Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.038
Filter
1.
Sci Rep ; 14(1): 16032, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992075

ABSTRACT

This study explores the application of the RIP3-caspase3-assay in heterogeneous spheroid cultures to analyze cell death pathways, emphasizing the nuanced roles of apoptosis and necroptosis. By employing directly conjugated monoclonal antibodies, we provide detailed insights into the complex mechanisms of cell death. Our findings demonstrate the assay's capability to differentiate between RIP1-independent apoptosis, necroptosis, and RIP1-dependent apoptosis, marking a significant advancement in organoid research. Additionally, we investigate the effects of TNFα on isolated intestinal epithelial cells, revealing a concentration-dependent response and an adaptive or threshold reaction to TNFα-induced stress. The results indicate a preference for RIP1-independent cell death pathways upon TNFα stimulation, with a notable increase in apoptosis and a secondary role of necroptosis. Our research underscores the importance of the RIP3-caspase3-assay in understanding cell death mechanisms in organoid cultures, offering valuable insights for disease modeling and the development of targeted therapies. The assay's adaptability and robustness in spheroid cultures enhances its potential as a tool in personalized medicine and translational research.


Subject(s)
Apoptosis , Caspase 3 , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Spheroids, Cellular , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Humans , Spheroids, Cellular/metabolism , Spheroids, Cellular/drug effects , Caspase 3/metabolism , Apoptosis/drug effects , Necroptosis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Cell Death/drug effects , Organoids/metabolism , Organoids/cytology
2.
Arch Pharm Res ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987410

ABSTRACT

Regulated cell death (RCD) pathways, such as pyroptosis, apoptosis, and necroptosis, are essential for maintaining the body's balance, defending against pathogens, and eliminating abnormal cells that could lead to diseases like cancer. Although these pathways operate through distinct mechanisms, recent genetic and pharmacological studies have shown that they can interact and influence each other. The concept of "PANoptosis" has emerged, highlighting the interplay between pyroptosis, apoptosis, and necroptosis, especially during cellular responses to infections. This article provides a concise overview of PANoptosis and its molecular mechanisms, exploring its implications in various diseases. The review focuses on the extensive interactions among different RCD pathways, emphasizing the role of PANoptosis in infections, cytokine storms, inflammatory diseases, and cancer. Understanding PANoptosis is crucial for developing novel treatments for conditions involving infections, sterile inflammations, and cancer.

4.
Front Cardiovasc Med ; 11: 1293786, 2024.
Article in English | MEDLINE | ID: mdl-38947229

ABSTRACT

Background: Hypertrophic Cardiomyopathy (HCM), a widespread genetic heart disorder, is largely associated with sudden cardiac fatality. Necroptosis, an emerging type of programmed cell death, plays a fundamental role in several cardiovascular diseases. Aim: This research utilized bioinformatics analysis to investigate necroptosis's implication in HCM. Methods: The study retrieved RNA sequencing datasets GSE130036 and GSE141910 from the Gene Expression Omnibus (GEO) database. It detected necroptosis-linked differentially expressed genes (NRDEGs) by reviewing both the gene set for necroptosis and the differently expressed genes (DEGs). The enriched signaling pathway of HCM was assessed using GSEA, while common DEGs were studied through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Concurrently, the Protein-Protein Interaction network (PPI) proved useful for identifying central genes. CIBERSORT facilitated evaluating the correlation between distinct immune cell-type prevalence and NRDEGs by analyzing immune infiltration patterns. Lastly, GSE141910 dataset validated the expression ranks of NRDEGs and immune-cell penetration. Results: The investigation disclosed significant enrichment and activation of the necroptosis pathway in HCM specimens. Seventeen diverse genes, including CYBB, BCL2, and JAK2 among others, were identified in the process. PPI network scrutiny classified nine of these genes as central genes. Results from GO and KEGG enrichment analyses showed substantial connections of these genes to pathways pertaining to the HIF-1 signaling track, necroptosis, and NOD-like receptor signaling process. Moreover, an imbalance in M2 macrophage cells in HCM samples was observed. Finally, CYBB, BCL2, and JAK2 emerged as vital genes and were validated using the GSE141910 dataset. Conclusion: These results indicate necroptosis as a probable underlying factor in HCM, with immune cell infiltration playing a part. Additionally, CYBB, BCL2, JAK2 could act as potential biomarkers for recognizing HCM. This information forms crucial insights into the basic mechanisms of HCM and could enhance its diagnosis and management.

6.
Diabetol Metab Syndr ; 16(1): 147, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961451

ABSTRACT

BACKGROUND: Nonalcoholic fatty pancreatitis (NAFP) presents a pressing challenge within the domain of metabolic disorders, necessitating further exploration to unveil its molecular intricacies and discover effective treatments. Our focus was to delve into the potential therapeutic impact of ZBiotic, a specially engineered strain of probiotic B. subtilis, in managing NAFP by targeting specific genes linked with necroptosis and the TNF signaling pathway, including TNF, ZBP1, HSPA1B, and MAPK3, along with their upstream epigenetic regulator, miR-5192, identified through bioinformatics. METHODS: Rats were subjected to either a standard or high-fat, high-sucrose diet (HFHS) for eight weeks. Subsequently, they were divided into groups: NAFP model, and two additional groups receiving daily doses of ZBiotic (0.5 ml and 1 ml/kg), and the original B. subtilis strain group (1 ml/kg) for four weeks, alongside the HFHS diet. RESULTS: ZBiotic exhibited remarkable efficacy in modulating gene expression, leading to the downregulation of miR-5192 and its target mRNAs (p < 0.001). Treatment resulted in the reversal of fibrosis, inflammation, and insulin resistance, evidenced by reductions in body weight, serum amylase, and lipase levels (p < 0.001), and decreased percentages of Caspase and Nuclear Factor Kappa-positive cells in pancreatic sections (p < 0.01). Notably, high-dose ZBiotic displayed superior efficacy compared to the original B. subtilis strain, highlighting its potential in mitigating NAFP progression by regulating pivotal pancreatic genes. CONCLUSION: ZBiotic holds promise in curbing NAFP advancement, curbing fibrosis and inflammation while alleviating metabolic and pathological irregularities observed in the NAFP animal model. This impact was intricately linked to the modulation of necroptosis/TNF-mediated pathway-related signatures.

7.
Angew Chem Int Ed Engl ; : e202408769, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960984

ABSTRACT

The clinical application of photodynamic therapy (PDT) is limited by oxygen-dependence and side effects caused by photosensitizer residues. Photoinitiators based on the H-abstraction reaction can address these challenges because they can generate alkyl radical-killing cells independently of oxygen and undergo rapid bleaching following H-abstraction. Nonetheless, the development of photoinitiators for PDT has been impeded by the absence of effective design strategies. Herein, we have developed aryl-ketone substituted cyanine (ACy-R), the first red-light triggered H-abstraction photoinitiators for hypoxic cancer therapy. These ACy-R molecules inherited the near-infrared absorption of cyanine dye, and aryl-ketone modification imparted H-abstraction capability. Experimental and quantum calculations revealed that modifying the electron-withdrawing groups of the aryl (e.g., ACy-5F) improved the contribution of the O atom to the photon excitation process promoting intersystem crossing and H-abstraction ability. Particularly, ACy-5F rapidly penetrated cells and enriched in the endoplasmic reticulum. Even under severe hypoxia, ACy-5F initiated red-light induced H-abstraction with intracellular biomolecules, inducing necroptosis and ferroptosis. Moreover, ACy-5F was degraded after H-abstraction, thus avoiding the side effects of long-term phototoxicity after therapy. This study not only provides a crucial molecular tool for hypoxic tumors therapy, but also presents a promising strategy for the development of multifunctional photosensitizers and photoinitiators.

8.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963054

ABSTRACT

PANoptosis, a complex form of proinflammatory programmed cell death, including apoptosis, pyroptosis and necroptosis, has been an emerging concept in recent years that has been widely reported in cancer, infectious diseases and neurological disorders. Cardiovascular diseases (CVDs) are an important global health problem, posing a serious threat to individuals' lives. An increasing body of research shows that inflammation has a pivotal role in CVDs, which provides an important theoretical basis for PANoptosis to promote the progression of CVDs. To date, only sporadic studies on PANoptosis in CVDs have been reported and its role in the field of CVDs has not been fully explored. Elucidating the various modes of cardiomyocyte death, the specific molecular mechanisms and the links among the various modes of death under various stressful stimuli is of notable clinical significance for a deeper understanding of the pathophysiology of CVDs. The present review summarizes the molecular mechanisms of apoptosis, pyroptosis, necroptosis and PANoptosis and their prospects in the field of CVDs.


Subject(s)
Cardiovascular Diseases , Necroptosis , Pyroptosis , Humans , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism , Animals , Apoptosis/physiology , Regulated Cell Death , Inflammation/pathology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism
9.
Int Immunopharmacol ; 138: 112463, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971110

ABSTRACT

Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.

10.
Immune Netw ; 24(3): e15, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974211

ABSTRACT

Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes.

11.
Phytomedicine ; 132: 155658, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38981149

ABSTRACT

BACKGROUND: Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE: We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS: Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS: Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION: In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.

12.
Fish Shellfish Immunol ; 151: 109736, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950760

ABSTRACT

RIPK1/TAK1 are important for programmed cell death, including liver death, necroptosis and apoptosis. However, there have been few published reports on the functions of RIPK1/TAK1 in invertebrates. In this study, full-length ChRIPK1 and ChTAK1 were cloned from C. hongkongensis through the rapid amplification of cDNA ends (RACE) technology. ChRIPK1 has almost no homology with human RIPK1 and lacks a kinase domain at the N-terminus but has a DD and RHIM domain. ChTAK1 is conserved throughout evolution. qRT‒PCR was used to analyze the mRNA expression patterns of ChRIPK1 in different tissues, developmental stages, and V. coralliilyticus-infected individuals, and both were highly expressed in the mantle and gills, while ChRIPK1 was upregulated in hemocytes and gills after V. coralliilyticus or S. aureus infection, which indicates that ChRIPK1 is involved in immune regulation. Fluorescence assays revealed that ChRIPK1 localized to the cytoplasm of HEK293T cells in a punctiform manner, but the colocalization of ChRIPK1 with ChTAK1 abolished the punctiform morphology. In the dual-luciferase reporter assay, both ChRIPK1 and ChRIPK1-RIHM activated the NF-κB signaling pathway in HEK293T cells, and ChTAK1 activated ChRIPK1 in the NF-κB signaling pathway. The apoptosis rate of the hemocytes was not affected by the necroptosis inhibitor Nec-1 but was significantly decreased, and ChRIPK1 expression was knocked down in the hemocytes of C. hongkongensis. These findings indicated that ChRIPK1 induces apoptosis but not necroptosis in oysters. This study provides a theoretical basis for further research on the molecular mechanism by which invertebrates regulate the programmed cell death of hemocytes in oysters.

13.
Heliyon ; 10(12): e32531, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952359

ABSTRACT

Background: Colon adenocarcinoma (COAD) is a serious public health issue due to high incidence and mortality rate. This study aimed to identify possible tumor antigens and necroptosis subtypes of COAD for the development of mRNA vaccines and the selection of appropriate patients for precision therapy. Methods: Gene expression profiles and clinical information for COAD were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. We comprehensively studied the alterations in necroptosis-related genes (NRGs) using cBioPortal, and screened the hub NRGs associated with the prognosis of patients with COAD using Gene Expression Profiling Interactive Analysis 2. Consensuses clustering analysis was performed to identify necroptosis subtypes. Weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules of the NRGs. The necroptosis landscape of COAD was assessed using graph learning-based dimensionality reduction. Finally, a drug sensitivity analysis of the two necroptosis subtypes was performed. Findings: Two tumor antigens, BLC-2-associated X protein (BAX) and interleukin 1 beta (IL1B) were identified based on their associations with prognosis of patients and antigen presenting cell infiltration. Two necroptosis subtypes (N1 and N2) were distinguished in patients with COAD, and they were characterized by their differential survival status and molecular expression levels of immune checkpoint proteins and immunogenetic cell death modulators. Furthermore, the necroptosis landscape of COAD indicated that individual patients had obvious heterogeneity. Co-expression modules were identified using WGCNA, and the hub NRGs were found to be involved in various immune processes. Drug sensitivity analysis indicated that there were significant differences in drug sensitivity between the N1 and N2 subtypes. Cell experiments suggested that both overexpression of BAX and IL1B promoted necroptosis of COAD cells and enhanced the cytotoxicity of CD8+ T cells. Interpretation: BAX and IL1B are potential antigens for the development of anti-COAD mRNA vaccines, specifically for patients with the N2 subtype. Consequently, this study will guide the development of more effective immunotherapeutic approaches and the identification of appropriate patients.

14.
Front Microbiol ; 15: 1419615, 2024.
Article in English | MEDLINE | ID: mdl-38952452

ABSTRACT

African swine fever (ASF) is an infectious disease characterized by hemorrhagic fever, which is highly pathogenic and causes severe mortality in domestic pigs. It is caused by the African swine fever virus (ASFV). ASFV is a large DNA virus and primarily infects porcine monocyte macrophages. The interaction between ASFV and host macrophages is the major reason for gross pathological lesions caused by ASFV. Necroptosis is an inflammatory programmed cell death and plays an important immune role during virus infection. However, whether and how ASFV induces macrophage necroptosis and the effect of necroptosis signaling on host immunity and ASFV infection remains unknown. This study uncovered that ASFV infection activates the necroptosis signaling in vivo and macrophage necroptosis in vitro. Further evidence showed that ASFV infection upregulates the expression of ZBP1 and RIPK3 to consist of the ZBP1-RIPK3-MLKL necrosome and further activates macrophage necroptosis. Subsequently, multiple Z-DNA sequences were predicted to be present in the ASFV genome. The Z-DNA signals were further confirmed to be present and colocalized with ZBP1 in the cytoplasm and nucleus of ASFV-infected cells. Moreover, ZBP1-mediated macrophage necroptosis provoked the extracellular release of proinflammatory cytokines, including TNF-α and IL-1ß induced by ASFV infection. Finally, we demonstrated that ZBP1-mediated necroptosis signaling inhibits ASFV replication in host macrophages. Our findings uncovered a novel mechanism by which ASFV induces macrophage necroptosis by facilitating Z-DNA accumulation and ZBP1 necrosome assembly, providing significant insights into the pathogenesis of ASFV infection.

15.
Arch Pharm (Weinheim) ; : e2400302, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955770

ABSTRACT

Necroptosis is a form of regulated necrotic cell death and has been confirmed to play pivotal roles in the pathogenesis of multiple autoimmune diseases such as rheumatoid arthritis (RA) and psoriasis. The development of necroptosis inhibitors may offer a promising therapeutic strategy for the treatment of these autoimmune diseases. Herein, starting from the in-house hit compound 1, we systematically performed structural optimization to discover potent necroptosis inhibitors with good pharmacokinetic profiles. The resulting compound 33 was a potent necroptosis inhibitor for both human I2.1 cells (IC50 < 0.2 nM) and murine Hepa1-6 cells (IC50 < 5 nM). Further target identification revealed that compound 33 was an inhibitor of receptor interacting protein kinase 1 (RIPK1) with favorable selectivity. In addition, compound 33 also exhibited favorable pharmacokinetic profiles (T1/2 = 1.32 h, AUC = 1157 ng·h/mL) in Sprague-Dawley rats. Molecular docking and molecular dynamics simulations confirmed that compound 33 could bind to RIPK1 with high affinity. In silico ADMET analysis demonstrated that compound 33 possesses good drug-likeness profiles. Collectively, compound 33 is a promising candidate for antinecroptotic drug discovery.

16.
Cell Rep ; 43(7): 114453, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38985677

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.

17.
J Reprod Immunol ; 165: 104291, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38986230

ABSTRACT

The male reproductive system provides a distinctive shield to the immune system, safeguarding germ cells (GCs) from autoimmune harm. The testis in mammals creates a unique immunological setting due to its exceptional immune privilege and potent local innate immunity. which can result from a number of different circumstances, including disorders of the pituitary gland, GC aplasia, and immunological elements. Apoptosis, or programmed cell death (PCD), is essential for mammalian spermatogenesis to maintain and ensure an appropriate number of GCs that correspond with the supporting capability of the Sertoli cells. Apoptosis is substantial in controlling the number of GCs in the testis throughout spermatogenesis, and any dysregulation of this process has been linked to male infertility. There is a number of evidence about the potential of PCD in designing novel therapeutic approaches in the treatment of infertility. A detailed understanding of PCD and the processes that underlie immunological infertility can contribute to the progress in designing strategies to prevent and treat male infertility. This review will provide a summary of the role of immune cell death in male reproduction and infertility and describe the therapeutic strategies and agents for treatment based on immune cell death.

18.
Front Cell Neurosci ; 18: 1408364, 2024.
Article in English | MEDLINE | ID: mdl-38994325

ABSTRACT

Necrostatin-1, a small molecular alkaloid, was identified as an inhibitor of necroptosis in 2005. Investigating the fundamental mechanism of Necrostatin-1 and its role in various diseases is of great significance for scientific and clinical research. Accumulating evidence suggests that Necrostatin-1 plays a crucial role in numerous neurological disorders. This review aims to provide a comprehensive overview of the potential functions of Necrostatin-1 in various neurological disorders, offering valuable insights for future research.

19.
Respir Res ; 25(1): 271, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987753

ABSTRACT

BACKGROUND: Airway epithelial cell (AEC) necroptosis contributes to airway allergic inflammation and asthma exacerbation. Targeting the tumor necrosis factor-like ligand 1 A (TL1A)/death receptor 3 (DR3) axis has a therapeutic effect on asthmatic airway inflammation. The role of TL1A in mediating necroptosis of AECs challenged with ovalbumin (OVA) and its contribution to airway inflammation remains unclear. METHODS: We evaluated the expression of the receptor-interacting serine/threonine-protein kinase 3(RIPK3) and the mixed lineage kinase domain-like protein (MLKL) in human serum and lung, and histologically verified the level of MLKL phosphorylation in lung tissue from asthmatics and OVA-induced mice. Next, using MLKL knockout mice and the RIPK3 inhibitor GSK872, we investigated the effects of TL1A on airway inflammation and airway barrier function through the activation of necroptosis in experimental asthma. RESULTS: High expression of necroptosis marker proteins was observed in the serum of asthmatics, and necroptosis was activated in the airway epithelium of both asthmatics and OVA-induced mice. Blocking necroptosis through MLKL knockout or RIPK3 inhibition effectively attenuated parabronchial inflammation, mucus hypersecretion, and airway collagen fiber accumulation, while also suppressing type 2 inflammatory factors secretion. In addition, TL1A/ DR3 was shown to act as a death trigger for necroptosis in the absence of caspases by silencing or overexpressing TL1A in HBE cells. Furthermore, the recombinant TL1A protein was found to induce necroptosis in vivo, and knockout of MLKL partially reversed the pathological changes induced by TL1A. The necroptosis induced by TL1A disrupted the airway barrier function by decreasing the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin, possibly through the activation of the NF-κB signaling pathway. CONCLUSIONS: TL1A-induced airway epithelial necroptosis plays a significant role in promoting airway inflammation and barrier dysfunction in asthma. Inhibition of the TL1A-induced necroptosis pathway could be a promising therapeutic strategy.


Subject(s)
Asthma , Mice, Knockout , Necroptosis , Tumor Necrosis Factor Ligand Superfamily Member 15 , Animals , Asthma/metabolism , Asthma/pathology , Necroptosis/physiology , Humans , Mice , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Male , Female , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Mice, Inbred C57BL , Protein Kinases/metabolism , Inflammation/metabolism , Inflammation/pathology , Ovalbumin/toxicity
20.
Int Immunopharmacol ; 138: 112616, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959544

ABSTRACT

Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which is one of the major factors leading to disability and severe economic burden. Necroptosis is an important form of programmed cell death (PCD), a highly regulated caspase-independent type of cell death that is regulated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL)-mediated, play a key role in the pathophysiology of various inflammatory, infectious and degenerative diseases. Recent studies have shown that necroptosis plays an important role in the occurrence and development of IDD. In this review, we provide an overview of the initiation and execution of necroptosis and explore in depth its potential mechanisms of action in IDD. The analysis focuses on the connection between NP cell necroptosis and mitochondrial dysfunction-oxidative stress pathway, inflammation, endoplasmic reticulum stress, apoptosis, and autophagy. Finally, we evaluated the possibility of treating IDD by inhibiting necroptosis, and believed that targeting necroptosis may be a new strategy to alleviate the symptoms of IDD.

SELECTION OF CITATIONS
SEARCH DETAIL
...