Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Beilstein J Nanotechnol ; 15: 631-637, 2024.
Article in English | MEDLINE | ID: mdl-38887528

ABSTRACT

In this study, we present a novel approach for the exfoliation of titanium nitride (TiN) powders utilizing a rapid, facile, and environmentally friendly non-thermal plasma method. This method involves the use of an electric arc and nitrogen as the ambient gas at room temperature to generate ionized particles. These ionized species interact with the ceramic crystal of TiN, resulting in a pronounced structural expansion. The exfoliated TiN products were comprehensively characterized using transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Remarkably, the cubic crystal structure of TiN was effectively retained, while the (200) crystal plane d-spacing increased from 2.08 to 3.09 Å, accompanied by a reduction in crystallite size and alterations in Raman vibrational modes. Collectively, these findings provide compelling evidence for the successful exfoliation of TiN structures using our innovative non-thermal plasma method, opening up exciting possibilities for advanced material applications.

2.
Small ; 20(40): e2400650, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38566534

ABSTRACT

Holey graphenic nanomaterials with porosity within the basal plane attract significant interest. It is observed that the perforation of graphene can enhance the specific surface area of the nanosheet, ensuring effective wetting and penetration of electrolytes to the electrode surface, facilitating rapid charge transfer, and boosting the electrocatalytic efficacy of the transducers. This study reports the first example of nitrogen-doped holey reduced graphene oxide with a mesoporous morphology of the graphene basal plane (N-MHG). It is shown that N-MHG can be synthesized through a one-step hydrothermal treatment of GO using NH3 and H2O2. A straightforward procedure for the purification of N-MHG has also been developed. AFM, TEM, and Raman analyses have revealed that N-MHG possesses a highly mesoporous network structure with a pore size ranging from 10 to 50 nm. X-ray photoelectron spectroscopy data have indicated a partial reduction of the graphene oxide sheets during the etching process but also show a 3-5 times higher content of C═O and O-C═O fragments compared to rGO. This could account for the remarkable stability of the N-MHG aqueous suspension. An electrochemical sensor for dopamine analysis is assembled on a glassy carbon electrode with N-MHG/Nafion membrane and characterized by cyclic voltammetry and electrochemical impedance spectroscopy.

3.
Environ Sci Pollut Res Int ; 30(53): 113481-113493, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37851262

ABSTRACT

Graphene-based materials have increasingly attracted attention in recent years. It is a material is recognized worldwide due to its numerous applications in several sectors. However, graphene production involves several challenges: scalability, high costs, and high-quality production. This study synthesized graphene-like porous carbon nanosheets (GPCNs) through a thermochemical process under a nitrogen atmosphere using grape bagasse as a precursor. Three temperatures (700, 800, and 900 ºC) of the pyrolysis process were studied. Chemical graphitization and activation were used to form high-specific surface area materials: FeCl3.6H2O(aq) and ZnCl2(s) in a simultaneous activation-graphitization (SAG) method. The materials obtained (GPCN700, GPCN800, and GPCN900) were compared to previously produced chars (C700, C800, and C900). A high specific surface area and total pore volume were obtained for GPCN materials, and GPCN900 presented the highest values: 1062.7 m2g-1 and 0.635 cm3 g-1, respectively. The GPCN and char materials were classified as mesoporous and applied as adsorbents for CO2(g). The GPCN800 presented the best CO2(g) adsorbent, with a CO2(g) adsorption capacity of 168.71 mg g-1.


Subject(s)
Graphite , Vitis , Carbon , Carbon Dioxide , Porosity
4.
Int J Mol Sci ; 24(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37834327

ABSTRACT

Experimental studies of TiO2 nanotubes have been conducted for nearly three decades and have revealed the remarkable advantages of this material. Research based on computer simulations is much rarer, with research using density functional theory (DFT) being the most significant in this field. It should be noted, however, that this approach has significant limitations when studying the macroscopic properties of nanostructures such as nanosheets and nanotubes. An alternative with great potential has emerged: classical molecular dynamics simulations (MD). MD Simulations offer the possibility to study macroscopic properties such as the density of phonon states (PDOS), power spectra, infrared spectrum, water absorption and others. From this point of view, the present study focuses on the distinction between the phases of anatase and rutile TiO2. The LAMMPS package is used to study both the structural properties by applying the radial distribution function (RDF) and the electromagnetic properties of these phases. Our efforts are focused on exploring the effect of temperature on the vibrational properties of TiO2 anatase nanotubes and an in-depth analysis of how the phononic softening phenomenon affects TiO2 nanostructures to improve the fundamental understanding in different dimensions and morphological configurations. A careful evaluation of the stability of TiO2 nanolamines and nanotubes at different temperatures is performed, as well as the adsorption of water on the nanosurface of TiO2, using three different water models.


Subject(s)
Nanostructures , Water , Temperature , Water/chemistry , Titanium/chemistry
5.
Polymers (Basel) ; 15(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688239

ABSTRACT

Steady growth in beer production is increasing the number of by-products named brewers' spent grain. Such by-products are a source of several components, where cellulose is usually present in high amounts. The aim of this study was to develop a protocol to obtain a mix of cellulose microfibers with an average diameter of 8-12 µm and cellulose nanoplatelets with an average thickness of 100 nm, which has several applications in the food industry. The process comprised one alkaline treatment followed by acid hydrolysis, giving a new mix of micro and nanocellulose. This mix was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and laser scanning microscopy corroborating the presence and measurements of the cellulose nanostructure, showing an aspect ratio of up to 500. Finally, we demonstrated that the administration of this new type of nanocellulose allowed us to control the weight of mice (feed intake), showing a significant percentage of weight reduction (4.96%) after 15 days compared with their initial weight, indicating the possibility of using this material as a dietary fiber.

6.
Pharmaceutics ; 13(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34834218

ABSTRACT

Researchers in cancer nanomedicine are exploring a revolutionary multifaceted carrier for treatment and diagnosis, resulting in the proposal of various drug cargos or "magic bullets" in this past decade. Even though different nano-based complexes are registered for clinical trials, very few products enter the final stages each year because of various issues. This prevents the formulations from entering the market and being accessible to patients. In the search for novel materials, the exploitation of 2D nanosheets, including but not limited to the highly acclaimed graphene, has created extensive interest for biomedical applications. A unique set of properties often characterize 2D materials, including semiconductivity, high surface area, and their chemical nature, which allow simple decoration and functionalization procedures, structures with high stability and targeting properties, vectors for controlled and sustained release of drugs, and materials for thermal-based therapies. This review discusses the challenges and opportunities of recently discovered 2D nanosheets for cancer therapeutics, with special attention paid to the most promising design technologies and their potential for clinical translation in the future.

7.
Polymers (Basel) ; 13(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641197

ABSTRACT

Carbon nanostructures application, such as graphene (Gr) and graphene oxide (GO), provides suitable efforts for new material acquirement in biomedical areas. By aiming to combine the unique physicochemical properties of GO to Poly L-lactic acid (PLLA), PLLA-GO filaments were produced and characterized by X-ray diffraction (XRD). The in vivo biocompatibility of these nanocomposites was performed by subcutaneous and intramuscular implantation in adult Wistar rats. Evaluation of the implantation inflammatory response (21 days) and mesenchymal stem cells (MSCs) with PLLA-GO took place in culture for 7 days. Through XRD, new crystallographic planes were formed by mixing GO with PLLA (PLLA-GO). Using macroscopic analysis, GO implanted in the subcutaneous region showed particles' organization, forming a structure similar to a ribbon, without tissue invasion. Histologically, no tissue architecture changes were observed, and PLLA-GO cell adhesion was demonstrated by scanning electron microscopy (SEM). Finally, PLLA-GO nanocomposites showed promising results due to the in vivo biocompatibility test, which demonstrated effective integration and absence of inflammation after 21 days of implantation. These results indicate the future use of PLLA-GO nanocomposites as a new effort for tissue engineering (TE) application, although further analysis is required to evaluate their proliferative capacity and viability.

8.
Nanotechnology ; 33(3)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34433140

ABSTRACT

Nowadays, hexagonal boron nitride nanosheets (h-BNNS) have shown promising results among 2D nanomaterials. A great effort has been made in recent years to obtain h-BNNS with a high-yield process to enable its large-scale application in industrial plants. In this work, we developed a mechanochemical method for obtaining h-BN nanosheets assisted by NaOH aqueous solution as process aid and aimed the ideal balance between yield, quality and process sustainability. Images obtained by transmission electron microscope suggested a great exfoliation of the h-BNNS in the range of 12-38 layers observed for well dispersed nanosheets. The macroscopic stability study, the polydispersity index, hydrodynamic diameter, and Zeta potential measurements suggested that material prepared in autoclave and ball milling followed by tip sonication process at 40 °C (h-BNNS-T40) could be considered the most promising material. The process used in this case reached a yield of about 37% of nanosheets with an optimal balance between quality and practicality. A hybrid lamellar material was also prepared by drop-casting and dip-coating techniques. An increase on thermal stability in oxidizing atmosphere was observed with respect to the pure graphene oxide (GO). Fourier transformation infrared spectroscopy and RAMAN suggested the presence of chemical interactions between h-BNNS and GO in the hybrid. This fact supports the interest of extending the study of this hybrid (which has an easy preparation method) to further explore its applicability.

9.
J Colloid Interface Sci ; 555: 373-382, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31398565

ABSTRACT

In recent years, electrochemical energy devices, i.e. batteries, fuel cells, solar cells, and supercapacitors, have attracted considerable attention of scientific community. The architecture of active materials plays a crucial role for improving supercapacitors performance. Herein, titanium dioxide (TiO2) nanofibers (1D) have been synthesized by electrospinning process and used as a backbone to manganese dioxide (MnO2) nanosheets (2D) growth through hydrothermal method. This strategy allows the obtaining of 1D/2D heterostructure architecture, which has demonstrated superior electrochemical performance in relation to pristine MnO2. The highest electrochemical performance is due to the synergic effect between the metal oxides, where TiO2 nanofibers provide electrochemical stability for active MnO2 phase. Thus, the designed TiO2@MnO2 structure can reach maximum specific capacitance of 525 F·g-1 at a current density of 0.25 A·g-1, and it demonstrates an excellent stability by retaining 81% of the initial capacitance with coulombic efficiency of 91%. Therefore, the novel architecture of TiO2@MnO2 based on nanofibers and nanosheets exhibits superior electrochemical properties to be used in supercapacitor applications.

10.
Carbohydr Polym ; 188: 213-220, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29525158

ABSTRACT

A novel nanostructured material was successfully developed by combining a chitin matrix with graphene oxide nanosheets (Chi:nGO) and then used for the continuous flow adsorption of ciprofloxacin. The spectroscopic characterization indicated that none covalent interaction between both components would be occurring and the introduction of nGO did not interfere in chitin nanostructure rearrangement during gelling and later drying. SEM images and Mercury Intrusion Porosimetry results showed a wide pore size distribution ranging from nano to micrometers. The continuous flow adsorption was observed to be dependent on the pH which affects the electrostatic interaction. The flow rate, Na+ concentration and water hardness were evaluated to describe the adsorption process. The resistance to alkali allowed to regenerate and reuse the column for subsequent adsorption cycles. Finally, ciprofloxacin spiked real water samples were assessed and the results confirmed that the medium pH was the main parameter that defines the adsorption behavior.


Subject(s)
Chitin/chemistry , Ciprofloxacin/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Water Purification
11.
Chemistry ; 21(44): 15583-8, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26367390

ABSTRACT

A simple approach to exfoliate and functionalize MoS2 in a single-step is described, which combines the dispersion of MoS2 in polybutadiene solution and ultrasonication processes. The great advantage of this process is that a colloidal stability of MoS2 in nonpolar solvent is achieved by chemically bonding polybutadiene on the perimeter edge sites of MoS2 sheets. In addition, elastomeric nanocomposite has been prepared with singular mechanical properties using functionalized MoS2 as nanofiller in a polybutadiene matrix with a subsequent vulcanization reaction.

SELECTION OF CITATIONS
SEARCH DETAIL