptides , Photochemotherapy , Photochemotherapy/methods , Cyclooxygenase 2/metabolism , Peptides/chemistry , Peptides/pharmacology , Animals , Humans , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism , Female , Meloxicam/pharmacology , Meloxicam/therapeutic use , Mice , Protoporphyrins/chemistry , Protoporphyrins/pharmacology , Dinoprostone/metabolism
15.
Appl Environ Microbiol ; 90(3): e0211523, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38323847

ABSTRACT

Iron is essential to many biological processes but its poor solubility in aerobic environments restricts its bioavailability. To overcome this limitation, bacteria have evolved a variety of strategies, including the production and secretion of iron-chelating siderophores. Here, we describe the discovery of four series of siderophores from Streptomyces ambofaciens ATCC23877, three of which are unprecedented. MS/MS-based molecular networking revealed that one of these series corresponds to acylated desferrioxamines (acyl-DFOs) recently identified from S. coelicolor. The remaining sets include tetra- and penta-hydroxamate acyl-DFO derivatives, all of which incorporate a previously undescribed building block. Stable isotope labeling and gene deletion experiments provide evidence that biosynthesis of the acyl-DFO congeners requires unprecedented crosstalk between two separate non-ribosomal peptide synthetase (NRPS)-independent siderophore (NIS) pathways in the producing organism. Although the biological role(s) of these new derivatives remain to be elucidated, they may confer advantages in terms of metal chelation in the competitive soil environment due to the additional bidentate hydroxamic functional groups. The metabolites may also find application in various fields including biotechnology, bioremediation, and immuno-PET imaging.IMPORTANCEIron-chelating siderophores play important roles for their bacterial producers in the environment, but they have also found application in human medicine both in iron chelation therapy to prevent iron overload and in diagnostic imaging, as well as in biotechnology, including as agents for biocontrol of pathogens and bioremediation. In this study, we report the discovery of three novel series of related siderophores, whose biosynthesis depends on the interplay between two NRPS-independent (NIS) pathways in the producing organism S. ambofaciens-the first example to our knowledge of such functional cross-talk. We further reveal that two of these series correspond to acyl-desferrioxamines which incorporate four or five hydroxamate units. Although the biological importance of these novel derivatives is unknown, the increased chelating capacity of these metabolites may find utility in diagnostic imaging (for instance, 89Zr-based immuno-PET imaging) and other applications of metal chelators.


Subject(s)
Deferoxamine , Peptide Synthases , Siderophores , Humans , Siderophores/metabolism , Deferoxamine/metabolism , Tandem Mass Spectrometry , Iron/metabolism , Hydroxamic Acids
16.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397022

ABSTRACT

Piperazic acid is a cyclic nonproteinogenic amino acid that contains a hydrazine N-N bond formed by a piperazate synthase (KtzT-like). This amino acid, found in bioactive natural products synthesized by non-ribosomal peptide synthetases (NRPSs), confers conformational constraint to peptides, an important feature for their biological activities. Genome mining of Streptomyces strains has been revealed as a strategy to identify biosynthetic gene clusters (BGCs) for potentially active compounds. Moreover, the isolation of new strains from underexplored habitats or associated with other organisms has allowed to uncover new BGCs for unknown compounds. The in-house "Carlos Sialer (CS)" strain collection consists of seventy-one Streptomyces strains isolated from the cuticle of leaf-cutting ants of the tribe Attini. Genomes from twelve of these strains have been sequenced and mined using bioinformatics tools, highlighting their potential to encode secondary metabolites. In this work, we have screened in silico those genomes, using KtzT as a hook to identify BGCs encoding piperazic acid-containing compounds. This resulted in uncovering the new BGC dpn in Streptomyces sp. CS113, which encodes the biosynthesis of the hybrid polyketide-depsipeptide diperamycin. Analysis of the diperamycin polyketide synthase (PKS) and NRPS reveals their functional similarity to those from the aurantimycin A biosynthetic pathway. Experimental proof linking the dpn BGC to its encoded compound was achieved by determining the growth conditions for the expression of the cluster and by inactivating the NRPS encoding gene dpnS2 and the piperazate synthase gene dpnZ. The identity of diperamycin was confirmed by High-Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR) and by analysis of the domain composition of modules from the DpnP PKS and DpnS NRPS. The identification of the dpn BGC expands the number of BGCs that have been confirmed to encode the relatively scarcely represented BGCs for depsipeptides of the azinothricin family of compounds and will facilitate the generation of new-to-nature analogues by combinatorial biosynthesis.


Subject(s)
Depsipeptides , Pyridazines , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Antimicrobial Cationic Peptides/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Multigene Family , Depsipeptides/genetics , Depsipeptides/metabolism , Amino Acids/metabolism
17.
Sci Rep ; 14(1): 4022, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38369550

ABSTRACT

This paper presents a family of four-port electronic circulators adhering to a new topology symmetry that enables linear, low-loss transistor-based circuit implementations. The underlying principle of operation employs a property of the [Formula: see text] non-reciprocal phase shifter (NRPS) derived in this article. Under quadrature excitation, the NRPS transfers or reflects exciting signals depending on their respective phase lead. The fundamental topology consists of two back-to-back quadrature hybrid couplers with a [Formula: see text] NRPS connected in parallel over the line of symmetry, interrupting the circuit's reciprocity to achieve circular propagation by bypassing or reflecting at the NRPS but not through. We break down the circuit into three fundamental four-port sub-circuits. The transfer function of the cascaded sub-circuits enables an analysis with specific hybrid couplers. It also allows a synthesis of other four-port passive sub-circuits that, with an NRPS, achieve a four-port circulator transfer function by solving a matrix equation. Some of the mathematical solutions have circuit realizations, which are adjusted quadrature hybrid structures that differ from each other by the characteristic impedance of their arms. Two familiar solutions, including the standard quadrature hybrid and a modified design with equal [Formula: see text], [Formula: see text] arms, are simulated utilizing lossless lumped element arms and a 4-Path, 65-nm NMOS [Formula: see text] NRPS. The simulation results verify the theoretical analysis and enable a comparison between the performance of the two circuit solutions around 1 GHz. The four-port circulator with equal arms is implemented on a PCB and measured, yielding better than 1.5 dB insertion loss between the circulator ports, over 17 dB port-to-port reverse isolation, and better than 20 dBr port matching around 1 GHz.

18.
J Agric Food Chem ; 72(7): 3560-3571, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38340066

ABSTRACT

The formation of the trapping device induced by nematodes has been assumed as an indicator for a switch from saprophytic to predacious lifestyles for nematode-trapping fungi. However, fungal nematocidal activity is not completely synonymous with fungal trap formation. We found that the predominant nematode-trapping fungus Arthrobotrys oligospora harbored a rare NRPS (Ao415) gene cluster that was mainly distributed in nematode-trapping fungi. The gene Ao415 putatively encodes a protein with a unique domain organization, distinct from other NRPSs in other fungi. Mutation of the two key biosynthetic genes Ao415 and Ao414 combined with nontarget metabolic analysis revealed that the Ao415 gene cluster was responsible for the biosynthesis of a hydroxamate siderophore, desferriferrichrome (1). Lack of desferriferrichrome (1) and its hydroxamate precursor (3) could lead to significantly increased Fe3+ content, which induced fungal trap formation without a nematode inducer. Furthermore, the addition of Fe3+ strongly improved fungal trap formation but deleteriously caused broken traps. The addition of 1 significantly attenuated trap formation but enhanced fungal nematicidal activity. Our findings indicate that iron is a key factor for trap formation and provide a new insight into the underlying mechanism of siderophores in nematode-trapping fungi.


Subject(s)
Ascomycota , Nematoda , Animals , Nematoda/microbiology , Antinematodal Agents/pharmacology , Antinematodal Agents/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Multigene Family
19.
Structure ; 32(4): 440-452.e4, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38340732

ABSTRACT

Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.


Subject(s)
Microcystins , Peptide Synthases , Peptide Synthases/chemistry , Molecular Conformation , Peptides
20.
Appl Microbiol Biotechnol ; 108(1): 64, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38189957

ABSTRACT

Wheat and barley rank among the main crops cultivated on a global scale, providing the essential nutritional foundation for both humans and animals. Nevertheless, these crops are vulnerable to several fungal diseases, such as Septoria tritici blotch and net blotch, which significantly reduce yields by adversely affecting leaves and grain quality. To mitigate the effect of these diseases, chemical fungicides have proven to be genuinely effective; however, they impose a serious environmental burden. Currently, biocontrol agents have attracted attention as a sustainable alternative to fungicides, offering an eco-friendly option. The study aimed to assess the efficacy of Bacillus velezensis BE2 in reducing disease symptoms caused by Zymoseptoria tritici and Pyrenophora teres. This bacterium exhibited significant antagonistic effects in vitro by suppressing fungal development when pathogens and the beneficial strain were in direct confrontation. These findings were subsequently confirmed through microscopic analysis, which illustrated the strain's capacity to inhibit spore germination and mycelial growth in both pathogens. Additionally, the study analysed the cell-free supernatant of the bacterium using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry). The results revealed that strain BE2 produces, among other metabolites, different families of cyclic lipopeptides that may be involved in biocontrol. Furthermore, the beneficial effects of strain BE2 in planta were assessed by quantifying the fungal DNA content directly at the leaf level after bacterization, using two different application methods (foliar and drenching). The results indicated that applying the beneficial bacterium at the root level significantly reduced pathogens pressure. Finally, gene expression analysis of different markers showed that BE2 application induced a priming effect within the first hours after infection. KEY POINTS: • BE2 managed Z. tritici and P. teres by direct antagonism and induced systemic resistance. • Strain BE2 produced seven metabolite families, including three cyclic lipopeptides. • Application of strain BE2 at the root level triggered plant defense mechanisms.


Subject(s)
Fungicides, Industrial , Hordeum , Plant Diseases , Chromatography, Liquid , Crops, Agricultural , Lipopeptides , Plant Systemic Acquired Resistance , Tandem Mass Spectrometry , Triticum , Plant Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL