Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
Wiley Interdiscip Rev RNA ; 15(4): e1868, 2024.
Article in English | MEDLINE | ID: mdl-38973000

ABSTRACT

Pericentromeric heterochromatin is mainly composed of satellite DNA sequences. Although being historically associated with transcriptional repression, some pericentromeric satellite DNA sequences are transcribed. The transcription events of pericentromeric satellite sequences occur in highly flexible biological contexts. Hence, the apparent randomness of pericentromeric satellite transcription incites the discussion about the attribution of biological functions. However, pericentromeric satellite RNAs have clear roles in the organization of nuclear structure. Silencing pericentromeric heterochromatin depends on pericentromeric satellite RNAs, that, in a feedback mechanism, contribute to the repression of pericentromeric heterochromatin. Moreover, pericentromeric satellite RNAs can also act as scaffolding molecules in condensate subnuclear structures (e.g., nuclear stress bodies). Since the formation/dissociation of nuclear condensates provides cell adaptability, pericentromeric satellite RNAs can be an epigenetic platform for regulating (sub)nuclear structure. We review current knowledge about pericentromeric satellite RNAs that, irrespective of the meaning of biological function, should be functionally addressed in regular and disease settings. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease.


Subject(s)
Heterochromatin , RNA, Satellite , RNA, Satellite/metabolism , RNA, Satellite/genetics , Humans , Heterochromatin/metabolism , Heterochromatin/genetics , Animals , Cell Nucleus/metabolism , Cell Nucleus/genetics , Centromere/metabolism , Centromere/genetics , DNA, Satellite/metabolism , DNA, Satellite/genetics
2.
bioRxiv ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39071440

ABSTRACT

Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.

3.
Genes Dev ; 38(9-10): 415-435, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38866555

ABSTRACT

The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.


Subject(s)
Cell Differentiation , Cell Nucleus , Chromatin , Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Chromatin/metabolism , Chromatin/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , Female , Cell Differentiation/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Gene Expression Regulation, Developmental/genetics , Drosophila/genetics , Germ Cells/metabolism
4.
FEBS J ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734927

ABSTRACT

Phosphatidylinositol phosphates are powerful signaling molecules that orchestrate signaling and direct membrane trafficking in the cytosol. Interestingly, phosphatidylinositol phosphates also localize within the membrane-less compartments of the cell nucleus, where they participate in the regulation of gene expression. Nevertheless, current models of gene expression, which include condensates of proteins and nucleic acids, do not include nuclear phosphatidylinositol phosphates. This gap is partly a result of the missing detailed analysis of the subnuclear distribution of phosphatidylinositol phosphates and their relationships with gene expression. Here, we used quantitative dual-color direct stochastic optical reconstruction microscopy to analyze the nanoscale co-patterning between RNA polymerase II transcription initiation and elongation markers with respect to phosphatidylinositol 4,5- or 3,4-bisphosphate in the nucleoplasm and nuclear speckles and compared it with randomized data and cells with inhibited transcription. We found specific co-patterning of the transcription initiation marker P-S5 with phosphatidylinositol 4,5-bisphosphate in the nucleoplasm and with phosphatidylinositol 3,4-bisphosphate at the periphery of nuclear speckles. We showed the specific accumulation of the transcription elongation marker PS-2 and of nascent RNA in the proximity of phosphatidylinositol 3,4-bisphosphate associated with nuclear speckles. Taken together, this shows that the distinct spatial associations between the consecutive stages of RNA polymerase II transcription and nuclear phosphatidylinositol phosphates exhibit specificity within the gene expression compartments. Thus, in analogy to the cellular membranes, where phospholipid composition orchestrates signaling pathways and directs membrane trafficking, we propose a model in which the phospholipid identity of gene expression compartments orchestrates RNA polymerase II transcription.

5.
Genes (Basel) ; 15(4)2024 04 07.
Article in English | MEDLINE | ID: mdl-38674398

ABSTRACT

Human sperm parameters serve as a first step in diagnosing male infertility, but not in determining the potential for successful pregnancy during assisted reproductive technologies (ARTs) procedures. Here, we investigated the relationship between sperm head morphology at high magnification, based on strict morphologic criteria, and the nuclear architecture analyzed by fluorescence in situ hybridization (FISH). We included five men. Two of them had an elevated high-magnification morphology score of 6 points (Score 6) indicating high fertility potential, whereas three had a low score of 0 points (Score 0), indicating low fertility potential. We used FISH to study the inter-telomeric distance and the chromosomal territory area of chromosome 1 (Chr. 1). We then compared these two parameters between subjects with high and low scores. FISH data analysis showed that the inter-telomeric distance (ITD) and chromosomal territory area (CTA) of Chr. 1 were significantly higher in subjects with low scores (score 0) than high scores (score 6). Our results suggest that (i) there is a link between nuclear architecture and sperm head abnormalities, particularly vacuoles; and (ii) it is possible to select spermatozoa with normal nuclear architecture, which might indirectly explain the positive ART outcomes observed with this technique.


Subject(s)
Cell Nucleus , In Situ Hybridization, Fluorescence , Spermatozoa , Humans , Male , In Situ Hybridization, Fluorescence/methods , Cell Nucleus/genetics , Adult , Sperm Head , Infertility, Male/genetics , Infertility, Male/pathology , Chromosomes, Human, Pair 1/genetics
6.
J Cell Sci ; 137(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563209

ABSTRACT

Actin is well known for its cytoskeletal functions, where it helps to control and maintain cell shape and architecture, as well as regulating cell migration and intracellular cargo transport, among others. However, actin is also prevalent in the nucleus, where genome-regulating roles have been described, including it being part of chromatin-remodeling complexes. More recently, with the help of advances in microscopy techniques and specialized imaging probes, direct visualization of nuclear actin filament dynamics has helped elucidate new roles for nuclear actin, such as in cell cycle regulation, DNA replication and repair, chromatin organization and transcriptional condensate formation. In this Cell Science at a Glance article, we summarize the known signaling events driving the dynamic assembly of actin into filaments of various structures within the nuclear compartment for essential genome functions. Additionally, we highlight the physiological role of nuclear F-actin in meiosis and early embryonic development.


Subject(s)
Actins , Cell Nucleus , Actins/metabolism , Cell Nucleus/metabolism , Actin Cytoskeleton/metabolism , Cytoskeleton/metabolism , Cell Cycle
7.
mBio ; 15(3): e0337923, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38329358

ABSTRACT

In contrast to the canonical view that genomes cycle only between haploid and diploid states, many eukaryotes have dynamic genomes that change content throughout an individual's life cycle. However, the few detailed studies of microeukaryotic life cycles render our understanding of eukaryotic genome dynamism incomplete. Foraminifera (Rhizaria) are an ecologically important, yet understudied, clade of microbial eukaryotes with complex life cycles that include changes in ploidy and genome organization. Here, we apply fluorescence microscopy and image analysis techniques to over 2,800 nuclei in 110 cells to characterize the life cycle of Allogromia laticollaris strain Cold Spring Harbor (CSH), one of few cultivable foraminifera species. We show that haploidy and diploidy are brief moments in the A. laticollaris life cycle and that A. laticollaris nuclei endoreplicate up to 12,000 times the haploid genome size. We find that A. laticollaris reorganizes a highly endoreplicated nucleus into thousands of haploid genomes through a non-canonical mechanism called Zerfall, in which the nuclear envelope degrades and extrudes chromatin into the cytoplasm. Based on these findings, along with changes in nuclear architecture across the life cycle, we believe that A. laticollaris uses spatio-temporal mechanisms to delineate germline and somatic DNA within a single nucleus. The analyses here extend our understanding of the genome dynamics across the eukaryotic tree of life.IMPORTANCEIn traditional depictions of eukaryotes (i.e., cells with nuclei), life cycles alternate only between haploid and diploid phases, overlooking studies of diverse microeukaryotic lineages (e.g., amoebae, ciliates, and flagellates) that show dramatic variation in DNA content throughout their life cycles. Endoreplication of genomes enables cells to grow to large sizes and perhaps to also respond to changes in their environments. Few microeukaryotic life cycles have been studied in detail, which limits our understanding of how eukaryotes regulate and transmit their DNA across generations. Here, we use microscopy to study the life cycle of Allogromia laticollaris strain CSH, an early-diverging lineage within the Foraminifera (an ancient clade of predominantly marine amoebae). We show that DNA content changes significantly throughout their life cycle and further describe an unusual process called Zerfall, by which this species reorganizes a large nucleus with up to 12,000 genome copies into hundreds of small gametic nuclei, each with a single haploid genome. Our results are consistent with the idea that all eukaryotes demarcate germline DNA to pass on to offspring amidst more flexible somatic DNA and extend the known diversity of eukaryotic life cycles.


Subject(s)
Foraminifera , Genome , Diploidy , Haploidy , DNA
8.
Chromosoma ; 133(1): 57-75, 2024 01.
Article in English | MEDLINE | ID: mdl-38055079

ABSTRACT

The DNA replication process needs to be coordinated with other DNA metabolism transactions and must eventually extend to the full genome, regardless of chromatin status, gene expression, secondary structures and DNA lesions. Completeness and accuracy of DNA replication are crucial to maintain genome integrity, limiting transformation in normal cells and offering targeting opportunities for proliferating cancer cells. DNA replication is thus tightly coordinated with chromatin dynamics and 3D genome architecture, and we are only beginning to understand the underlying molecular mechanisms. While much has recently been discovered on how DNA replication initiation is organised and modulated in different genomic regions and nuclear territories-the so-called "DNA replication program"-we know much less on how the elongation of ongoing replication forks and particularly the response to replication obstacles is affected by the local nuclear organisation. Also, it is still elusive how specific components of nuclear architecture participate in the replication stress response. Here, we review known mechanisms and factors orchestrating replication initiation, and replication fork progression upon stress, focusing on recent evidence linking genome organisation and nuclear architecture with the cellular responses to replication interference, and highlighting open questions and future challenges to explore this exciting new avenue of research.


Subject(s)
Chromatin , DNA Replication , Humans , Chromatin/genetics , DNA Damage , Genomic Instability
9.
J Exp Zool B Mol Dev Evol ; 342(1): 45-58, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38059675

ABSTRACT

Among 36 known chromosomal hybrid zones of the common shrew Sorex araneus, the Moscow-Seliger hybrid zone is of special interest because inter-racial complex heterozygotes (F1 hybrids) produce the longest meiotic configuration, consisting of 11 chromosomes with monobrachial homology (undecavalent or chain-of-eleven: CXI). Different studies suggest that such a multivalent may negatively affect meiotic progression and in general should significantly reduce fertility of hybrids. In this work, by immunocytochemical and electron microscopy methods, we investigated for the first time chromosome synapsis, recombination and meiotic silencing in pachytene spermatocytes of natural inter-racial heterozygous shrew males carrying CXI configurations. Despite some abnormalities detected in spermatocytes, such as associations of chromosomes, stretched centromeres, and the absence of recombination nodules in some arms of the multivalent, a large number of morphologically normal spermatozoa were observed. Possible low stringency of pachytene checkpoints may mean that even very long meiotic configurations do not cause complete sterility of such complex inter-racial heterozygotes.


Subject(s)
Infertility , Shrews , Male , Animals , Shrews/genetics , Chromosomes , Meiosis , Infertility/genetics , Fertility
10.
Elife ; 122023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108811

ABSTRACT

Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Mice , Receptors, Odorant/genetics , Epigenomics , Alleles , Epigenesis, Genetic
11.
Int J Mol Sci ; 24(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139061

ABSTRACT

Our study explored the impact of hypergravity on human T cells, which experience additional acceleration forces beyond Earth's gravity due to various factors, such as pulsatile blood flow, and technology, such as high-performance aircraft flights or spaceflights. We investigated the histone modifications Histone 3 lysine 4 and 9 trimethylation (H3K4me3 and H3K9me3, respectively), as well as the structural and cytoskeletal organization of Jurkat T cells in response to hypergravity. Histone modifications play a crucial role in gene regulation, chromatin organization and DNA repair. In response to hypergravity, we found only minimal changes of H3K4me3 and a rapid increase in H3K9me3, which was sustained for up to 15 min and then returned to control levels after 1 h. Furthermore, rapid changes in F-actin fluorescence were observed within seconds of hypergravity exposure, indicating filament depolymerization and cytoskeletal restructuring, which subsequently recovered after 1 h of hypergravity. Our study demonstrated the rapid, dynamic and adaptive cellular response to hypergravity, particularly in terms of histone modifications and cytoskeletal changes. These responses are likely necessary for maintaining genome stability and structural integrity under hypergravity conditions as they are constantly occurring in the human body during blood cell circulation.


Subject(s)
Hypergravity , Space Flight , Humans , Actins , Actin Cytoskeleton , Cytoskeleton
12.
Epigenomics ; 15(20): 1027-1031, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37937403

ABSTRACT

Tweetable abstract MeCP2 is an epigenetic factor with global impact in epigenome integrity, membrane-less nuclear architecture, and chromatin stability. Our Editorial covers recent advances on these important topics.


Subject(s)
Chromatin Assembly and Disassembly , Epigenome , Methyl-CpG-Binding Protein 2 , Humans , Chromatin/genetics , DNA Methylation , Epigenomics , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism
13.
Mol Biochem Parasitol ; 256: 111598, 2023 12.
Article in English | MEDLINE | ID: mdl-37923299

ABSTRACT

Visualisation of genomic loci by microscopy is essential for understanding nuclear organisation, particularly at the single cell level. One powerful technique for studying the positioning of genomic loci is through the Lac Operator-Lac Repressor (LacO-LacI) system, in which LacO repeats introduced into a specific genomic locus can be visualised through expression of a LacI-protein fused to a fluorescent tag. First utilised in Trypanosoma brucei over 20 years ago, we have now optimised this system with short, stabilised LacO repeats of less than 2 kb paired with a constitutively expressed mNeongreen::LacI fusion protein to facilitate visualisation of genomic loci. We demonstrate the compatibility of this system with super-resolution microscopy and propose its suitability for multiplexing with inducible RNAi or protein over expression which will allow analysis of nuclear organisation after perturbation of gene expression.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma brucei brucei/genetics , Lac Repressors/genetics , Promoter Regions, Genetic , Genomics
14.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014085

ABSTRACT

The association of genomic loci to the nuclear periphery is proposed to facilitate cell-type specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ~1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein, Stonewall (Stwl), as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.

15.
Mol Cell Proteomics ; 22(12): 100671, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863319

ABSTRACT

Nuclear matrix (NuMat) is the fraction of the eukaryotic nucleus insoluble to detergents and high-salt extractions that manifests as a pan-nuclear fiber-granule network. NuMat consists of ribonucleoprotein complexes, members of crucial nuclear functional modules, and DNA fragments. Although NuMat captures the organization of nonchromatin nuclear space, very little is known about components organization within NuMat. To understand the organization of NuMat components, we subfractionated it with increasing concentrations of the chaotrope guanidinium hydrochloride (GdnHCl) and analyzed the proteomic makeup of the fractions. We observe that the solubilization of proteins at different concentrations of GdnHCl is finite and independent of the broad biophysical properties of the protein sequences. Looking at the extraction pattern of the nuclear envelope and nuclear pore complex, we surmise that this fractionation represents easily solubilized/loosely bound and difficultly solubilized/tightly bound components of NuMat. Microscopic analyses of the localization of key NuMat proteins across sequential GdnHCl extractions of in situ NuMat further elaborate on the divergent extraction patterns. Furthermore, we solubilized NuMat in 8M GdnHCl and upon removal of GdnHCl through dialysis, en masse renaturation leads to RNA-dependent self-assembly of fibrous structures. The major proteome component of the self-assembled fibers comes from the difficultly solubilized, tightly bound component. This fractionation of the NuMat reveals different organizational levels within it which may reflect the structural and functional organization of nuclear architecture.


Subject(s)
Nuclear Matrix , Proteomics , Nuclear Matrix/metabolism , Proteome/metabolism , DNA/metabolism , RNA/metabolism , Cell Nucleus
16.
Curr Opin Cell Biol ; 85: 102234, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666024

ABSTRACT

At first glance the nucleus is a highly conserved organelle. Overall nuclear morphology, the octagonal nuclear pore complex, the presence of peripheral heterochromatin and the nuclear envelope appear near constant features right down to the ultrastructural level. New work is revealing significant compositional divergence within these nuclear structures and their associated functions, likely reflecting adaptations and distinct mechanisms between eukaryotic lineages and especially the trypanosomatids. While many examples of mechanistic divergence currently lack obvious functional interpretations, these studies underscore the malleability of nuclear architecture. I will discuss some recent findings highlighting these facets within trypanosomes, together with the underlying evolutionary framework and make a call for the exploration of nuclear function in non-canonical experimental organisms.


Subject(s)
Nuclear Pore Complex Proteins , Trypanosoma , Evolution, Molecular , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Trypanosoma/metabolism , Lamins/metabolism , Cell Nucleus/metabolism , Nuclear Lamina/metabolism
17.
Front Cell Dev Biol ; 11: 1217637, 2023.
Article in English | MEDLINE | ID: mdl-37484912

ABSTRACT

Introduction: Imaging of human clinical formalin-fixed paraffin-embedded (FFPE) tissue sections provides insights into healthy and diseased states and therefore represents a valuable resource for basic research, as well as for diagnostic and clinical purposes. However, conventional light microscopy does not allow to observe the molecular details of tissue and cell architecture due to the diffraction limit of light. Super-resolution microscopy overcomes this limitation and provides access to the nanoscale details of tissue and cell organization. Methods: Here, we used quantitative multicolor stimulated emission depletion (STED) nanoscopy to study the nanoscale distribution of the nuclear phosphatidylinositol 4,5-bisphosphate (nPI(4,5)P2) with respect to the nuclear speckles (NS) marker SON. Results: Increased nPI(4,5)P2 signals were previously linked to human papillomavirus (HPV)-mediated carcinogenesis, while NS-associated PI(4,5)P2 represents the largest pool of nPI(4,5)P2 visualized by staining and microscopy. The implementation of multicolor STED nanoscopy in human clinical FFPE skin and wart sections allowed us to provide here the quantitative evidence for higher levels of NS-associated PI(4,5)P2 in HPV-induced warts compared to control skin. Discussion: These data expand the previous reports of HPV-induced increase of nPI(4,5)P2 levels and reveal for the first time the functional, tissue-specific localization of nPI(4,5)P2 within NS in clinically relevant samples. Moreover, our approach is widely applicable to other human clinical FFPE tissues as an informative addition to the classical histochemistry.

18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159368, 2023 10.
Article in English | MEDLINE | ID: mdl-37499858

ABSTRACT

Hypertrophy of adipocytes represents the main cause of obesity. We investigated in vitro the changes associated with adipocyte differentiation and hypertrophy focusing on the nuclear morphometry and chromatin epigenetic remodelling. The 3 T3-L1 pre-adipocytes were firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids to induce hypertrophy. Confocal and super-resolution stimulation emission depletion (STED) microscopy combined with ELISA assays allowed us to explore nuclear architecture, chromatin distribution and epigenetic modifications. In each condition, we quantified the triglyceride accumulation, the mRNA expression of adipogenesis and dysfunction markers, the release of five pro-inflammatory cytokines. Confocal microscopy revealed larger volume and less elongated shape of the nuclei in both mature and hypertrophic cells respect to pre-adipocytes, and a trend toward reduced chromatin compaction. Compared to mature adipocytes, the hypertrophic phenotype showed larger triglyceride content, increased PPARγ expression reduced IL-1a release, and up-regulation of a pool of genes markers for adipose tissue dysfunction. Moreover, a remodelling of both epigenome and chromatin organization was observed in hypertrophic adipocytes, with an increase in the average fluorescence of H3K9 acetylated domains in parallel with the increase in KAT2A expression, and a global hypomethylation of DNA. These findings making light on the nuclear changes during adipocyte differentiation and hypertrophy might help the strategies for treating obesity and metabolic complications.


Subject(s)
Adipogenesis , Chromatin , Humans , Adipogenesis/genetics , Chromatin/genetics , Epigenome , Hypertrophy/genetics , Obesity/genetics , Obesity/metabolism , Triglycerides , Gene Expression
19.
Cell ; 186(17): 3674-3685.e14, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37494934

ABSTRACT

Epigenetic lesions that disrupt regulatory elements represent potential cancer drivers. However, we lack experimental models for validating their tumorigenic impact. Here, we model aberrations arising in isocitrate dehydrogenase-mutant gliomas, which exhibit DNA hypermethylation. We focus on a CTCF insulator near the PDGFRA oncogene that is recurrently disrupted by methylation in these tumors. We demonstrate that disruption of the syntenic insulator in mouse oligodendrocyte progenitor cells (OPCs) allows an OPC-specific enhancer to contact and induce Pdgfra, thereby increasing proliferation. We show that a second lesion, methylation-dependent silencing of the Cdkn2a tumor suppressor, cooperates with insulator loss in OPCs. Coordinate inactivation of the Pdgfra insulator and Cdkn2a drives gliomagenesis in vivo. Despite locus synteny, the insulator is CpG-rich only in humans, a feature that may confer human glioma risk but complicates mouse modeling. Our study demonstrates the capacity of recurrent epigenetic lesions to drive OPC proliferation in vitro and gliomagenesis in vivo.


Subject(s)
Brain Neoplasms , Epigenesis, Genetic , Glioma , Animals , Humans , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , Glioma/genetics , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Mutation , Oncogenes , Receptor, Platelet-Derived Growth Factor alpha/genetics
20.
Trends Biochem Sci ; 48(7): 618-628, 2023 07.
Article in English | MEDLINE | ID: mdl-37069045

ABSTRACT

During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Artificial Intelligence , Cell Nucleus/metabolism , DNA/genetics , Cellular Senescence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL