Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Med ; 13(12): e7393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923428

ABSTRACT

INTRODUCTION: A neurotrophic tropomyosin receptor kinase (NTRK)-tyrosine kinase inhibitor (TKI) has shown dramatic efficacy against malignant tumors harboring an NTRK fusion gene. However, almost all tumors eventually acquire resistance to NTRK-TKIs. METHOD: To investigate the mechanism of resistance to NTRK-TKIs, we established cells resistant to three types of NTRK-TKIs (larotrectinib, entrectinib, and selitrectinib) using KM12 colon cancer cells with a TPM3-NTRK1 rearrangement. RESULT: Overexpression of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was observed in three resistant cells (KM12-LR, KM12-ER, and KM12-SR) by microarray analysis. Lower expression of sterol regulatory element-binding protein 2 (SREBP2) and peroxisome proliferator activated receptor α (PPARα) was found in two cells (KM12-ER and KM12-SR) in which HMGCS2 was overexpressed compared to the parental KM12 and KM12-LR cells. In resistant cells, knockdown of HMGCS2 using small interfering RNA improved the sensitivity to NTRK-TKI. Further treatment with mevalonolactone after HMGCS2 knockdown reintroduced the NTRK-TKI resistance. In addition, simvastatin and silibinin had a synergistic effect with NTRK-TKIs in resistant cells, and delayed tolerance was observed after sustained exposure to clinical concentrations of NTRK-TKI and simvastatin in KM12 cells. In xenograft mouse models, combination treatment with entrectinib and simvastatin reduced resistant tumor growth compared with entrectinib alone. CONCLUSION: These results suggest that HMGCS2 overexpression induces resistance to NTRK-TKIs via the mevalonate pathway in colon cancer cells. Statin inhibition of the mevalonate pathway may be useful for overcoming this mechanistic resistance.


Subject(s)
Drug Resistance, Neoplasm , Mevalonic Acid , Protein Kinase Inhibitors , Animals , Humans , Mice , Benzamides/pharmacology , Benzamides/therapeutic use , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Indazoles/pharmacology , Indazoles/therapeutic use , Mevalonic Acid/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptor, trkA/metabolism , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL