Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Neurosci Biobehav Rev ; : 105837, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089419

ABSTRACT

Elucidating the molecular mechanisms of psychopathology is crucial for optimized diagnosis and treatment. Accumulating literature has underlined how mitochondrial bioenergetics affect major psychiatric disorders. However, how mitochondrial dynamics, a term addressing mitochondria quality control, including mitochondrial fission, fusion, biogenesis and mitophagy, is implicated in psychopathologies remains elusive. In this review we summarize the existing literature on mitochondrial dynamics perturbations in psychiatric disorders/neuropsychiatric phenotypes. We include preclinical/clinical literature on mitochondrial dynamics recalibrations in anxiety, depression, post-traumatic stress disorder (PTSD), bipolar disorder and schizophrenia. We discuss alterations in mitochondrial network, morphology and shape; molecular markers of the mitochondrial dynamics machinery and mitochondrial DNA copy number (mtDNAcn) in animal models and human cohorts in brain and peripheral material. By looking for common altered mitochondrial dynamics patterns across diagnoses/phenotypes, we highlight mitophagy and biogenesis as regulators of anxiety and depression pathophysiology, respectively, as well as the fusion mediator dynamin-like 120kDa protein (Opa1) as a molecular hub contributing to psychopathology. Finally, we comment on limitations and future directions in this novel neuropsychiatry field.

2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000346

ABSTRACT

Autosomal dominant optic atrophy (ADOA) is a rare progressive disease mainly caused by mutations in OPA1, a nuclear gene encoding for a mitochondrial protein that plays an essential role in mitochondrial dynamics, cell survival, oxidative phosphorylation, and mtDNA maintenance. ADOA is characterized by the degeneration of retinal ganglion cells (RGCs). This causes visual loss, which can lead to legal blindness in many cases. Nowadays, there is no effective treatment for ADOA. In this article, we have established an isogenic human RGC model for ADOA using iPSC technology and the genome editing tool CRISPR/Cas9 from a previously generated iPSC line of an ADOA plus patient harboring the pathogenic variant NM_015560.3: c.1861C>T (p.Gln621Ter) in heterozygosis in OPA1. To this end, a protocol based on supplementing the iPSC culture media with several small molecules and defined factors trying to mimic embryonic development has been employed. Subsequently, the created model was validated, confirming the presence of a defect of intergenomic communication, impaired mitochondrial respiration, and an increase in apoptosis and ROS generation. Finally, we propose the analysis of OPA1 expression by qPCR as an easy read-out method to carry out future drug screening studies using the created RGC model. In summary, this model provides a useful platform for further investigation of the underlying pathophysiological mechanisms of ADOA plus and for testing compounds with potential pharmacological action.


Subject(s)
GTP Phosphohydrolases , Induced Pluripotent Stem Cells , Optic Atrophy, Autosomal Dominant , Retinal Ganglion Cells , Humans , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/pathology , Optic Atrophy, Autosomal Dominant/metabolism , Induced Pluripotent Stem Cells/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , CRISPR-Cas Systems , Gene Editing/methods , Mutation , Apoptosis/genetics , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Mitochondria/genetics
3.
Mitochondrion ; 78: 101933, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986925

ABSTRACT

Mitochondrial optic atrophy-1 (OPA1) plays key roles in adapting mitochondrial structure to bioenergetic function. When transmembrane potential across the inner membrane (Δψm) is intact, long (L-OPA1) isoforms shape the inner membrane through membrane fusion and the formation of cristal junctions. When Δψm is lost, however, OPA1 is cleaved to short, inactive S-OPA1 isoforms by the OMA1 metalloprotease, disrupting mitochondrial structure and priming cellular stress responses such as apoptosis. Previously, we demonstrated that L-OPA1 of H9c2 cardiomyoblasts is insensitive to loss of Δψm via challenge with the protonophore carbonyl cyanide chlorophenyl hydrazone (CCCP), but that CCCP-induced OPA1 processing is activated upon differentiation in media with low serum supplemented with all-trans retinoic acid (ATRA). Here, we show that this developmental induction of OPA1 processing in H9c2 cells is independent of ATRA; moreover, pretreatment of undifferentiated H9c2s with chloramphenicol (CAP), an inhibitor of mitochondrial protein synthesis, recapitulates the Δψm-sensitive OPA1 processing observed in differentiated H9c2s. L6.C11 and C2C12 myoblast lines display the same developmental and CAP-sensitive induction of OPA1 processing, demonstrating a general mechanism of OPA1 regulation in mammalian myoblast cell settings. Restoration of CCCP-induced OPA1 processing correlates with increased apoptotic sensitivity. Moreover, OPA1 knockdown indicates that intact OPA1 is necessary for effective myoblast differentiation. Taken together, our results indicate that a novel developmental mechanism acts to regulate OMA1-mediated OPA1 processing in myoblast cell lines, in which differentiation engages mitochondrial stress sensing.

4.
Br Poult Sci ; : 1-10, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39076129

ABSTRACT

1. In order to compare the difference between different derivatisations for amino acids determination of foie gras via, reversed phase high performance liquid chromatography (HPLC), O-phthalaldehyde and 9-fluorenyl-methyl chloroformate (OPA-FMOC group), phenylisothiocyanate (PITC group) and 6-Aminoquinolyl-N-hydrox-ysuccinimidyl Carbamate (AQC group) were applied to derivatisation reagent in this current experiment. The determination results of automatic amino acid analyser were applied, and 17 amino acids were detected by these three derivatisation methods.2. The running times of OPA-FMOC group, PITC group and AQC group were 18, 45 and 35 min, respectively. There was a large difference between the results of OPA-FMOC group and results from the automatic amino acid analyser, although the difference between the results from PITC and the automatic amino acid analyser was minimal.3. In conclusion, the running time of OPA-FMOC group was shorter than that of PITC group and AQC group; the accuracy of the former was better than the OPA-FMOC group and AQC group for the determination of amino acid of foie gras.

5.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826344

ABSTRACT

Cardiolipin (CL) is a mitochondria-specific phospholipid that forms heterotypic interactions with membrane-shaping proteins and regulates the dynamic remodeling and function of mitochondria. However, the precise mechanisms through which CL influences mitochondrial morphology are not well understood. In this study, employing molecular dynamics (MD) simulations, we observed CL localize near the membrane-binding sites of the mitochondrial fusion protein Optic Atrophy 1 (OPA1). To validate these findings experimentally, we developed a bromine-labeled CL probe to enhance cryoEM contrast and characterize the structure of OPA1 assemblies bound to the CL-brominated lipid bilayers. Our images provide direct evidence of interactions between CL and two conserved motifs within the paddle domain (PD) of OPA1, which control membrane-shaping mechanisms. We further observed a decrease in membrane remodeling activity for OPA1 in lipid compositions with increasing concentrations of monolyso-cardiolipin (MLCL). Suggesting that the partial replacement of CL by MLCL accumulation, as observed in Barth syndrome-associated mutations of the tafazzin phospholipid transacylase, compromises the stability of protein-membrane interactions. Our analyses provide insights into how biological membranes regulate the mechanisms governing mitochondrial homeostasis.

6.
J Cancer ; 15(12): 3633-3644, 2024.
Article in English | MEDLINE | ID: mdl-38911373

ABSTRACT

Background: As we delve into the intricate world of mitochondrial inner membrane proteins, particularly Optic Atrophy types 1 and 3 (OPA1/3), we uncover their pivotal role in maintaining mitochondrial dynamic equilibrium and fusion, crucial for cellular energy production and synthesis. Despite extensive scrutiny, the significance of OPA1/3 in breast cancer (BRCA) and its interplay with the immune microenvironment remain elusive. Materials and Methods: We meticulously sourced BRCA data from renowned repositories such as The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO), and the Human Protein Atlas (HPA), leveraging cutting-edge techniques including single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics, and pharmacogenomics. Through multifaceted data analysis, we endeavored to unravel the intricate role and potential value of OPA1/3 in BRCA tumorigenesis and progression. Results: Our investigation reveals a conspicuous upregulation of OPA1/3 expression in BRCA, correlating with dismal prognoses. Kaplan-Meier plot analysis underscores that heightened OPA1/3 levels are associated with poor survival rates. Both clinical specimens and biobank biopsies corroborate the elevated expression of OPA1/3 in breast cancer patients. Moreover, scRNA-seq unveils a strong correlation between OPA1/3 and macrophage infiltration in the BRCA immune milieu, alongside its association with the cellular communication network involving CXCL, TGFb, VEGF, and IL16. Conclusion: In light of these findings, OPA1/3 emerges as a promising contender for therapeutic targeting and as a potential diagnostic, prognostic, and survival biomarker in BRCA. The implications of our study underscore the pressing need to explore these novel biomarkers to enhance patient outcomes.

7.
Clin Nutr ; 43(7): 1816-1831, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870662

ABSTRACT

BACKGROUND: Optical atrophy 1 (OPA1), a protein accountable for mitochondrial fusion, facilitates the restoration of mitochondrial structure and function following cerebral ischemia/reperfusion (I/R) injury. The OPA1-conferred mitochondrial protection involves its expression and activity, which can be improved by SIRT3 in non-cerebral ischemia. Nevertheless, it remains obscure whether SIRT3 enhances the expression and activity of OPA1 after cerebral I/R injury. METHODS: Mature male Sprague Dawley rats were intracranially injected with adeno-associated viral-Sirtuin-3(AAV-SIRT3) and AAV-sh_OPA1, followed by a 90-min temporary blockage of the middle cerebral artery and subsequent restoration of blood flow. Cultured cortical neurons of rats were transfected with LV-SIRT3 or LV-sh_OPA1 before a 2-h oxygen-glucose deprivation and reoxygenation. The rats and neurons were subsequently treated with a selective OPA1 activity inhibitor (MYLS22). The interaction between SIRT3 and OPA1 was assessed by molecular dynamics simulation technology and co-immunoprecipitation. The expression, function, and specific protective mechanism of SIRT3 were examined by various analyses. RESULTS: SIRT3 interacted with OPA1 in the rat cerebral cortex before and after cerebral I/R. After cerebral I/R damage, SIRT3 upregulation increased the OPA1 expression, which enhanced deacetylation and OPA1 activity, thus alleviating cerebral infarct volume, neuronal apoptosis, oxidative pressure, and impairment in mitochondrial energy production; SIRT3 upregulation also improved neuromotor performance, repaired mitochondrial ultrastructure and membrane composition, and promoted the mitochondrial biogenesis. These neuroprotective effects were partly reversed by OPA1 expression interference and OPA1 activity inhibitor MYLS22. CONCLUSION: In rats, SIRT3 enhances the expression and activity of OPA1, facilitating the repair of mitochondrial structure and functional recovery following cerebral I/R injury. These findings highlight that regulating SIRT3 may be a promising therapeutic strategy for ischemic stroke.


Subject(s)
GTP Phosphohydrolases , Ischemic Stroke , Mitochondria , Rats, Sprague-Dawley , Sirtuin 3 , Animals , Male , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Sirtuin 3/metabolism , Sirtuin 3/genetics , Rats , Mitochondria/metabolism , Ischemic Stroke/metabolism , Neurons/metabolism , Reperfusion Injury/metabolism , Disease Models, Animal , Recovery of Function , Sirtuins
8.
Methods Cell Biol ; 188: 89-108, 2024.
Article in English | MEDLINE | ID: mdl-38880530

ABSTRACT

Autosomal Dominant Optic Atrophy (ADOA) is a rare neurodegenerative condition, characterized by the bilateral loss of vision due to the degeneration of retinal ganglion cells. Its primary cause is linked to mutations in OPA1 gene, which ultimately affect mitochondrial structure and function. The current lack of successful treatments for ADOA emphasizes the need to investigate the mechanisms driving disease pathogenesis and exploit the potential of animal models for preclinical trials. Among such models, Caenorhabditis elegans stands out as a powerful tool, due its simplicity, its genetic tractability, and its relevance to human biology. Despite the lack of a visual system, the presence of mutated OPA1 in the nematode recapitulates ADOA pathology, by stimulating key pathogenic features of the human condition that can be studied in a fast and relatively non-laborious manner. Here, we provide a detailed guide on how to assess the therapeutic efficacy of chemical compounds, in either small or large scale, by evaluating three crucial phenotypes of humanized ADOA model nematodes, that express pathogenic human OPA1 in their GABAergic motor neurons: axonal mitochondria number, neuronal cell death and defecation cycle time. The described methods can deepen our understanding of ADOA pathogenesis and offer a practical framework for developing novel treatment schemes, providing hope for improved therapeutic outcomes and a better quality of life for individuals affected by this currently incurable condition.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Optic Atrophy, Autosomal Dominant , Animals , Caenorhabditis elegans/genetics , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/drug therapy , Humans , Mitochondria/metabolism , Mitochondria/drug effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mutation , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Drug Evaluation, Preclinical/methods
9.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38857185

ABSTRACT

Body shape and size diversity and their evolutionary rates correlate with species richness at the macroevolutionary scale. However, the molecular genetic mechanisms underlying the morphological diversification across related species are poorly understood. In beetles, which account for one-fourth of the known species, adaptation to different trophic niches through morphological diversification appears to have contributed to species radiation. Here, we explored the key genes for the morphological divergence of the slender to stout body shape related to divergent feeding methods on large to small snails within the genus Carabus. We show that the zinc-finger transcription factor encoded by odd-paired (opa) controls morphological variation in the snail-feeding ground beetle Carabus blaptoides. Specifically, opa was identified as the gene underlying the slender to stout morphological difference between subspecies through genetic mapping and functional analysis via gene knockdown. Further analyses revealed that changes in opa cis-regulatory sequences likely contributed to the differences in body shape and size between C. blaptoides subspecies. Among opa cis-regulatory sequences, single nucleotide polymorphisms on the transcription factor binding sites may be associated with the morphological differences between C. blaptoides subspecies. opa was highly conserved in a wide range of taxa, especially in beetles. Therefore, opa may play an important role in adaptive morphological divergence in beetles.


Subject(s)
Coleoptera , Snails , Transcription Factors , Animals , Coleoptera/genetics , Coleoptera/anatomy & histology , Snails/genetics , Snails/anatomy & histology , Transcription Factors/genetics , Transcription Factors/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Biological Evolution , Polymorphism, Single Nucleotide
10.
Article in English | MEDLINE | ID: mdl-38874521

ABSTRACT

Aims: Mitochondrial dynamics in alveolar macrophages (AMs) are associated with sepsis-induced acute lung injury (ALI). In this study, we aimed to investigate whether changes in mitochondrial dynamics could alter the polarization of AMs in sepsis-induced ALI and to explore the regulatory mechanism of mitochondrial dynamics by focusing on sirtuin (SIRT)3-induced optic atrophy protein 1 (OPA1) deacetylation. Results: The AMs of sepsis-induced ALI showed imbalanced mitochondrial dynamics and polarization to the M1 macrophage phenotype. In sepsis, SIRT3 overexpression promotes mitochondrial dynamic equilibrium in AMs. However, 3-(1H-1, 2, 3-triazol-4-yl) pyridine (3TYP)-specific inhibition of SIRT3 increased the mitochondrial dynamic imbalance and pro-inflammatory polarization of AMs and further aggravated sepsis-induced ALI. OPA1 is directly bound to and deacetylated by SIRT3 in AMs. In AMs of sepsis-induced ALI, SIRT3 protein expression was decreased and OPA1 acetylation was increased. OPA1 acetylation at the lysine 792 amino acid residue (OPA1-K792) promotes self-cleavage and is associated with an imbalance in mitochondrial dynamics. However, decreased acetylation of OPA1-K792 reversed the pro-inflammatory polarization of AMs and protected the barrier function of alveolar epithelial cells in sepsis-induced ALI. Innovation: Our study revealed, for the first time, the regulation of mitochondrial dynamics and AM polarization by SIRT3-mediated deacetylation of OPA1 in sepsis-induced ALI, which may serve as an intervention target for precision therapy of the disease. Conclusions: Our data suggest that imbalanced mitochondrial dynamics promote pro-inflammatory polarization of AMs in sepsis-induced ALI and that deacetylation of OPA1 mediated by SIRT3 improves mitochondrial dynamic equilibrium, thereby ameliorating lung injury.

11.
J Transl Med ; 22(1): 499, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796415

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is caused by reperfusion after ischemic heart disease. LncRNA Snhg1 regulates the progression of various diseases. N6-methyladenosine (m6A) is the frequent RNA modification and plays a critical role in MIRI. However, it is unclear whether lncRNA Snhg1 regulates MIRI progression and whether the lncRNA Snhg1 was modified by m6A methylation. METHODS: Mouse cardiomyocytes HL-1 cells were utilized to construct the hypoxia/reoxygenation (H/R) injury model. HL-1 cell viability was evaluated utilizing CCK-8 method. Cell apoptosis, mitochondrial reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were quantitated utilizing flow cytometry. RNA immunoprecipitation and dual-luciferase reporter assays were applied to measure the m6A methylation and the interactions between lncRNA Snhg1 and targeted miRNA or target miRNAs and its target gene. The I/R mouse model was constructed with adenovirus expressing lncRNA Snhg1. HE and TUNEL staining were used to evaluate myocardial tissue damage and apoptosis. RESULTS: LncRNA Snhg1 was down-regulated after H/R injury, and overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization. Besides, lncRNA Snhg1 could target miR-361-5p, and miR-361-5p targeted OPA1. Overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization though the miR-361-5p/OPA1 axis. Furthermore, WTAP induced lncRNA Snhg1 m6A modification in H/R-stimulated HL-1 cells. Moreover, enforced lncRNA Snhg1 repressed I/R-stimulated myocardial tissue damage and apoptosis and regulated the miR-361-5p and OPA1 levels. CONCLUSION: WTAP-mediated m6A modification of lncRNA Snhg1 regulated MIRI progression through modulating myocardial apoptosis, mitochondrial ROS production, and mitochondrial polarization via miR-361-5p/OPA1 axis, providing the evidence for lncRNA as the prospective target for alleviating MIRI progression.


Subject(s)
Apoptosis , MicroRNAs , Mitochondrial Dynamics , Myocardial Reperfusion Injury , Myocytes, Cardiac , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Mice , Apoptosis/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Line , Male , Mice, Inbred C57BL , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Reactive Oxygen Species/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Base Sequence , Methylation , Membrane Potential, Mitochondrial
12.
Aging Cell ; 23(7): e14165, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757355

ABSTRACT

Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.


Subject(s)
Cell Survival , Mitochondria , Neural Stem Cells , Neural Stem Cells/metabolism , Mitochondria/metabolism , Animals , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Stress, Physiological , Oxidative Stress
13.
J Lipid Res ; 65(6): 100563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763493

ABSTRACT

Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography coupled with electrospray ionization-high resolution MS to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts knocked out for OPA1 and Mfn1/2 genes. One hundred sixty-seven different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PCs, 63), phosphatidylethanolamines (55), phosphatidylinositols (21), and cardiolipins (28). A slight decrease in the cardiolipin/PC ratio was found for Mfn1/2-knockout mitochondria. Principal component analysis and hierarchical cluster analysis were subsequently used to further process hydrophilic interaction liquid chromatography-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and phosphatidylethanolamine classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to WT mouse embryonic fibroblasts. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially Mfns, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes.


Subject(s)
GTP Phosphohydrolases , Lipidomics , Mitochondria , Phospholipids , Animals , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/deficiency , Mice , Mitochondria/metabolism , Phospholipids/metabolism , Mice, Knockout , Fibroblasts/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
14.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731404

ABSTRACT

This study explores the quantum size effects on the optical properties of pillar[n]arene (n = 5, 6, 7, 8) utilizing density functional theory (DFT) and wave function analysis. The mechanisms of electron transitions in one-photon absorption (OPA) and two-photon absorption (TPA) spectra are investigated, alongside the calculation of electron circular dichroism (ECD) for these systems. Transition Density Matrix (TDM) and electron-hole pair density maps are employed to study the electron excitation characteristics, unveiling a notable size dependency. Analysis of the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM) reveals the electromagnetic interaction mechanism within pillar[n]arene. Raman spectra computations further elucidate vibrational modes, while interactions with external environments are studied using electrostatic potential (ESP) analysis, and electron delocalization is assessed under an external magnetic field, providing insights into the magnetically induced current phenomena within these supramolecular structures. The thermal stability of pillar[n]arene was investigated by ab initio molecular dynamics (AIMD).

15.
Phytomedicine ; 129: 155555, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579641

ABSTRACT

BACKGROUND: Ischemic stroke is a leading cause of death and long-term disability worldwide. Studies have suggested that cerebral ischemia induces massive mitochondrial damage. Valerianic acid A (VaA) is the main active ingredient of valerianic acid with neuroprotective activity. PURPOSE: This study aimed to investigate the neuroprotective effects of VaA with ischemic stroke and explore the underlying mechanisms. METHOD: In this study, we established the oxygen-glucose deprivation and reperfusion (OGD/R) cell model and the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model in vitro and in vivo. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of VaA in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP), and activities of NAD+ were detected to reflect mitochondrial function. Mechanistically, gene knockout experiments, transfection experiments, immunofluorescence, DARTS, and molecular dynamics simulation experiments showed that VaA bound to IDO1 regulated the kynurenine pathway of tryptophan metabolism and prevented Stat3 dephosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. RESULTS: We showed that VaA decreased the infarct volume in a dose-dependent manner and exerted neuroprotective effects against reperfusion injury. Furthermore, VaA promoted Opa1-related mitochondrial fusion and reversed neuronal mitochondrial damage and loss after reperfusion injury. In SH-SY5Y cells, VaA (5, 10, 20 µM) exerted similar protective effects against OGD/R-induced injury. We then examined the expression of significant enzymes regulating the kynurenine (Kyn) pathway of the ipsilateral brain tissue of the ischemic stroke rat model, and these enzymes may play essential roles in ischemic stroke. Furthermore, we found that VaA can bind to the initial rate-limiting enzyme IDO1 in the Kyn pathway and prevent Stat3 phosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. Using in vivo IDO1 knockdown and in vitro IDO1 overexpressing models, we demonstrated that the promoted mitochondrial fusion and neuroprotective effects of VaA were IDO1-dependent. CONCLUSION: VaA administration improved neurological function by promoting mitochondrial fusion through the IDO1-mediated Stat3-Opa1 pathway, indicating its potential as a therapeutic drug for ischemic stroke.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Neuroprotective Agents , STAT3 Transcription Factor , Signal Transduction , Animals , Male , Rats , Disease Models, Animal , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Ischemic Stroke/drug therapy , Kynurenine/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , Triterpenes/pharmacology
16.
Cells ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38607070

ABSTRACT

Neonatal hypoxia-ischemia (HI) affects 2-3 per 1000 live births in developed countries and up to 26 per 1000 live births in developing countries. It is estimated that of the 750,000 infants experiencing a hypoxic-ischemic event during birth per year, more than 400,000 will be severely affected. As treatment options are limited, rapidly identifying new therapeutic avenues is critical, and repurposing drugs already in clinical use offers a fast-track route to clinic. One emerging avenue for therapeutic intervention in neonatal HI is to target mitochondrial dysfunction, which occurs early in the development of brain injury. Mitochondrial dynamics are particularly affected, with mitochondrial fragmentation occurring at the expense of the pro-fusion protein Optic Atrophy (OPA)1. OPA1, together with mitofusins (MFN)1/2, are required for membrane fusion, and therefore, protecting their function may also safeguard mitochondrial dynamics. Leflunomide, an FDA-approved immunosuppressant, was recently identified as an activator of MFN2 with partial effects on OPA1 expression. We, therefore, treated C17.2 cells with Leflunomide before or after oxygen-glucose deprivation, an in vitro mimic of HI, to determine its efficacy as a neuroprotection and inhibitor of mitochondrial dysfunction. Leflunomide increased baseline OPA1 but not MFN2 expression in C17.2 cells. However, Leflunomide was unable to promote cell survival following OGD. Equally, there was no obvious effect on mitochondrial morphology or bioenergetics. These data align with studies suggesting that the tissue and mitochondrial protein profile of the target cell/tissue are critical for taking advantage of the therapeutic actions of Leflunomide.


Subject(s)
Mitochondrial Diseases , Oxygen , Infant, Newborn , Humans , Oxygen/metabolism , Glucose/metabolism , Leflunomide/pharmacology , Cells, Cultured
17.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612863

ABSTRACT

Our study aimed to explore the potential positive effects of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The study involved 32 male and 32 female rats aged 15 months, randomly assigned to control sedentary animals, animals training in cold water at 5 ± 2 °C, or animals training in water at thermal comfort temperature (36 ± 2 °C). The rats underwent swimming training for nine weeks, gradually increasing the duration of the sessions from 2 min to 4 min per day, five days a week. The results demonstrated that swimming in thermally comfortable water improved the energy metabolism of aging rat muscles (increased metabolic rates expressed as increased ATP, ADP concentration, TAN (total adenine nucleotide) and AEC (adenylate energy charge value)) and increased mRNA and protein expression of fusion regulatory proteins. Similarly, cold-water swimming improved muscle energy metabolism in aging rats, as shown by an increase in muscle energy metabolites and enhanced mitochondrial biogenesis and dynamics. It can be concluded that the additive effect of daily activity in cold water influenced both an increase in the rate of energy metabolism in the muscles of the studied animals and an intensification of mitochondrial biogenesis and dynamics (related to fusion and fragmentation processes). Daily activity in warm water also resulted in an increase in the rate of energy metabolism in muscles, but at the same time did not cause significant changes in mitochondrial dynamics.


Subject(s)
Organelle Biogenesis , Swimming , Female , Male , Animals , Rats , Muscles , Energy Metabolism , Aging , Water
18.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674151

ABSTRACT

In response to cellular metabolic and signaling cues, the mitochondrial network employs distinct sets of membrane-shaping factors to dynamically modulate organellar structures through a balance of fission and fusion. While these organellar dynamics mediate mitochondrial structure/function homeostasis, they also directly impact critical cell-wide signaling pathways such as apoptosis, autophagy, and the integrated stress response (ISR). Mitochondrial fission is driven by the recruitment of the cytosolic dynamin-related protein-1 (DRP1), while fusion is carried out by mitofusins 1 and 2 (in the outer membrane) and optic atrophy-1 (OPA1) in the inner membrane. This dynamic balance is highly sensitive to cellular stress; when the transmembrane potential across the inner membrane (Δψm) is lost, fusion-active OPA1 is cleaved by the overlapping activity with m-AAA protease-1 (OMA1 metalloprotease, disrupting mitochondrial fusion and leaving dynamin-related protein-1 (DRP1)-mediated fission unopposed, thus causing the collapse of the mitochondrial network to a fragmented state. OMA1 is a unique regulator of stress-sensitive homeostatic mitochondrial balance, acting as a key upstream sensor capable of priming the cell for apoptosis, autophagy, or ISR signaling cascades. Recent evidence indicates that higher-order macromolecular associations within the mitochondrial inner membrane allow these specialized domains to mediate crucial organellar functionalities.


Subject(s)
Homeostasis , Metalloendopeptidases , Mitochondria , Mitochondrial Dynamics , Mitochondrial Proteins , Stress, Physiological , Humans , Animals , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Metalloendopeptidases/metabolism , Signal Transduction , Autophagy , Dynamins/metabolism , Apoptosis , GTP Phosphohydrolases/metabolism
19.
BMC Med Genomics ; 17(1): 94, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641846

ABSTRACT

BACKGROUND: Copy number variations (CNVs) have emerged as significant contributors to the elusive genetic causality of inherited eye diseases. In this study, we describe a case with optic atrophy and a brain aneurysm, in which a de novo CNV 3q29 deletion was identified. CASE PRESENTATION: A 40-year-old female patient was referred to our department after undergoing aneurysm transcatheter arterial embolization for a brain aneurysm. She had no history of systemic diseases, except for unsatisfactory best-corrected visual acuity (BCVA) since elementary school. Electrophysiological tests confirmed the findings in retinal images, indicating optic nerve atrophy. Chromosomal microarray analysis revealed a de novo deletion spanning 960 kb on chromosome 3q29, encompassing OPA1 and six neighboring genes. Unlike previously reported deletions in this region associated with optic atrophy, neuropsychiatric disorders, and obesity, this patient displayed a unique combination of optic atrophy and a brain aneurysm. However, there is no causal relationship between the brain aneurysm and the CNV. CONCLUSION: In conclusion, the optic atrophy is conclusively attributed to the OPA1 deletion, and the aneurysm could be a coincidental association. The report emphasizes the likelihood of underestimating OPA1 deletions due to sequencing technology limitations. Recognizing these constraints, healthcare professionals must acknowledge these limitations and consistently search for OPA1 variants/deletions in Autosomal Dominant Optic Atrophy (ADOA) patients with negative sequencing results. This strategic approach ensures a more comprehensive exploration of copy-number variations, ultimately enhancing diagnostic precision in the field of genetic disorders.


Subject(s)
Intracranial Aneurysm , Optic Atrophy , Female , Humans , Adult , Mutation , DNA Copy Number Variations , Intracranial Aneurysm/genetics , Optic Atrophy/genetics , Phenotype , Chromosomes , Pedigree , GTP Phosphohydrolases/genetics
20.
Pediatr Nephrol ; 39(8): 2351-2353, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38467926

ABSTRACT

Renal coloboma syndrome (RCS) and dominant optic atrophy are mainly caused by heterozygous mutations in PAX2 and OPA1, respectively. We describe a patient with digenic mutations in PAX2 and OPA1. A female infant was born without perinatal abnormalities. Magnetic resonance imaging at 4 months of age showed bilateral microphthalmia and optic nerve hypoplasia. Appropriate body size was present at 2 years of age, and mental development was favorable. Color fundus photography revealed severe retinal atrophy in both eyes. Electroretinography showed slight responses in the right eye, but no responses in the left eye, suggesting a high risk of blindness. Urinalysis results were normal, creatinine-based estimated glomerular filtration rate was 63.5 mL/min/1.73 m2, and ultrasonography showed bilateral hypoplastic kidneys. Whole exome sequencing revealed de novo frameshift mutations in PAX2 and OPA1. Both variants were classified as pathogenic (PVS1, PS2, PM2) based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). Genetic testing for ocular diseases should be considered for patients with suspected RCS and a high risk of total blindness.


Subject(s)
Coloboma , GTP Phosphohydrolases , PAX2 Transcription Factor , Vesico-Ureteral Reflux , Humans , Female , PAX2 Transcription Factor/genetics , GTP Phosphohydrolases/genetics , Coloboma/genetics , Coloboma/diagnosis , Vesico-Ureteral Reflux/genetics , Vesico-Ureteral Reflux/diagnosis , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/diagnosis , Urogenital Abnormalities/genetics , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/complications , Frameshift Mutation , Exome Sequencing , Infant , Child, Preschool , Mutation , Renal Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL