Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Inflammopharmacology ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039348

ABSTRACT

BACKGROUND: Ulcerative colitis (UC), a chronic inflammatory gastrointestinal disorder, is becoming increasingly prevalent worldwide. Ophiopogonin D, which is derived from Ophiopogon japonicus, exhibits anti-inflammatory and antioxidant properties, yet its therapeutic potential in UC remains unclear. METHODS: In this study, we employed a mouse model of DSS-induced colitis to assess the impact of Ophiopogonin D on various parameters, including weight loss, bloody stools, and inflammation in the colon. RESULTS: Ophiopogonin-D treatment significantly mitigated these DSS-induced effects, improved colon permeability, and modulated inflammatory markers like ZO-1, MUC-2, TNF-α, and IL-1ß in mice compared with the control. Furthermore, compared to the DSS-treatment group, Ophiopogonin-D treatment improved the α- and ß-diversity indices of the mouse intestinal microbiota, along with an increase in the abundance of genera such as Akkermansia (AKK) and a decrease in the abundance of genera such as Enterobacter. Notably, propionic acid, a metabolite of AKK, demonstrated significant improvement in the symptoms of DSS-induced colitis in mice compared to the control. Moreover, propionic-acid administration also resulted in alterations in the levels of inflammatory factors and calreticulin within the intestinal tissues. CONCLUSION: Overall, Ophiopogonin D significantly affects intestinal microbiota composition, thereby improving symptoms of DSS-induced colitis in mice. These findings present promising therapeutic strategies and potential pharmaceutical candidates for the treatment of ulcerative colitis.

2.
Phytomedicine ; 130: 155482, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38824823

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is characterized by acute pulmonary inflammatory infiltration. Alveolar epithelial cells (AECs) release numerous pro-inflammatory cytokines, which result in the pathological changes seen in ALI. Ophiopogonin D (OD), extracted from the roots of Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), reduces inflammation; however, the efficacy of OD in ALI has not been reported and the underlying molecular mechanisms remain unclear. PURPOSE: This study investigated the anti-inflammatory effects of OD, as well as the underlying mechanisms, in AECs and a mouse ALI model. METHODS: Lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were used to stimulate macrophages and A549 cells, and a mouse ALI model was established by intratracheal LPS administration. The anti-inflammatory effects and mechanisms of OD in the TNF-α-induced in vitro inflammation model was evaluated using real-time quantitative polymerase chain reaction qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting, nuclear and cytoplasmic protein extraction, and immunofluorescence. The in vivo anti-inflammatory activity of OD was evaluated using hematoxylin and eosin staining, qPCR, ELISA, and western blotting. RESULTS: The bronchoalveolar lavage fluid and lung tissue of LPS-induced ALI mice exhibited increased TNF-α expression. TNF-α induced a significantly greater pro-inflammatory effect in AECs than LPS. OD reduced inflammation and mitogen-activated protein kinase (MAPK) and transcription factor p65 phosphorylation in vivo and in vitro and promoted signal transducer and activator of transcription 3 (STAT3) phosphorylation and A20 expression, thereby inducing apoptosis signal-regulating kinase 1 (ASK1) proteasomal degradation. CONCLUSION: OD exerts an anti-inflammatory effect by promoting STAT3-dependent A20 expression and ASK1 degradation. OD may therefore have therapeutic value in treating ALI and other TNF-α-related inflammatory diseases.


Subject(s)
Acute Lung Injury , Anti-Inflammatory Agents , Lipopolysaccharides , STAT3 Transcription Factor , Saponins , Spirostans , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Animals , Saponins/pharmacology , Spirostans/pharmacology , Mice , STAT3 Transcription Factor/metabolism , Humans , Anti-Inflammatory Agents/pharmacology , Male , MAP Kinase Kinase Kinase 5/metabolism , A549 Cells , Disease Models, Animal , Tumor Necrosis Factor-alpha/metabolism , RAW 264.7 Cells , Mice, Inbred C57BL , Ophiopogon/chemistry , Inflammation/drug therapy , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Signal Transduction/drug effects , Plant Roots/chemistry
3.
Chin J Physiol ; 66(6): 494-502, 2023.
Article in English | MEDLINE | ID: mdl-38149562

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease characterized by high blood sugar. Due to its complex pathogenesis, no effective drugs have been found so far. Ophiopogonin D (OP-D) has anti-inflammatory, antioxidant, and anticancer activities, but its role in DM has not been studied so far. Hydrogen peroxide (H2O2) was used to induce INS-1 cells. INS-1 cells induced by H2O2 were treated with OP-D, and cell apoptosis, oxidative stress damage, and related indexes of mitochondrial function were respectively detected by cell counting kit-8, flow cytometry, western blot, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, JC-1 fluorescent probe, and related kits. Subsequently, molecular docking techniques were used to investigate the relationship between OP-D and Keap1 and to explore the regulation mechanism of OP-D on H2O2-induced oxidative stress and mitochondrial function in INS-1 cells. OP-D inhibited the apoptosis and oxidative stress level of H2O2-induced INS-1 cells, thereby inhibiting cell damage. Moreover, OP-D inhibited mitochondrial dysfunction in H2O2-induced INS-1 cells. At last, we found that Keap1/Nrf2 specific signaling pathway inhibitor ML385 was able to reverse the inhibitory effect of OP-D on H2O2-induced oxidative stress and mitochondrial dysfunction in INS-1 cells. In conclusion, OP-D improves oxidative stress and mitochondrial dysfunction in pancreatic ß cells induced by H2O2 through activating Keap1/Nrf2/ARE pathway in DM.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Mitochondrial Diseases , Humans , Hydrogen Peroxide/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Insulin-Secreting Cells/metabolism , Molecular Docking Simulation , Signal Transduction , Oxidative Stress , Antioxidants/pharmacology , Diabetes Mellitus/metabolism , Mitochondrial Diseases/metabolism , Reactive Oxygen Species/metabolism , Apoptosis
4.
Phytomedicine ; 121: 155078, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37734252

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with limited therapeutic strategies. Therefore, there is an urgent need to search for safe and effective drugs to treat this condition. Ophiopogonin D (OP-D), a steroidal saponin compound extracted from ophiopogon, possesses various pharmacological properties, including anti-inflammatory, antioxidant, and antitumor effects. However, the potential pharmacological effect of OP-D on pulmonary fibrosis remains unknown. PURPOSE: The aim of this study was to investigate whether OP-D can improve pulmonary fibrosis and to explore its mechanism of action. METHODS: The effect of OP-D on pulmonary fibrosis was investigated in vitro and in vivo using a mouse model of IPF induced by bleomycin and an in vitro model of human embryonic lung fibroblasts induced by transforming growth factor-ß1 (TGF-ß1). The mechanism of action of OP-D was determined using multi-omics techniques and bioinformatics. RESULTS: OP-D attenuated epithelial-mesenchymal transition and excessive deposition of extracellular matrix in the lungs, promoted the apoptosis of lung fibroblasts, and blocked the differentiation of lung fibroblasts into myofibroblasts. The multi-omics techniques and bioinformatics analysis revealed that OP-D blocked the AKT/GSK3ß pathway, and the combination of a PI3K/AKT inhibitor and OP-D was effective in alleviating pulmonary fibrosis. CONCLUSION: This study demonstrated for the first time that OP-D can reduce lung inflammation and fibrosis. OP-D is thus a potential new drug for the prevention and treatment of pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Saponins , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Multiomics , Phosphatidylinositol 3-Kinases/metabolism , Lung/pathology , Saponins/pharmacology , Saponins/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Fibroblasts , Bleomycin , Mice, Inbred C57BL
5.
Exp Ther Med ; 26(3): 418, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37602303

ABSTRACT

Lipid metabolic disorders, oxidative stress and inflammation in the liver are key steps in the progression of non-alcoholic fatty liver disease (NAFLD). Ophiopogonin D (OP-D), the main active ingredient of Ophiopogon japonicus, exhibits several pharmacological activities such as antioxidant and anti-inflammatory activities. Therefore, the current study aimed to explore the role of OP-D in NAFLD in a high-fat diet (HFD)-induced obesity mouse model. To investigate the effect of OP-D on NAFLD in vivo, a NAFLD mouse model was established following feeding mice with HFD, then the mice were randomly treated with HFD or HFD + OP-D for 4 weeks. Subsequently, primary mouse hepatocytes were isolated, and enzyme-linked immunosorbent assay, reverse transcription-quantitative PCR western blotting and immunofluorescence analysis were used for assessment to explore the direct effect of OP-D in vitro. The results of the present study indicated that OP-D could ameliorate NAFLD in HFD-induced obese mice by regulating lipid metabolism and antioxidant and anti-inflammatory responses. Additionally, OP-D treatment decreased lipogenesis and inflammation levels in vitro, suggesting that the NF-κB signaling pathway may be involved in the beneficial effects of OP-D on NAFLD.

6.
J Biochem Mol Toxicol ; 37(7): e23361, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36999444

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by immune abnormalities leading to multi-organ damage. The activation of autoreactive B cell differentiation will lead to the production of pathogenic autoantibodies, contributing to the development of SLE. However, the effects of Ophiopogonin D (OP-D) on B cell activation and autoantibody production as well as renal injury in the pathogenesis of SLE remain unclear. MRL/lpr mice, one of the most commonly used animal models of SLE, were intragastrically administered with 5 mg/kg/d OP-D at 17 weeks of age for 3 weeks. The survival rates of mice in each group were monitored for 6 weeks until 23 weeks of age. Proteinuria and serum creatinine levels were measured. Serum levels of immunoglobulin (Ig)G, IgM, and anti-dsDNA autoantibodies were detected by enzyme-linked immunosorbent assay. Numbers of CD19+ B cells in the blood, spleen and bone marrow and numbers of splenic germinal center (GC) B cells were calculated by using flow cytometry. OP-D treatment prolonged survival in MRL/lpr mice. OP-D treatment reduced proteinuria and serum creatinine levels as well as mitigated renal pathological alternation in MRL/lpr mice. Furthermore, serum levels of IgG, IgM, and anti-dsDNA autoantibodies were reduced by OP-D treatment. OP-D lessened not only CD19+ B cells in the spleen and bone marrow but also plasma cells that secreted anti-dsDNA autoantibodies, IgG and IgM in the spleen and bone marrow. OP-D ameliorated the progression of SLE by inhibiting the secretion of autoantibodies though reducing B cell numbers.


Subject(s)
Lupus Erythematosus, Systemic , Mice , Animals , Creatinine , Mice, Inbred MRL lpr , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/pathology , Autoantibodies , Proteinuria , Immunoglobulin G , Immunoglobulin M , Cell Count , Disease Models, Animal
7.
J Ethnopharmacol ; 308: 116278, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36813246

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai formula (SMF) is a well-known Chinese herbal compound preparation, which is utilized extensively for the treatment of myocardial ischemia, arrhythmia and other life-threatening conditions. Our previous researches have shown that some of the active ingredients in SMF can interact with organic anion transport polypeptide 1B1 (OATP1B1), breast cancer resistance protein (BCRP) and organic anion transporter 1 (OAT1), etc. Organic cation transporter 2 (OCT2) is a highly expressed uptake transporter in the kidney, and its interaction with the major active components in SMF remains unclear. AIM OF THE STUDY: We purposed to explore OCT2-mediated interactions and compatibility mechanisms of the main active compounds in SMF. MATERIALS AND METHODS: Fifteen active ingredients of SMF, including ginsenoside Rb1, Rd, Re, Rg1, Rf, Ro and Rc, methylophiopogonanone A and B, ophiopogonin D and D', schizandrin A and B, schizandrol A and B, were selected to investigate OCT2-mediated interactions in Madin-Darby cacine kidney (MDCK) cells stably expressing OCT2. RESULTS: Among the above 15 main active components, only ginsenosides Rd, Re and schizandrin B could significantly inhibit the uptake of 4-(4-(dimethylamino)styryl)-N-methyl pyridiniumiodide (ASP+), a classical substrate of OCT2. Ginsenoside Rb1 and methylophiopogonanone A can be transported by MDCK-OCT2 cells, and their uptake was significantly reduced when OCT2 inhibitor decynium-22 was added. Ginsenoside Rd could remarkably reduce the uptake of methylophiopogonanone A and ginsenoside Rb1 by OCT2, ginsenoside Re only decreased the uptake of ginsenoside Rb1, while schizandrin B had no effect on the uptake of both. CONCLUSIONS: OCT2 mediates the interaction of the major active components in SMF. Ginsenosides Rd, Re and schizandrin B are the potential inhibitors of OCT2, while ginsenosides Rb1 and methylophiopogonanone A are the potential substrates of OCT2. There is an OCT2-mediated compatibility mechanism among these active ingredients of SMF.


Subject(s)
Ginsenosides , Animals , Dogs , Ginsenosides/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Organic Cation Transporter 2 , Madin Darby Canine Kidney Cells , Neoplasm Proteins/metabolism
8.
Chinese Pharmacological Bulletin ; (12): 1557-1565, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013738

ABSTRACT

Aim To predict the potential mechanism of ophiopogonin D (OPD) against pulmonary fibrosis by network pharmacology, and further verify it by experiment in vivo. Methods This study found that ophiopogon was the most frequently used drug in the treatment of pulmonary fibrosis with deficiency of Qi and Yin through data mining. In order to explore its material basis, network pharmacology analysis was carried out. A model of pulmonary fibrosis was established by bleomycin, and different concentrations of ophiopogonin D were administered to verify the results of the pharmacological network. Results Firstly, through network pharmacology analysis, it was found that mitophagy might be the potential target for ophiopogon to exert anti-pulmonary fibrosis effect. Meanwhile, network topology analysis showed that OPD had the greatest relationship with mitophagy. Animal experiments showed that OPD could relieve pulmonary fibrosis and reduce collagen deposition in mice. At the same time, the detection of mitophagy related proteins showed that the compound could increase the expression of PINK1 and Parkin proteins, reduce the content of P62 protein in lung tissue, and reduce the intracellular ROS level. Conclusions OPD can improve mitochondrial function and play an anti-pulmonary fibrosis role by promoting PINKl/Parkin dependent mitophagy in lung tissue.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-993081

ABSTRACT

Objective:To investigate the protective effect and mechanism of ophiopogonin D on lung injury induced by radiation in mice.Methods:A total of 60 female C57BL/6 mice were randomly divided into 4 groups: control group, irradiation group, irradiation+ ophiopogonin D group and irradiation+ dexamethasone group, with 15 mice in each group. The mice were irradiated with a single dose of 6 MV X-rays of 15 Gy. Three days before irradiation, the mice in irradiation+ ophiopogonin D group were intraperitoneally injected with 10 mg/kg ophiopogonin D solution. The mice in irradiation+ dexamethasone group were intraperitoneally injected with 10 mg/kg dexamethasone solution. The mice in control group and irradiation group were intraperitoneally injected with normal saline once a day until 1 week after irradiation. Tissue samples were collected at 3 d, 1 week, and 6 weeks post-irradiation. Hematoxylin-eosin (HE) staining and Masson′s trichrome staining were used to observe the pathological changes of lung tissue. The expressions of 8-hydroxy-deoxyguanosine (8-OHdG), p53, p53 up-regulated apoptosis factor (PUMA), cysteine aspartate proteolytic enzyme-3 (caspase-3), Collagen Ⅰ and Collagen Ⅲ were observed by immunohistochemistry. Western blot was used to verify the expressions of apoptosis related proteins including p53, PUMA and caspase-3.Results:HE staining of lung tissue showed that ophiopogonin D could reduce hemorrhage, exudation, edema and inflammatory infiltration in lung tissue 1 week post irradiation. Moreover, ophiopogonin D reduced the expression of 8-OHdG ( t=8.39, P < 0.05), the oxidative stress, and the expressions of p53, PUMA, caspase-3 apoptosis-related proteins ( t=12.60, 5.92, 7.00, P < 0.05), and inhibited the apoptosis of alveolar epithelial cells and alleviated other damage in the irradiated lung tissue 1 week post-irradiation. Ophiopogonin D also reduced collagen deposition in lung tissue 6 weeks after irradiation, and reduced the expression of transforming growth factor (TGF-β1) ( t=9.32, 8.97, 6.83, P < 0.05) and interleukin-6 ( t=8.22, 7.80, 8.28, P < 0.05) in the blood of mice at 3 d, 1 week, and 6 weeks after irradiation. At 6 weeks after exposure, ophiopogonin D reduced the production of Collagen Ⅰ and Collagen Ⅲ in the lung interstitium ( t=6.41, 7.50, P < 0.05), and alleviated the pulmonary fibrosis in the late stage of radiation. Conclusions:Ophiopogonin D has protective effects on lung injury caused by radiation, including the alleviation of early radiation pneumonia and late pulmonary fibrosis, by reducing oxidative stress, the expression of inflammation-related factors, apoptosis of lung tissue, and collagen production.

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-989606

ABSTRACT

Objective:To study the protective effect of Ophiopogonin D on lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 and its related mechanism.Methods:Mouse macrophage RAW264.7 cells were cultured and divided into normal control group, model group and Ophiopogonin D pretreatment group according to random number table method. The activity of Ophiopogonin D on RAW264.7 cells was detected by CCK-8 method; the protein levels of TNF-α, IL-1β, IL-6, reactive oxygen species (ROS), MDA and SOD were detected by ELISA; the protein expression of NF-κB, TLR4, NF-E2-related factor2 (Nrf2) and heme oxygenase-1 (HO-1) were detected by Western Blot.Results:Compared with model group, the levels of TNF-α, IL-1β, IL-6, ROS and MDA in cell supernatant of Ophiopogonin D group were decreased ( P<0.05), and the level of SOD was increased ( P<0.05). The protein expressions of NF-κB (0.76±0.10 vs. 2.26±0.17) and TLR4 (0.98±0.09 vs. 1.74±0.19) significantly decreased ( P<0.05). The protein expressions of Nrf2 (0.85±0.03 vs. 0.54±0.03) and HO-1 (0.97±0.11 vs. 0.37±0.04) significantly increased ( P<0.05). Conclusion:Ophiopogonin D may reduce inflammatory response by reducing TLR4/NF-κB pathway, and activate Nrf2/HO-1 pathway to reduce oxidative damage and play a protective role.

11.
Front Pharmacol ; 13: 974468, 2022.
Article in English | MEDLINE | ID: mdl-36569330

ABSTRACT

Ophiopogonin D (OP-D), which is extracted from the root tuber of Ophiopogon japonicus, is well known for its anti-inflammatory, anti-oxidant, and anti-cancer effects. It is also therapeutic for various diseases such as diabetic myocardial injuries, obesity, atopic dermatitis, and osteoporosis. However, there are insufficient reports on the anti-cancer effects and molecular mechanisms of OP-D in colorectal cancer. Therefore, this study aimed to investigate the anti-cancer-modulating effect of OP-D on colorectal cancer. The study proved that OP-D (20-40 uM) has significant cell viability inhibition and anti-proliferative effects in Cell Counting Kit-8 (CCK-8) assay and colony formation assay. In addition, our immunofluorescence analysis data showed that OP-D (40 uM) inhibited the expression of Ki67, a cell proliferation marker, and confirmed that OP-D could induce nucleolar stress by depletion of IPO7 and XPO1. Furthermore, our western blot data showed that OP-D induced p53 expression via ribosomal protein (RP) L5 or L11 and inhibited c-Myc expression through CNOT2 in a dose-dependent manner. Additionally, OP-D regulated cyclin D1 and CDK4, which are well known as cell cycle regulatory proteins. OP-D consistently inhibited the phosphorylation of AKT expression in a dose-dependent manner. Furthermore, OP-D shortened c-Myc's half-life in a time-dependent manner. Furthermore, CNOT2 knockdown enhanced the inhibitory effect of OP-D on c-Myc in colon cancer cells. Besides that, we confirmed that OP-D has a combinational anti-cancer effect of 5-FU or doxorubicin to reduce cell viability and induce apoptosis through p53 and c-Myc regulation. Altogether, our results suggest that OP-D regulates colon cancer cell proliferation and induces apoptosis by inhibiting c-Myc expression via activation of p53 and CNOT2 regulation. The study demonstrated that OP-D may be a promising natural anti-cancer agent for the treatment of colorectal cancer.

12.
J Ethnopharmacol ; 296: 115515, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35777609

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai formula (SMF) is a classical traditional Chinese medicine prescription, which is widely used in the treatment of cardiovascular and cerebrovascular diseases. Our previous studies have demonstrated that some components in SMF can interact with each other through breast cancer resistance protein, sodium taurocholate co-transporting polypeptide, organic anion transporting polypeptide 1B1 and 1B3. Organic anion transporter 1 (OAT1) is highly expressed in kidney, mediating the elimination of many endogenous and exogenous substances. However, the interaction between the main active components in SMF and OAT1 is not clear. AIM OF THE STUDY: This study aimed to investigate the interactions of the major bioactive components in SMF mediated by OAT1. MATERIALS AND METHODS: Four main fractions, namely, ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), fructus schisandrae total lignans (STL), and 12 active components, namely, ginsenoside Rg1, Re, Rd and Rb1, ophiopogonin D and D', methylophiopogonanone A and B, schizandrol A and B, schizandrin A and B, were selected to explore the interactions of SMF with OAT1 using cell and rat models. RESULTS: The above four main fractions in SMF all exhibited inhibitory effects on the uptake of 6-carboxyfluorescein (6-CF), a classic substrate of OAT1. Among the 12 main effective components, only ginsenoside Re, Rd, and methylophiopogonanone A showed inhibition of 6-CF uptake. Additionally, we found that schizandrin B was transported by HEK293-OAT1 cells, and schizandrin B uptake was markedly inhibited by GTS, OTS, OTF, ginsenoside Re, Rd, and methylophiopogonanone A. In rats, ginsenoside Re, Rd, and methylophiopogonanone A jointly increased the AUC(0-t), AUC(0-∞), and Cmax of schizandrin B, but they decreased its clearance in plasma and excretion in urine. CONCLUSIONS: Ginsenoside Re, Rd, and methylophiopogonanone A were the potential inhibitors of OAT1, and may interact with some drugs serving as OAT1 substrates clinically. Schizandrin B was a potential OAT1 substrate, and its OAT1-mediated transport was inhibited by ginsenoside Re, Rd, and methylophiopogonanone A. OAT1-mediated interactions of the main active components in SMF can be regarded as one of the important compatibility mechanisms of traditional Chinese medicine preparations.


Subject(s)
Drugs, Chinese Herbal , Ophiopogon , Organic Anion Transporters , Panax , Saponins , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Drug Combinations , Drugs, Chinese Herbal/pharmacology , HEK293 Cells , Humans , Neoplasm Proteins , Panax/chemistry , Rats
13.
Toxicology ; 477: 153275, 2022 07.
Article in English | MEDLINE | ID: mdl-35905946

ABSTRACT

Shenmai injection (SMI) is a patented traditional Chinese medicine that is extracted from Panax ginseng and Ophiopogon japonicus and is commonly used to treat cardiovascular diseases and tumors. The O. japonicus extract Ophiopogonin D' (OPD') is highly cardiotoxic. Mitochondria are central to OPD'-induced cardiotoxicity, although the precise mechanisms remain unclear. Excessive mitophagy activation and mitochondrial dysfunction lead to apoptosis, and the PTEN-induced kinase 1(PINK1)/Parkin pathway is critical in regulating mitophagy and mitochondrial function. We investigated the role of the PINK1/Parkin pathway in OPD'-induced mitochondrial damage and cardiotoxicity in AC16 cells. Concentrations of 2 µM OPD' and above inhibited cardiomyocyte viability and increased lactate dehydrogenase (LDH) release in a concentration- and time-dependent manner. OPD' was toxic to cells and mitochondria and increased the rate of apoptosis, triggering pyknosis, decreasing mitochondrial membrane potential (MMP), and decreasing the protein expression of the biogenesis regulator peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α). The increased ratio of microtubule-associated proteins 1 A/1B light chain 3B (LC3-II/LC3-I) in mitochondria indicated that OPD' induced mitophagy. OPD' significantly induced oxidative stress and apoptosis, including increased reactive oxygen species (ROS) generation and decreased nuclear factor erythroid-2 related factor 2 (Nrf2), heme oxygenase-1(HO-1), and B-cell lymphoma 2 (Bcl-2) protein expression. OPD' activated the PINK1/Parkin pathway and promoted PINK1/Parkin translocation to mitochondria. Inhibiting mitophagy attenuated OPD'-induced PINK1/Parkin pathway activation and preserved mitochondrial biogenesis, consequently mitigating OPD'-induced mitochondrial dysfunction and apoptosis. These findings suggest that OPD'-induced cardiomyocyte mitophagy and mitochondrial damage are at least partially mediated by dysregulation of the PINK1/Parkin pathway.


Subject(s)
Cardiotoxicity , Mitophagy , Humans , Protein Kinases/metabolism , Saponins , Signal Transduction , Spirostans , Ubiquitin-Protein Ligases/metabolism
14.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2721-2728, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718492

ABSTRACT

This study aims to unveil the effect of ophiopogonin D(OPD) on isoproterenol(ISO)-induced apoptosis of rat cardiomyocytes and the possible targets, which is expected to provide clues for further research on the myocardial protection of ophiopogonins. Cell count kit-8(CCK-8) assay was used to detect viability of cells treated with OPD and ISO, Western blot to examine the effect of OPD and ISO on the expression of endoplasmic reticulum stress-related Bip, Bax, Perk, ATF4, caspase-12, and CHOP, flow cytometry to determine cell apoptosis rate, and Hoechst 33258 and Tunel staining to observe cell apoptosis and morphological changes. In addition, the probe for calcium ion-specific detection was employed to investigate calcium ion release from the endoplasmic reticulum, and OPD-bond epoxy-activated agarose solid-phase microspheres were prepared and used as affinity matrix to capture OPD-binding target proteins in H9 c2 cell lysate. For the target proteins of OPD identified by high-resolution mass spectrometry, the related signal pathways were enriched and the potential targets of OPD against cardiomyocyte injury were discussed. The experimental result showed that 10 µmol·L~(-1) ISO can significantly induce the expression of endoplasmic reticulum stress-related proteins and promote cell apoptosis. Different concentration of OPD can prevent the damage of myocardial cells caused by ISO. According to mass spectrometry results, 19 proteins, including Fam129 a and Pdia6, were involved in multiple signaling pathways such as the unfolded protein reaction bound by the ERN1 sensor, tricarboxylic acid cycle, and Nrf2 signal transduction pathway. The above results indicate that OPD protects cardiomyocytes by regulating multiple signaling pathways of target proteins and affecting cell cycle progression.


Subject(s)
Myocytes, Cardiac , Spirostans , Animals , Apoptosis , Calcium/pharmacology , Endoplasmic Reticulum Stress , Isoproterenol/toxicity , Rats , Saponins , Spirostans/pharmacology
15.
Inflammation ; 45(4): 1720-1731, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35460395

ABSTRACT

The sustained activation of the nuclear factor κB (NF-κB) signaling pathway has been observed in human inflammatory bowel disease (IBD). Ophiopogonin D (OP-D) is a small molecular compound isolated from Ophiopogon japonicus, a widely used herbal remedy. In this study, dextran sodium sulfate was used to make a mouse model of experimental colitis and verify the effect of OP-D on the mouse model of experimental colitis. Small molecule-protein molecular docking approaches were also used to discover the mechanisms underlying the OP-D-induced regulation of colitis. In colitis, the OP-D can inhibit the apoptosis of intestinal mucosa cells, restore the intestinal barrier, and alleviate inflammation. The molecular docking simulations showed that OP-D had a high affinity with the REL-homology domain of NF-κB-p65 that affected its translocation to the nucleus. In a cell study, the effects of OP-D on inflammation and barrier dysfunction were significantly decreased by a small interfering RNA targeting NF-κB-p65. Further, the LPS-induced increase in NF-κB-p65 in the nucleus was also significantly inhibited by OP-D. OP-D alleviated experimental colitis by inhibiting NF-κB. New insights into the pathogenesis and treatment options of colitis are provided through this study.


Subject(s)
Colitis , NF-kappa B , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Dextran Sulfate/toxicity , Inflammation , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , NF-kappa B/metabolism , Saponins , Signal Transduction , Spirostans
16.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3672-3677, 2021 Jul.
Article in Chinese | MEDLINE | ID: mdl-34402291

ABSTRACT

To explore the effect of ophiopogonin D on main fatty acid metabolic enzymes in human cardiomyocyte AC-16,so as to provide reference for cardiovascular protection mechanism and safe clinical application of Ophiopogon japonicus.CCK-8 (cell counting kit-8) was used to detect the effect of different concentrations of ophiopogonin D on the viability of cardiomyocytes.Meanwhile,the effect of different concentrations of ophiopogonin D on the morphology and quantity of cardiomyocytes was observed under microscope.The effect of ophiopogonin D on the mRNA expression of CYP2J2,CYP4F3,CYP4A11,CYP4A22 and CYP4F2 in cardiomyocytes was detected by RT-PCR.Western blot was used to detect the protein expression of CYP4F3 in different concentrations of ophiopogonin D.Compared with the control group,low-concentration ophiopogonin D had no effect on the viability of cardiomyocytes.However,ophiopogonin D with a concentration of higher than 20µmol·L~(-1)could promote the viability.Under the microscope,ophiopogonin D with a concentration of below 100µmol·L~(-1)had no significant effect on the morphology and number of cardiomyocytes.RT-PCR results showed that compared with the control group,5µmol·L~(-1)ophiopogonin D could slightly up-regulate mRNA expressions of CYP2J2 and CYP4F3,while high-concentration ophiopogonin D (10 and 20µmol·L~(-1)) could significantly induce mRNA expressions of CYP2J2and CYP4F3 in a dose-dependent manner (P<0.05).The same concentration of ophiopogonin D had a little effect on the mRNA expressions of CYP4A11,CYP4A22 and CYP4F2.Western blot results showed that 20µmol·L~(-1)ophiopogonin D could significantly induce the protein expression of CYP4F3 in a dose-dependent manner (P<0.05).Based on the above results,ophiopogonin D (less than100µmol·L~(-1)) has no effect on the viability of AC-16 cardiomyocytes.Ophiopogonin D (less than 100µmol·L~(-1)) can selectively induce the expressions of CYP2J2 and CYP4F3,regulate the metabolic pathway of fatty acid signaling molecules,and thus protecting the cardiovascular system.


Subject(s)
Saponins , Spirostans , Fatty Acids , Humans , Myocytes, Cardiac , Saponins/pharmacology , Spirostans/pharmacology
17.
Am J Chin Med ; 49(6): 1449-1471, 2021.
Article in English | MEDLINE | ID: mdl-34263719

ABSTRACT

Gut microbiota has been proven to play an important role in many metabolic diseases and cardiovascular disease, particularly atherosclerosis. Ophiopogonin D (OPD), one of the effective compounds in Ophiopogon japonicus, is considered beneficial to metabolic syndrome and cardiovascular diseases. In this study, we have illuminated the effect of OPD in ApoE knockout (ApoE[Formula: see text] mice on the development of atherosclerosis and gut microbiota. To investigate the potential ability of OPD to alleviate atherosclerosis, 24 eight-week-old male ApoE[Formula: see text] mice (C57BL/6 background) were fed a high-fat diet (HFD) for 12 weeks, and 8 male C57BL/6 mice were fed a normal diet, serving as the control group. ApoE[Formula: see text] mice were randomly divided into the model group, OPD group, and simvastatin group ([Formula: see text]= 8). After treatment for 12 consecutive weeks, the results showed that OPD treatment significantly decreased the plaque formation and levels of serum lipid compared with those in the model group. In addition, OPD improved oral glucose tolerance and insulin resistance as well as reducing hepatocyte steatosis. Further analysis revealed that OPD might attenuate atherosclerosis through inhibiting mTOR phosphorylation and the consequent lipid metabolism signaling pathways mediated by SREBP1 and SCD1 in vivo and in vitro. Furthermore, OPD treatment led to significant structural changes in gut microbiota and fecal metabolites in HFD-fed mice and reduced the relative abundance of Erysipelotrichaceae genera associated with cholesterol metabolism. Collectively, these findings illustrate that OPD could significantly protect against atherosclerosis, which might be associated with the moderation of lipid metabolism and alterations in gut microbiota composition and fecal metabolites.


Subject(s)
Atherosclerosis/drug therapy , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Saponins/pharmacology , Spirostans/pharmacology , Animals , Diet, High-Fat , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Saponins/chemistry , Spirostans/chemistry
18.
Chin Med ; 16(1): 3, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407692

ABSTRACT

BACKGROUND: OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI. METHODS: Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. RESULTS: Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism. CONCLUSIONS: This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.

19.
J Ethnopharmacol ; 271: 113853, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33485986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiopogonin D (OP-D) is a steroidal saponin extracted from Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), that has been traditionally used to treat cough, sputum, and thirst in some Asian countries. Recently, various pharmacological roles of OP-D have been identified, including anti-inflammatory, cardioprotective, and anti-cancer effects. However, whether OP-D can prevent diabetic myocardial injury remains unknown. AIM OF THE STUDY: In this study, we aimed to observe the effects of OP-D on the diabetic myocardium. MATERIALS AND METHODS: Leptin receptor-deficient db/db mice were used as an animal model for type 2 diabetes. The effects of OP-D on blood glucose, blood lipids, myocardial ultrastructure, and mitochondrial function in mice were observed after four weeks of intragastric administration. Palmitic acid was used to stimulate cardiomyocytes to establish a myocardial lipotoxicity model. Cell apoptosis, mitochondrial morphology, and function were observed. RESULTS: Blood glucose and blood lipid levels were significantly increased in db/db mice, accompanied by myocardial mitochondrial injury and dysfunction. OP-D treatment reduced blood lipid levels in db/db mice and relieved mitochondrial injury and dysfunction. OP-D inhibited palmitic acid induced-mitochondrial fission and dysfunction, reduced endogenous apoptosis, and improved cell survival rate in H9C2 cardiomyocytes. Both in vivo and in vitro models showed increased phosphorylation of DRP1 at Ser-616, reduced phosphorylation of DRP1 at Ser-637, and reduced expression of fusion proteins MFN1/2 and OPA1. Meanwhile, immunofluorescence co-localization analysis revealed that palmitic acid stimulated the translocation of DRP1 protein from the cytoplasm to the mitochondria in H9C2 cardiomyocytes. The imbalance of mitochondrial dynamics, protein expression, and translocation of DRP1 were effectively reversed by OP-D treatment. In isolated mice ventricular myocytes, palmitic acid enhanced cytoplasmic Ca2+ levels and suppressed contractility in ventricular myocytes, accompanied by activation of calcineurin, a key regulator of DRP1 dephosphorylation at Ser-637. OP-D reversed the changes caused by palmitic acid. CONCLUSIONS: Our findings indicate that OP-D intervention could alleviate lipid accumulation and mitochondrial injury in diabetic mouse hearts and palmitic acid-stimulated cardiomyocytes. The cardioprotective effect of OP-D may be mediated by the regulation of mitochondrial dynamics.


Subject(s)
Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Diabetic Cardiomyopathies/prevention & control , Mitochondrial Dynamics/drug effects , Saponins/pharmacology , Saponins/therapeutic use , Spirostans/pharmacology , Spirostans/therapeutic use , Animals , Apoptosis/drug effects , Blood Glucose/drug effects , Body Weight/drug effects , Calcineurin/metabolism , Calcium/metabolism , Cell Line , Cell Survival/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Disease Models, Animal , Dynamins/antagonists & inhibitors , Lipids/blood , Liver/drug effects , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Myocytes, Cardiac/drug effects , Palmitic Acid/toxicity , Rats
20.
Xenobiotica ; 51(3): 262-267, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33115303

ABSTRACT

Ophiopogonin D is a commonly used herb in cardiology and pediatrics for its variuos pharmacological effects. It is necessary to investigate the effect of ophiopogonin D on the activity of cytochrome P450 enzymes (CYP450s) to provide more guidance for the clinical application of ophiopogonin D. Eight isoforms of CYP450s, including CYP1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 were incubated with 100 µM ophiopogonin D in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Ophiopogonin D exerted a significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 8.08, 12.92, and 22.72 µM, respectively (p < 0.05). The inhibition of CYP3A4 by ophiopogonin D was performed non-competitively and time-dependently with the Ki value of 4.08 µM and the KI/Kinact value of 5.02/0.050 min-1·µM-1. Whereas, ophiopogonin D acts as a competitive inhibitor of CYP2E1 and 2C9 with the Ki value of 6.69 and 11.07 µM, respectively. The inhibitory effect of ophiopogonin D on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between ophiopogonin D and drugs metabolized by these CYP450s, which needs further in vivo investigation and validation.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacology , Microsomes, Liver/drug effects , Saponins/pharmacology , Spirostans/pharmacology , Cytochrome P-450 Enzyme System , Humans , Microsomes, Liver/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL