Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 563
Filter
1.
Brain Res ; : 149218, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218334

ABSTRACT

Ischemic stroke, caused by diminished or interrupted cerebral blood flow, triggers the activation of microglial cells and subsequent inflammatory responses. Formononetin (FMN) has been observed to inhibit BV2 microglial cell activation and alleviate ensuing neuroinflammatory reactions. Despite extensive research, the precise underlying mechanism remains unclear. To investigate the neuroinflammatory response following FMN-mediated inhibition of BV2 microglial activation, we employed an in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model. BV2 microglial cells were categorized into four groups: control, FMN, OGD/R, and OGD/R+FMN. Cell viability was assessed using the CCK-8 assay, while flow cytometry assessed M1 and M2 cell populations within BV2 cells. Immunofluorescence was utilized to detect the expression levels of apoptosis-inducing factor (AIF), p53, Toll-like receptor 4 (TLR4), and NF-κB p65. Western blotting (WB) was conducted to quantify p65/p-p65, IκB-α/p-IκB-α, and TLR4 protein levels in each group. Additionally, ELISA was employed to measure IL-1ß and TNF-α levels in cell supernatants from each group. The results revealed a significant increase in the proportion of iNOS/CD206-positive M1/M2 cells in the OGD/R group compared to the control group (p < 0.05). There was also a notable increase in nuclear translocation of NF-κB p65 and elevated expression of inflammatory factors IL-1ß and TNF-α in cell supernatants. Moreover, levels of p-p65, p-IκB-α, and TLR4 proteins were significantly elevated in the OGD/R group (p < 0.05). However, the addition of FMN reversed these effects. Specifically, FMN administration notably attenuated cell death and inflammation in BV2 microglia induced by OGD/R through modulation of the TLR4/NF-κB signaling pathway.These findings suggest that FMN may serve as a potential therapeutic agent against neuroinflammation associated with ischemic stroke by targeting microglial activation pathways.

2.
Mater Today Bio ; 28: 101184, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39221214

ABSTRACT

Currently, the construction of novel biomimetic reduced graphene oxide (RGO)-based nanocomposites to induce neurite sprouting and repair the injured neurons represents a promising strategy in promoting neuronal development or treatment of cerebral anoxia or ischemia. Here, we present an effective method for constructing palladium-reduced graphene oxide (Pd-RGO) nanocomposites by covalently bonding Pd onto RGO surfaces to enhance neurite sprouting of cultured neurons. As described, the Pd-RGO nanocomposites exhibit the required physicochemical features for better biocompatibility without impacting cell viability. Primary neurons cultured on Pd-RGO nanocomposites had significantly increased number and length of neuronal processes, including both axons and dendrites, compared with the control. Western blotting showed that Pd-RGO nanocomposites improved the expression levels of growth associate protein-43 (GAP-43), as well as ß-III tubulin, Tau-1, microtubule-associated protein-2 (MAP2), four proteins that are involved in regulating neurite sprouting and outgrowth. Importantly, Pd-RGO significantly promoted neurite length and complexity under oxygen-glucose deprivation/re-oxygenation (OGD/R) conditions, an in vitro cellular model of ischemic brain damage, that closely relates to neuronal GAP-43 expression. Furthermore, using the middle cerebral artery occlusion (MCAO) model in rats, we found Pd-RGO effectively reduced the infarct area, decreased neuronal apoptosis in the brain, and improved the rats' behavioral outcomes after MCAO. Together, these results indicate the great potential of Pd-RGO nanocomposites as a novel excellent biomimetic material for neural interfacing that shed light on its applications in brain injuries.

3.
Cell Biochem Biophys ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240442

ABSTRACT

Cerebral ischemia/reperfusion injury (IRI) is a primary pathophysiological basis of ischemic stroke, a dreadful cerebrovascular event carrying substantial disability and lethality. Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that has been notified as a protective factor for cerebral ischemic stroke. On this basis, the paper is thereby goaled to interpret the probable activity and downstream mechanism of TREM2 against cerebral IRI. Cerebral IRI was simulated in murine microglial BV2 cells under oxygen-glucose deprivation and reperfusion (OGD/R) conditions. Western blotting ascertained the expressions of TREM2 and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) axis-associated proteins. ELISA and RT-qPCR assayed the secretion of inflammatory cytokines. Immunofluorescence and western blotting estimated macrophage polarization. Glycolysis activation was measured through evaluating lactic acid and extracellular acidification rate (ECAR). RT-qPCR and western blotting examined the expressions of glycolytic genes. TREM2 was abnormally expressed and JAK2/STAT3 axis was aberrantly activated in BV2 cells in response to OGD/R. Elevation of TREM2 repressed the inflammatory reaction and glycolysis, inhibited the JAK2/STAT3 axis, whereas promoted M1-to-M2 polarization in OGD/R-injured BV2 cells. Upregulated TREM2 inactivated the glycolytic pathway to relieve OGD/R-induced inflammatory injury and M1 macrophage polarization. Besides, STAT3 activator, colivelin, aggravated the glycolysis, inflammatory injury and drove M1-like macrophage polarization in TREM2-overexpressing BV2 cells exposed to OGD/R. Collectively, TREM2 might produce anti-inflammatory potential in cerebral IRI, which might dependent on the inactivation of glycolytic pathway via intermediating the JAK2/STAT3 axis.

4.
Acta Biomater ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122135

ABSTRACT

Mitophagy influences the progression and prognosis of ischemic stroke (IS). However, whether DNA methylation in the brain is associated with altered mitophagy in hypoxia-injured neurons remains unclear. Here, miR-138-5p was found to be highly expressed in exosomes secreted by astrocytes stimulated with oxygen and glucose deprivation/re-oxygenation (OGD/R), which could influence the recovery of OGD/R-injured neurons through autophagy. Mechanistically, miR-138-5p promotes the stable expression of Ras homolog enriched in brain like 1(Rhebl1) through DNA-methyltransferase-3a (DNMT3A), thereby enhancing ubiquitin-dependent mitophagy to maintain mitochondrial homeostasis. Furthermore, we employed glycosylation engineering and bioorthogonal click reactions to load mirna onto the surface of microglia and deliver them to injured region utilising the inflammatory chemotactic properties of microglia to achieve drug-targeted delivery to the central nervous system (CNS). Our findings demonstrate miR-138-5p improves mitochondrial function in neurons through the miR-138-5p/DNMT3A/Rhebl1 axis. Additionally, our engineered cell vector-targeted delivery system could be promising for treating IS. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that miR-138-5p in exosomes secreted by astrocytes under hypoxia plays a critical role in the treatment of hypoxia-injured neurons. And we find a new target of miR-138-5p, DNMT3A, which affects neuronal mitophagy and thus exerts a protective effect by regulating the methylation of Rbebl1. Furthermore, we have developed a carrier delivery system by combining miR-138-5p with the cell membrane of microglia and utilized the inflammatory chemotactic properties of microglia to deliver this system to the brain via intravenous injection. This groundbreaking study not only provides a novel therapeutic approach for ischemia-reperfusion treatment but also establishes a solid theoretical foundation for further research on targeted drug delivery for central nervous system diseases with promising clinical applications.

5.
J Biochem Mol Toxicol ; 38(9): e23827, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39193856

ABSTRACT

Ischemic stroke is one main type of cerebrovascular disorders with leading cause of death and disability worldwide. Astrocytes are the only nerve cell type storing glycogen in the brain, which regulate the glucose metabolism and handle the energy supply and survive of neurons. Astrocyte ferroptosis contributes to neuron injury in brain disorders. N-myc downstream-regulated gene 2 (NDRG2) has been implicated in the progression of brain diseases, including ischemic stroke. However, whether NDRG2 could affect the glucose metabolism and ferroptosis of astrocytes during ischemic stroke remains largely unknown. Mouse astrocytes were treated with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish the in vitro model. Glial fibrillary acidic protein, NDRG2, Wnt3a and ß-catenin expression levels were detected by immunofluorescence staining and western blot analyses. Glucose metabolism was investigated by glucose uptake, lactate production, nicotinamide adenine dinucleotide phosphate hydrogen/nicotinamide adenine dinucleotide phosphate (NADPH/NADP+), ATP and glycolysis enzymes (HK2, PKM2 and lactate dehydrogenase A [LDHA]) levels. Ferroptosis was assessed via reactive oxygen species (ROS), glutathione (GSH), iron and ferroptosis-related markers (GPX4 and PTGS2) contents. Glycolysis enzymes and ferroptosis-related markers levels were measured via western blot. NDRG2 expression was elevated in OGD/R-induced astrocytes. NDRG2 overexpression aggravated OGD/R-induced loss of glucose metabolism through reducing glucose uptake, lactate production, NADPH/NADP+ and ATP levels. NDRG2 upregulation exacerbated OGD/R-caused reduction of glycolysis enzymes (HK2, PKM2 and LDHA) levels. NDRG2 promoted OGD/R-induced ferroptosis of astrocytes by increasing ROS, iron and PTGS2 levels and decreasing GSH and GPX4 levels. NDRG2 overexpression enhanced OGD/R-induced decrease of Wnt/ß-catenin signaling activation by reducing Wnt3a and ß-catenin expression. NDRG2 silencing played an opposite effect. Inhibition of Wnt/ß-catenin signaling activation by IWR-1 attenuated the influences of NDRG2 knockdown on glucose metabolism, glycolysis enzymes levels and ferroptosis. These findings demonstrated that NDRG2 contributes to OGD/R-induced inhibition of glucose metabolism and promotion of ferroptosis in astrocytes through inhibiting Wnt/ß-catenin signaling activation, which might be associated with ischemic stroke progression.


Subject(s)
Astrocytes , Ferroptosis , Glucose , Wnt Signaling Pathway , beta Catenin , Astrocytes/metabolism , Animals , Glucose/metabolism , Mice , beta Catenin/metabolism , Glycolysis , Reactive Oxygen Species/metabolism , Cells, Cultured , Oxygen/metabolism , Adaptor Proteins, Signal Transducing
6.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201562

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition characterized by significant brain damage due to insufficient blood flow and oxygen delivery at birth, leading to high rates of neonatal mortality and long-term neurological deficits worldwide. 2,3-Diphosphoglyceric acid (2,3-DPG), a small molecule metabolite prevalent in erythrocytes, plays an important role in regulating oxygen delivery, but its potential neuroprotective role in hypoxic-ischemic brain damage (HIBD) has yet to be fully elucidated. Our research reveals that the administration of 2,3-DPG effectively reduces neuron damage caused by hypoxia-ischemia (HI) both in vitro and in vivo. We observed a notable decrease in HI-induced neuronal cell apoptosis, attributed to the downregulation of Bax and cleaved-caspase 3, alongside an upregulation of Bcl-2 expression. Furthermore, 2,3-DPG significantly alleviates oxidative stress and mitochondrial damage induced by oxygen-glucose deprivation/reperfusion (OGD/R). The administration of 2,3-DPG in rats subjected to HIBD resulted in a marked reduction in brain edema and infarct volume, achieved through the suppression of neuronal apoptosis and neuroinflammation. Using RNA-seq analysis, we validated that 2,3-DPG offers protection against neuronal apoptosis under HI conditions by modulating the p38 MAPK pathway. These insights indicated that 2,3-DPG might act as a promising novel therapeutic candidate for HIE.


Subject(s)
Apoptosis , Hypoxia-Ischemia, Brain , p38 Mitogen-Activated Protein Kinases , Animals , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , Rats , Apoptosis/drug effects , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Rats, Sprague-Dawley , Male , Mitochondria/metabolism , Mitochondria/drug effects
7.
Exp Neurol ; 380: 114910, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098715

ABSTRACT

Structural and functional alterations in brain microvascular endothelial cells (BMECs) caused by oxygen-glucose deprivation (OGD) are involved in the pathogenesis of various brain disorders. AlkB homolog 5 (ALKBH5) is a primary m6A demethylase that regulates various cell processes, but its distinct roles in BMEC function remain to be clarified. In the present study, in mouse middle cerebral artery occlusion (MCAO) model, knockout of ALKBH5 reduced neurological deficits, infarct volumes and tissue apoptosis caused by ischemia/reperfusion injury. Evans blue leakage and decreased expression of the tight junction protein ZO-1 and Occludin were also attenuated by ALKBH5 knockout. During the exploration of the underlying mechanisms of the role of ALKBH5 in BMECs, we found that the expression of ALKBH5 was induced at both the mRNA and protein levels by hypoxia; however, its protein stability was impaired by OGD treatment. Knockdown of ALKBH5 expression increased total m6A levels and alleviated OGD-induced BMEC injury. At the same time, the selective ALKBH5 inhibitor Cpd 20m also exhibited a protective effect on cell injury. In contrast, overexpression of ALKBH5 increased the sensitivity of BMECs to OGD. Interestingly, the m6A sequencing data revealed that knockdown of ALKBH5altered the expression of many genes via m6A upregulation. The gene expression alterations were verified by real-time PCR. Taken together, our results suggest that ALKBH5, as well as its target genes, plays important roles in the regulation of brain microvascular endothelial cell function through its RNA demethylase activity.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Endothelial Cells , Glucose , Mice, Knockout , Animals , Mice , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Endothelial Cells/metabolism , Glucose/deficiency , Brain/metabolism , Brain/pathology , Male , Microvessels/pathology , Microvessels/metabolism , Mice, Inbred C57BL , Oxygen/metabolism , Infarction, Middle Cerebral Artery/pathology , Adenosine/analogs & derivatives , Adenosine/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
8.
Biochem Biophys Res Commun ; 733: 150452, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067246

ABSTRACT

Due to the complex pathogenesis of acute ischemic stroke (AIS), further investigation into its underlying mechanisms is necessary. Presently, existing literature indicates a close association between ferroptosis and AIS injury; however, the precise mechanism and molecular target of ferroptosis in AIS injury remain elusive. By RNA sequencing, we found a significant increase in LCN2 expression in the ischemic cortex. In order to investigate the potential role of LCN2 in modulating AIS injury through the regulation of ferroptosis, we utilized RNA interference (RNAi) knockdown and gene overexpression experiments. The findings from experiments conducted both in vitro and in vivo revealed a marked increase in ferroptosis levels within the AIS model group. Suppression of the LCN2 gene resulted in a significant reduction in ferroptosis levels in OGD/R cells. Conversely, upregulation of LCN2 exacerbated ferroptosis levels in OGD/R cells. The results suggest that elevated levels of ferroptosis may result from heightened expression of LCN2, thereby exacerbating ischemia/reperfusion injury. This study indicates the involvement of ferroptosis in the pathogenesis of AIS and highlights LCN2 as a regulator of ferroptosis in AIS-induced injury, suggesting a potential therapeutic target for ischemic stroke.

9.
Int Immunopharmacol ; 138: 112588, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38955031

ABSTRACT

Dexmedetomidine (Dex) is widely used in the sedation in intensive care units and as an anesthetic adjunct. Considering the anti-inflammatory and antioxidant properties of Dex, we applied in vivo rat model as well as in vitro cardiomyocyte models (embryonic rat cardiomyocytes H9c2 cells and neonatal rat cardiomyocytes, NRCMs) to evaluate the effects of Dex against myocardial ischemia reperfusion (I/R) injury. Transcriptomic sequencing for gene expression in heart tissues from control rats and Dex-treated rats identified that genes related to fatty acid metabolism were significantly regulated by Dex. Among these genes, the elongation of long-chain fatty acids (ELOVL) family member 6 (Elovl6) was most increased upon Dex-treatment. By comparing the effects of Dex on both wild type and Elovl6-knockdown H9c2 cells and NRCMs under oxygen-glucose deprivation/reoxygenation (OGD/R) challenge, we found that Elovl6 knockdown attenuated the protection efficiency of Dex, which was supported by the cytotoxicity endpoints (cell viability and lactate dehydrogenase release) and apoptosis as well as key gene expressions. These results indicate that Dex exhibited the protective function against myocardial I/R injury via fatty acid metabolism pathways and Elovl6 plays a key role in the process, which was further confirmed using palmitate exposure in both cells, as well as in an in vivo rat model. Overall, this study systematically evaluates the protective effects of Dex on the myocardial I/R injury and provides better understanding on the fatty acid metabolism underlying the beneficial effects of Dex.


Subject(s)
Apoptosis , Dexmedetomidine , Fatty Acid Elongases , Fatty Acids , Myocardial Reperfusion Injury , Myocytes, Cardiac , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Rats , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Fatty Acids/metabolism , Male , Cell Line , Apoptosis/drug effects , Rats, Sprague-Dawley , Acetyltransferases/metabolism , Acetyltransferases/genetics , Cell Survival/drug effects
10.
J Cardiothorac Surg ; 19(1): 435, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997740

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (I/R) can affect patient outcomes and can even be life-threatening. This study aimed to explore the role of Shionone in cerebral I/R and reveal its mechanism of action through the cerebral I/R in vitro model. METHODS: SH-SY5Y cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to induce cerebral I/R in vitro model. SH-SY5Y cells were treated with different concentrations of Shionone. Cell counting kit-8 and flow cytometry assays were used to detect cell viability and apoptosis levels. The levels of superoxide dismutase, catalase, and malondialdehyde were determined using their corresponding kits to examine the level of oxidative stress. The inflammation response was detected by IL-6, IL-1ß, and TNF-α levels, using enzyme-linked-immunosorbent-assay. RT-qPCR was performed to measure the mRNA levels of p38 and NF-κB. Western blotting was used to quantify the apoptosis-related proteins and p38MAPK/NF-κB signaling pathway proteins. RESULTS: Shionone exhibited no toxic effects on SH-SY5Y cells. Shionone inhibited OGD/R-induced cell apoptosis, improved the inflammatory response caused by OGD/R, and reduced the level of oxidative stress in cells. Western blot assay results showed that Shionone alleviated OGD/R-induced injury by inhibiting the activity of the p38 MAPK/NF-κB signaling pathway. The p38/MAPK agonist P79350 reversed the beneficial effects of Shionone. CONCLUSION: Shionone alleviates cerebral I/R and may thus be a novel therapeutic strategy for treating cerebral I/R.


Subject(s)
Apoptosis , Glucose , NF-kappa B , Oxygen , Reperfusion Injury , p38 Mitogen-Activated Protein Kinases , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Glucose/deficiency , NF-kappa B/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Apoptosis/drug effects , Oxygen/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Cell Survival/drug effects , Cell Line, Tumor
11.
Brain Res Bull ; 215: 111032, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029715

ABSTRACT

BACKGROUND: Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism. METHODS: The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes. RESULTS: Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs' cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs. CONCLUSION: In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.


Subject(s)
Apoptosis , Drugs, Chinese Herbal , Endothelial Cells , Glycolysis , Ischemic Stroke , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Apoptosis/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Glycolysis/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Rats , Male , Brain/drug effects , Brain/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Survival/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Glucose/metabolism , Microvessels/drug effects , Microvessels/metabolism , Disease Models, Animal
12.
Biomolecules ; 14(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062570

ABSTRACT

Background: The regulation of divalent metal transporter-1 (DMT1) by insulin has been previously described in Langerhans cells and significant neuroprotection was found by insulin and insulin-like growth factor 1 treatment during experimental cerebral ischemia in acute ischemic stroke patients and in a rat 6-OHDA model of Parkinson's disease, where DMT1 involvement is described. According to the regulation of DMT1, previously described as a target gene of NF-kB in the early phase of post-ischemic neurodegeneration, both in vitro and in vivo, and because insulin controls the NFkB signaling with protection from ischemic cell death in rat cardiomyocytes, we evaluated the role of insulin in relation to DMT1 expression and function during ischemic neurodegeneration. Methods: Insulin neuroprotection is evaluated in differentiated human neuroblastoma cells, SK-N-SH, and in primary mouse cortical neurons exposed to oxygen glucose deprivation (OGD) for 8 h or 3 h, respectively, with or without 300 nM insulin. The insulin neuroprotection during OGD was evaluated in both cellular models in terms of cell death, and in SK-N-SH for DMT1 protein expression and acute ferrous iron treatment, performed in acidic conditions, known to promote the maximum DMT1 uptake as a proton co-transporter; and the transactivation of 1B/DMT1 mouse promoter, already known to be responsive to NF-kB, was analyzed in primary mouse cortical neurons. Results: Insulin neuroprotection during OGD was concomitant to the down-regulation of both DMT1 protein expression and 1B/DMT1 mouse promoter transactivation. We also showed the insulin-dependent protection from cell death after acute ferrous iron treatment. In conclusion, although preliminary, this evaluation highlights the peculiar role of DMT1 as a possible pharmacological target, involved in neuroprotection by insulin during in vitro neuronal ischemia and acute ferrous iron uptake.


Subject(s)
Cation Transport Proteins , Cell Death , Down-Regulation , Insulin , Neurons , Animals , Insulin/metabolism , Insulin/pharmacology , Humans , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Mice , Cell Death/drug effects , Neurons/metabolism , Neurons/drug effects , Down-Regulation/drug effects , Neuroprotection/drug effects , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Iron/metabolism , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Glucose/metabolism , Ferrous Compounds/pharmacology
13.
Exp Brain Res ; 242(8): 1841-1850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38842755

ABSTRACT

Vascular dementia (VaD) is the most common cause of dementia in older adults. Due to the lack of effective treatment options, there is an urgent need to find an effective pharmaceutical compound to combat VaD. Piracetam has been reported to improve impaired cognitive function in a variety of conditions in both human and animal models. However, the role and mechanism of Piracetam in VaD remain unclear. Therefore this study aimed to elucidate the effect of Piracetam on a cellular model of VaD in vitro. We found that Piracetam enhanced the growth of OGD-stimulated SH-SY5Y cells. In addition, Piracetam inhibited the oxidative stress of OGD-stimulated SH-SY5Y cells. Further, Piracetam improved mitochondrial function of OGD-stimulated SH-SY5Y cells. Mechanistically, Piracetam inhibited the PI3K/Akt/mTOR pathway in OGD-stimulated SH-SY5Y cells. Collectively, Piracetam improved oxidative stress and mitochondrial dysfunction of OGD-stimulated SH-SY5Y cells through PI3K/Akt/mTOR axis. Hence, Piracetam has the potential to serve as a promising drug of VaD.


Subject(s)
Dementia, Vascular , Mitochondria , Oxidative Stress , Piracetam , Oxidative Stress/drug effects , Oxidative Stress/physiology , Humans , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Piracetam/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Glucose/metabolism , Dose-Response Relationship, Drug
14.
Fitoterapia ; 177: 106076, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897247

ABSTRACT

Two new triterpenoids, ilexsaponin U (1) and ilexsaponin V (2), and three new phenylpropanoids, pubescenoside S (3), pubescenoside T (38), and pubescenoside U (39), along with thirty-four existing compounds were isolated from the roots of Ilex pubescens. The elucidation of their structures involved comprehensive spectroscopic techniques, including IR, UV, HR-ESI-MS, and NMR experiments. The anti-inflammatory effects of almost all the compounds were evaluated in LPS-induced RAW264.7 cells. Among these, compounds 1, 4, 8, 11, 12, 26, 27, 29 and 33 exhibited varying degrees of inhibition of inflammatory factors. Notably, compounds 1, 4 and 8 significantly inhibited the mRNA levels of iNOS, IL-6, IL-1ß and TNFα, comparable to or exceeding the effect of the positive control (dexamethasone, DEX). We also evaluated the cardioprotective effects of these compounds in OGD/R-induced H9c2 cells. The results revealed that compounds 2, 3, 7, 8, 26, 35, 36 and 37 at 20 µM significantly increased cell viability by 24.9 ± 3.4%, 28.0 ± 0.3%, 37.6 ± 0.2%, 44.86 ± 0.5%, 9.47 ± 2.1%, 23.9 ± 0.4%, 39.5 ± 3.1% and 28.2 ± 0.1%, respectively. Some of them exhibited effects equal to or greater than that of the positive control (diazoxide, DZ) at 100 µM, showing a 21.9 ± 3.0% increase.


Subject(s)
Anti-Inflammatory Agents , Ilex , Phytochemicals , Plant Roots , Triterpenes , Ilex/chemistry , Mice , Animals , Plant Roots/chemistry , RAW 264.7 Cells , Triterpenes/pharmacology , Triterpenes/isolation & purification , Triterpenes/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Rats , Cardiotonic Agents/pharmacology , Cardiotonic Agents/isolation & purification , China , Nitric Oxide Synthase Type II/metabolism
15.
Biomed Pharmacother ; 177: 116894, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878634

ABSTRACT

BACKGROUND: To explore the neuroprotective mechanism of artemisinin against ischemic stroke from the perspective of NLRP3-mediated pyroptosis. METHODS: Serum metabolomics technology was used to analyze the serum samples of mice, and KEGG metabolic pathway was analyzed for the different metabolites in the samples. PIT model and OGD/R model were used to simulate ischemic stroke damage in vivo and in vitro. Hoechst 33342 staining, Annexin V-FITC/PI staining and TUNEL staining were used to detect the pyroptosis rate of cells. The contents of IL-1ß and IL-18 in PC12 cells and serum of mice were detected by ELISA. The expressions of NLRP3, ASC-1, Caspase-1 and TXNIP in PC12 cells and mouse brain tissue were detected by Western Blot. RESULTS: Serum metabolic profiles of animal models identified 234 different metabolites and 91 metabolic pathways. Compared with the Sham group and the Stroke+ART group, the KEGG pathway in the Stroke group was concentrated in the Necroptosis pathway associated with cell growth and death, and the NLRP3 inflammasome-mediated pyroptosis pathway was activated in the Necroptosis pathway after ischemic stroke. The results of in vivo and in vitro experiments showed that pretreatment with 10 µM artemisinin reduced ROS production, decreased Δψm, reduced pyroptosis, maintained neuronal cell morphology, and down-regulated the contents of IL-1ß and IL-18 as well as the expression of key proteins of NLRP3, ASC-1, Caspase-1 and TXNIP(p<0.01). CONCLUSION: Artemisinin can reduce neuronal pyroptosis induced by ischemic stroke by inhibiting ROS/TXNIP/NLRP3/Caspase-1 signaling pathway.


Subject(s)
Artemisinins , Carrier Proteins , Caspase 1 , Ischemic Stroke , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Reactive Oxygen Species , Signal Transduction , Animals , Pyroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caspase 1/metabolism , Signal Transduction/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Artemisinins/pharmacology , Mice , Carrier Proteins/metabolism , PC12 Cells , Reactive Oxygen Species/metabolism , Male , Rats , Cell Cycle Proteins/metabolism , Neuroprotective Agents/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Disease Models, Animal , Thioredoxins
16.
Pol J Pathol ; 75(1): 40-53, 2024.
Article in English | MEDLINE | ID: mdl-38741428

ABSTRACT

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Endoplasmic Reticulum Stress , Retinal Ganglion Cells , Signal Transduction , Unfolded Protein Response , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Animals , AMP-Activated Protein Kinases/metabolism , Mice , Cell Line , Adiponectin/metabolism , Cell Survival , Glucose/metabolism , Glaucoma/metabolism , Glaucoma/pathology , Glycoproteins
17.
Sci Rep ; 14(1): 11240, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755191

ABSTRACT

Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.


Subject(s)
Drugs, Chinese Herbal , Ischemic Stroke , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Animals , Rats , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/prevention & control , Molecular Docking Simulation , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects
18.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2745-2753, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812175

ABSTRACT

This study investigated the protective effect of ginsenoside Rg_1(GRg_1) on oxygen and glucose deprivation/reoxygenation(OGD/R)-injured rat adrenal pheochromocytoma(PC12) cells and whether the underlying mechanism was related to the regulation of inositol-requiring enzyme 1(IRE1)-c-Jun N-terminal kinase(JNK)-C/EBP homologous protein(CHOP) signaling pathway. An OGD/R model was established in PC12 cells, and PC12 cells were randomly classified into control, model, OGD/R+GRg_1(0.1, 1, 10 µmol·L~(-1)), OGD/R+GRg_1+rapamycin(autophagy agonist), OGD/R+GRg_1+3-methyladenine(3-MA,autophagy inhibitor), OGD/R+GRg_1+tunicamycin(endoplasmic reticulum stress agonist), OGD/R+GRg_1+4-phenylbutyric acid(4-PBA, endoplasmic reticulum stress inhibitor), and OGD/R+GRg_1+3,5-dibromosalicylaldehyde(DBSA, IRE1 inhibitor) groups. Except the control group, the other groups were subjected to OGD/R treatment, i.e., oxygen and glucose deprivation for 6 h followed by reoxygenation for 6 h. Cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide(MTT) assay. Apoptosis was detected by Hoechst 33342 staining, and the fluorescence intensity of autophagosomes by the monodansylcadaverine(MDC) assay. Western blot was employed to determine the expression of autophagy-related proteins(Beclin1, LC3-Ⅱ, and p62) and the pathway-related proteins [IRE1, p-IRE1, JNK, p-JNK, glucose-regulated protein 78(GRP78), and CHOP]. The results showed that GRg_1 dose-dependently increased the viability of PC12 cells and down-regulated the expression of Beclin1, LC3-Ⅱ, p-IRE1, p-JNK, GRP78, and CHOP, compared with the model group. Furthermore, GRg_1 decreased the apoptosis rate and MDC fluorescence intensity and up-regulated the expression of p62 protein. Compared with the OGD/R+GRg_1(10 µmol·L~(-1)) group, OGD/R+GRg_1+rapamycin and OGD/R+GRg_1+tunicamycin groups showed increased apoptosis rate and MDC fluorescence intensity, up-regulated protein levels of Beclin1, LC3-Ⅱ, p-IRE1, p-JNK, GRP78, and CHOP, decreased relative cell survival rate, and down-regulated protein level of p62. The 3-MA, 4-PBA, and DBSA groups exerted the opposite effects. Taken together, GRg_1 may ameliorate OGD/R-induced PC12 cell injury by inhibiting autophagy via the IRE1-JNK-CHOP pathway.


Subject(s)
Apoptosis , Ginsenosides , Glucose , Protein Serine-Threonine Kinases , Transcription Factor CHOP , Animals , Rats , PC12 Cells , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Glucose/metabolism , Ginsenosides/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Apoptosis/drug effects , Signal Transduction/drug effects , Autophagy/drug effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , Oxygen/metabolism , Endoplasmic Reticulum Stress/drug effects , Multienzyme Complexes
19.
Neurochem Res ; 49(7): 1806-1822, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713437

ABSTRACT

Ischemic stroke presents a global health challenge, necessitating an in-depth comprehension of its pathophysiology and therapeutic strategies. While reperfusion therapy salvages brain tissue, it also triggers detrimental cerebral ischemia-reperfusion injury (CIRI). In our investigation, we observed the activation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in an oxygen-glucose deprivation/reoxygenation (OGD/R) model using HT22 cells (P < 0.05). This activation contributed to oxidative stress (P < 0.05), enhanced autophagy (P < 0.05) and cell death (P < 0.05) during CIRI. Silencing NCOA4 effectively mitigated OGD/R-induced damage (P < 0.05). These findings suggested that targeting NCOA4-mediated ferritinophagy held promise for preventing and treating CIRI. Subsequently, we substantiated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway effectively regulated the NCOA4-mediated ferritinophagy, by applying the cGAS inhibitor RU.521 and performing NCOA4 overexpression (P < 0.05). Suppressing the cGAS-STING pathway efficiently curtailed ferritinophagy (P < 0.05), oxidative stress (P < 0.05), and cell damage (P < 0.05) of CIRI, while NCOA4 overexpression could alleviate this effect (P < 0.05). Finally, we elucidated the specific molecular mechanism underlying the protective effect of the iron chelator deferoxamine (DFO) on CIRI. Our findings revealed that DFO alleviated hypoxia-reoxygenation injury in HT22 cells through inhibiting NCOA4-mediated ferritinophagy and reducing ferrous ion levels (P < 0.05). However, the protective effects of DFO were counteracted by cGAS overexpression (P < 0.05). In summary, our results indicated that the activation of the cGAS-STING pathway intensified cerebral damage during CIRI by inducing NCOA4-mediated ferritinophagy. Administering the iron chelator DFO effectively attenuated NCOA4-induced ferritinophagy, thereby alleviating CIRI. Nevertheless, the role of the cGAS-STING pathway in CIRI regulation likely involves intricate mechanisms, necessitating further validation in subsequent investigations.


Subject(s)
Autophagy , Ferritins , Nuclear Receptor Coactivators , Reperfusion Injury , Nuclear Receptor Coactivators/metabolism , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Ferritins/metabolism , Mice , Autophagy/drug effects , Autophagy/physiology , Cell Line , Oxidative Stress/drug effects , Oxidative Stress/physiology , Brain Ischemia/metabolism , Brain Ischemia/drug therapy
20.
J Pharm Pharmacol ; 76(7): 842-850, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38600790

ABSTRACT

BACKGROUND: Ischemic stroke (IS) is a detrimental neurological disease and IS lacks valuable methods to recover body function. Indobufen (IND) could alleviate IS. However, the possible mechanism remains undefined. METHODS: SH-SY5Y cells were cultured under the oxygen-glucose deprivation/reoxygenation (OGD/R) environment and then were treated with small interfering RNA (siRNA) of NRF2 and ATG5. The influence of various concentrations of IND (50 µM, 100 µM, 200 µM, and 400 µM) was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide. Levels of superoxide dismutase (SOD) and malonaldehyde (MDA) were examined by ELISA. Reactive oxygen species (ROS) production was determined by DCFH-DA staining. The protein levels of LC3II/LC3I, Beclin1, p62, NRF2, and ATG5 were detected by western blot. RESULTS: IND increased cell viability, while depressed the rate of apoptosis in SH-SY5Y cells of OGD/R environment. IND inhibited autophagy by suppressing the levels of LC3II/LC3I, Beclin1 protein, and increasing p62 protein expression in SH-SY5Y cells of OGD/R environment. IND limited the contents of ROS and MDA, while amplifying the activity of SOD in SH-SY5Y cells with OGD/R exposure. IND also promoted NRF2 expression in OGD/R environment. CONCLUSION: IND could inhibit autophagy, oxidative stress, and apoptosis in SH-SY5Y cells with OGD/R exposure, further alleviating IS injury by regulating transcription factor NRF2 and inhibiting ATG5 expression.


Subject(s)
Apoptosis , Autophagy-Related Protein 5 , Autophagy , Cell Survival , Ischemic Stroke , NF-E2-Related Factor 2 , Oxidative Stress , Reactive Oxygen Species , NF-E2-Related Factor 2/metabolism , Autophagy-Related Protein 5/metabolism , Humans , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , Cell Survival/drug effects , Cell Line, Tumor , Superoxide Dismutase/metabolism , Neuroprotective Agents/pharmacology , Malondialdehyde/metabolism , RNA, Small Interfering/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL