Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Fish Shellfish Immunol ; 146: 109427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316347

ABSTRACT

Large yellow croaker (Larimichthys crocea) farming dominates the marine aquaculture industry in China. However, the epidemic outbreaks of visceral white nodules disease (VWND), caused by bacterial pathogen Pseudomonas plecoglossicida, have emerged as a significant concern within the large yellow croaker industry. Although vaccination is considered to be an effective method for preventing and controlling P. plecoglossicida infection, there is currently no commercially available vaccine targeting this bacterium. In the present study, the outer membrane porin F (OprF) of P. plecoglossicida was characterized and revealed a high sequence similarity with that of other Pseudomonas species. The recombinant OprF protein (rOprF) produced in Escherichia coli was then evaluated for its immunogenicity and protective role against P. plecoglossicida in large yellow croaker. The rOprF was identified to have immunogenicity by Western blot using large yellow croaker anti-P. plecoglossicida sera. Additionally, the indirect immunofluorescence assay (IIFA) provided evidence indicating the surface exposure of OprF in P. plecoglossicida. Fish vaccinated twice via intraperitoneal (IP) injection with the purified rOprF combined with commercial adjuvant ISA 763A VG exhibited a relative percent survival (RPS) of 70.60% after challenge with virulent P. plecoglossicida strain through immersion. The administration of rOprF resulted in a notable increase in specific serum antibody levels and serum lysozyme activity compared to the control groups. The immune-related genes in the spleen and head kidney of rOprF-vaccinated fish were remarkably upregulated compared with the PBS-vaccinated sham group after the P. plecoglossicida challenge. In summary, the findings of this study suggest that rOprF exhibits considerable potential in inducing a robust immune response, making it a viable candidate for vaccination against P. plecoglossicida infection in large yellow croaker.


Subject(s)
Fish Diseases , Perciformes , Pseudomonas Infections , Animals , Pseudomonas Infections/prevention & control , Pseudomonas Infections/veterinary , Pseudomonas/genetics , Spleen , Fish Proteins
2.
Biomed Pharmacother ; 172: 116264, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359491

ABSTRACT

Pseudomonas aeruginosa (PA) is one of the leading pathogens responsible for hospital-acquired infections. With the increasing antibiotic resistance of PA, clinical treatment has become increasingly challenging. DNA vaccines represent a promising approach for combating PA infection. However, the immune response induced by a single antigen is limited, and combination vaccines hold greater therapeutic potential. The highly conserved OprF and PcrV genes are attractive candidate antigens for vaccine development, but the poor delivery of such vaccines has limited their clinical application. In this study, we constructed an OprF/PcrV bivalent DNA vaccine, and a polyaspartamide/polyethylene glycol di-aldehyde (PSIH/PEG DA) hydrogel was formulated to improve DNA delivery. The OprF/PcrV DNA vaccine formulated with the PSIH/PEG DA hydrogel was carefully characterized in vitro and in vivo and showed suitable compatibility. The PSIH/PEG DA hydrogel formulation induced a mixed Th1/Th2/Th17 immune response in mice, leading to a significant increase in antibody titers, lymphocyte proliferation rates, and cytokine levels compared to those in mice treated with single or combined vaccines. The PSIH/PEG DA hydrogel delivery system significantly enhanced the immune protection of the DNA vaccine in a murine pneumonia model, as revealed by the reduced bacterial burden and inflammation in the mouse lungs and increased survival rate. In conclusion, the PSIH/PEG DA hydrogel delivery system can further enhance the immune efficacy of the combination OprF/PcrV DNA vaccine. This research provides a novel optimized strategy for the prevention and treatment of PA infection using DNA vaccines.


Subject(s)
Pseudomonas Infections , Vaccines, DNA , Animals , Mice , Hydrogels , Pseudomonas aeruginosa , Aldehydes , Biocompatible Materials , Pseudomonas Infections/prevention & control
3.
J Bacteriol ; 205(7): e0008023, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37310227

ABSTRACT

The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm are limited. Here, we identify a nutrient-dependent effect of OprF in static biofilms, whereby ΔoprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa ΔoprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here, we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A ΔoprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective ΔoprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in biofilms.


Subject(s)
Extracellular Polymeric Substance Matrix , Pseudomonas aeruginosa , Extracellular Polymeric Substance Matrix/metabolism , Pseudomonas aeruginosa/genetics , Proteomics , Sodium Chloride/metabolism , Biofilms , DNA/metabolism , Nutrients , Glucose/metabolism , Bacterial Proteins/genetics
4.
Microb Pathog ; 178: 106033, 2023 May.
Article in English | MEDLINE | ID: mdl-36813005

ABSTRACT

Pseudomonas aeruginosa is an important and hazardous nosocomial pathogen in respiratory tract infections and rapidly achieves antibiotic resistance, so it is necessary to develop an effective vaccine to combat the infection. The Type III secretion system (T3SS) protein P. aeruginosa V-antigen (PcrV), outer membrane protein F (OprF), and two kinds of flagellins (FlaA and FlaB) all play important roles in the pathogenesis of P. aeruginosa lung infection and its spread into deeper tissues. In a mouse acute pneumonia model, the protective effects of a chimer vaccine including PcrV, FlaA, FlaB, and OprF (PABF) protein were investigated. PABF immunization prompted robust opsonophagocytic titer of IgG antibodies and decreased bacterial burden, and improved survival afterward intranasal challenge with ten times 50% lethal doses (LD50) of P. aeruginosa strains, indicating its broad-spectrum immunity. Moreover, these findings showed a promise chimeric vaccine candidate to treat and control P. aeruginosa infections.


Subject(s)
Pneumonia , Pseudomonas Infections , Vaccines , Animals , Mice , Pseudomonas aeruginosa/genetics , Virulence Factors/genetics , Immunization , Vaccination , Pseudomonas Infections/prevention & control , Antibodies, Bacterial
5.
Chinese Journal of Biologicals ; (12): 941-946+954, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996563

ABSTRACT

@#Objective To develop a colloidal gold immunochromatographic test strip for rapid and accurate detection of Pseudomonas aeruginosa(P.aeruginosa,Pa).Methods After bioinformatics analysis of Pa outer membrane protein OprF,the gene sequence with abundant antigenic determinants and high intraspecific homology was chemically synthesized,and then connected to pET-28a(+)vector to construct the expression vector pET-28a-OprF,which was transformed into E.coli BL21(DE3)and induced by IPTG. The recombinant OprF protein was purified by Ni Sepharose~(TM)6 Fast Flow and used to immunize two female BALB/c mice for 3~4 times by multi-point subcutaneous injection in the back at the first immunization and intraperitoneal injection at subsequent immunizations. The monoclonal antibodies were screened by animal cell fusion technique,and the colloidal gold immunochromatographic test strip for rapid detection of Pa was prepared by using monoclonal antibody and double antibody sandwich immunochromatography technique. The specificity,sensitivity and stability of the test strip were evaluated.Results Two monoclonal antibodies,Pa-1# and Pa-2#,were obtained with the titer of 1∶409 600,and both of them recognized OprF specifically. The prepared colloidal gold immunochromatographic test strip showed a sensitivity of 1. 0×10~6CFU/mL and had no cross reaction with 9 common respiratory pathogens with a good stability.Conclusion The prepared colloidal gold immunochromatographic test strip can detect Pa rapidly within 15 min,with high specificity and good stability.

6.
Infect Immun ; 90(10): e0020322, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36069593

ABSTRACT

The Gram-negative pathogen Pseudomonas aeruginosa is a common cause of pneumonia in hospitalized patients. Its increasing antibiotic resistance and widespread occurrence present a pressing need for vaccines. We previously showed that a P. aeruginosa type III secretion system protein, PopB, elicits a strong Th17 response in mice after intranasal (IN) immunization and confers antibody-independent protection against pneumonia in mice. In the current study, we evaluated the immunogenicity and protective efficacy in mice of the combination of PopB (purified with its chaperone protein PcrH) and OprF/I, an outer membrane hybrid fusion protein, compared with immunization with the proteins individually either by the intranasal (IN) or subcutaneous (SC) routes. Our results show that after vaccination, a Th17 recall response from splenocytes was detected only in mice vaccinated with PopB/PcrH, either alone or in combination with OprF/I. Mice immunized with the combination of PopB/PcrH and OprF/I had enhanced protection in an acute lethal P. aeruginosa pneumonia model, regardless of vaccine route, compared with mice vaccinated with either alone or adjuvant control. Immunization generated IgG titers against the vaccine proteins and whole P. aeruginosa cells. Interestingly, none of these antisera had opsonophagocytic killing activity, but antisera from mice immunized with vaccines containing OprF/I, had the ability to block IFN-γ binding to OprF/I, a known virulence mechanism. Hence, vaccines combining PopB/PcrH with OprF/I that elicit functional antibodies lead to a broadly and potently protective vaccine against P. aeruginosa pulmonary infections.


Subject(s)
Pneumonia , Pseudomonas Infections , Mice , Animals , Pseudomonas Vaccines , Pseudomonas aeruginosa , Pseudomonas Infections/prevention & control , Th17 Cells , Type III Secretion Systems , Antibody Formation , Antibodies, Bacterial , Bacterial Proteins , Immunoglobulin G , Immune Sera
7.
Int J Med Microbiol ; 310(3): 151415, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32156509

ABSTRACT

Pseudomonas aeruginosa is an evolving pathogen which can cause serious infections especially to immunocompromised patients. Its high resistance profile to antibiotics results in difficulty, and sometimes impossibility, in treating afflicted patients. Developing an effective vaccine against P. aeruginosa is an important approach to tackle this problem. A similar problematic situation exists for Acinetobacter baumannii. Several vaccine candidates have been investigated up till now but still there is no approved vaccine in the market. One important antigen of P. aeruginosa is the outer membrane protein F (OprF) which functions as a porin with relevant important roles in virulence. Previous studies focused mainly on the C-terminal peptidoglycan binding domain of OprF as a vaccine candidate. In the current study, we have investigated the N-terminal porin domain of OprF as a potential vaccine candidate against P. aeruginosa. Histidine-tagged recombinant N-terminal OprF (amino acid range 25-200; OprF25-200) was overexpressed in Escherichia coli and purified using metal affinity chromatography. Swiss albino mice were immunized with OprF25-200 adjuvanted with Bacillus Calmette-Guérin (BCG) and alum and the immune response was evaluated. Immunized mice developed antigen-specific IgG1 and IgG2a and were protected against challenge by both P. aeruginosa and a clinical isolate of A. baumannii expressing OprF. Serum from OprF25-200-immunized mice showed cross-reactivity with both pathogens using western blotting and whole cell enzyme-linked immunosorbent assay (ELISA). To our knowledge, this is the first report to demonstrate that the N-terminal domain of OprF is sufficiently immunogenic to protect against the two pathogens.


Subject(s)
Acinetobacter Infections/prevention & control , Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Cross Protection/immunology , Pseudomonas Infections/prevention & control , Acinetobacter Infections/microbiology , Acinetobacter baumannii , Adjuvants, Immunologic , Animals , Antibodies, Bacterial/blood , Bacterial Proteins/administration & dosage , Bacterial Vaccines/genetics , Escherichia coli , Female , Immunoglobulin G/blood , Mice , Pseudomonas aeruginosa , Vaccines, Synthetic/immunology
8.
J Microbiol Biotechnol ; 30(2): 244-247, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32066215

ABSTRACT

We have expressed extracellular poly(3-hydroxybutyrate) (PHB) depolymerase of Ralstonia pickettii T1 on the Escherichia coli surface using Pseudomonas OprF protein as a fusion partner by C-terminal deletion-fusion strategy. Surface display of depolymerase was confirmed by flow cytometry, immunofluorescence microscopy and whole cell hydrolase activity. For the application, depolymerase was used as an immobilized catalyst of enantioselective hydrolysis reaction for the first time. After 48 h, (R)-methyl mandelate was completely hydrolyzed, and (S)-mandelic acid was produced with over 99% enantiomeric excess. Our findings suggest that surface displayed depolymerase on E. coli can be used as an enantioselective biocatalyst.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Cell Surface Display Techniques , Enzymes, Immobilized , Biocatalysis , Carboxylic Ester Hydrolases/chemistry , Flow Cytometry , Fluorescent Antibody Technique , Hydrolysis
9.
Saudi Pharm J ; 28(2): 196-200, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32042258

ABSTRACT

Outer membrane porin F (OprF) is a major structural membrane protein of Pseudomonas aeruginosa, a recognised human opportunistic pathogen which is correlated with severe hospital-acquired infections. This study investigating a multiphenotypic approach, based on the comparative study of a wild type strain of P. aeruginosa, its isogenic OprF mutant. Both P. aeruginosa PAO1 and OprF mutant strains were grown in same condition and cultures were subjected to further analysis by SDS PAGE, pyocyanin production and biofilm formation that was analyse using scanning electron microscopy. Based on biofilm formation essay and pyocyanin production, the study showed that OprF plays a dynamic role in P. aeruginosa virulence. The absence of OprF results in slow growth rate corresponded to elongated lag phase and reduced biofilm production also a significance reduction in the production of the quorum-sensing-dependent virulence factors pyocyanin. Accordingly, in the OprF mutant scanning electron microscope "SEM" images showed impaired cellular niche and detached cells when compared to regular attached P. aeruginosa wild type cells in the niche. Taken together, this study shows the contribution of OprF in P. aeruginosa virulence, at least partly through impairment of biofilm, cell to cell attachment in niche and pyocyanin production. This study show a vital link between OprF and virulence factor production, providing novel insights for its role in pathogenicity and future could provide the basis for the development of novel drug targets for antibiotics and vaccines.

10.
Eur J Med Chem ; 185: 111814, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31678742

ABSTRACT

The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa, coupled with shrinking antibiotic pipelines, has increased the demand for new antimicrobials with novel mechanisms of action. As the indiscriminate nature of broad-spectrum antimicrobial toxicity may have negative clinical consequences and increase the incidence of resistance, we have developed a P. aeruginosa-selective antimicrobial peptide capable of preferentially killing P. aeruginosa relative to benign microorganisms. A targeting peptide (PA2) that binds specifically to OprF porin on P. aeruginosa was identified by phage display peptide library screening, and a hybrid peptide was constructed by addition of the targeting peptide to GNU7, a potent antimicrobial peptide. The resulting hybrid peptide PA2-GNU7 exhibited potent antimicrobial activity against P. aeruginosa without causing host toxicity. Confocal laser scanning microscopy analysis and time-kill experiments demonstrated that PA2-GNU7 exhibited a high degree of specificity for P. aeruginosa, and rapidly and selectively killed P. aeruginosa cells in mixed cultures. In addition, in vivo treatment efficacy of PA2-GNU7 was significantly greater than that of conventional antibiotics in a mouse model of MDR P. aeruginosa infection. Taken together, the data suggest that PA2-GNU7 may be a promising template for further development as a novel anti-MDR P. aeruginosa therapeutic agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Dose-Response Relationship, Drug , Female , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Pseudomonas aeruginosa/cytology , Structure-Activity Relationship
11.
Microbiologyopen ; 8(7): e00777, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30560551

ABSTRACT

The dual occurrence of Pseudomonas-like and Wolbachia endobacteria has not been investigated in the Pederus beetles yet. We investigated pederin-producing bacteria (PPB) infection in Paederus fuscipes specimens from the southern margins of the Caspian Sea by designed genus-specific (OprF) and species-specific (16S rRNA) primers. Wolbachia infection was studied through a nested-PCR assay of Wolbachia surface protein (wsp) gene. Of the 125 analyzed beetles, 42 females (82.35%) and 15 males (20.27%) were positive to PPB infection; this is the first study reporting male P. fuscipes infection to PPB. Wolbachia infection was found in 45 female (88.23%) and 50 male (67.57%) analyzed beetles. Surprisingly, a number of 36 females (70.59%) and 13 males (17.57%) were found to be infected with both PPB and Wolbachia endosymbionts. In general, population infection rates to PPB and Wolbachia were determined to be 45.6% and 76%, respectively. The infection rates of female beetles to PPB and PPB-Wolbachia were significantly higher than males. In Paederus species, only female beetles shelter PPB and the discovery of this bacterium in adult males may reflect their cannibalistic behavior on the contaminated stages. Phylogenetic analysis showed that the sequences of OprF gene were unique among Pseudomonas spp.; however, sequences of 16S rRNA gene were related to the PPB of Pederus species. The co-occurrence and random distribution of these endobacteria may imply putative tripartite interactions among PPB, Wolbachia, and Paederus. In order to elucidate these possible tripartite interactions, further studies are required even at gender level.

12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-807928

ABSTRACT

@#This study aimed to construct a DC-targeted aptamer-modified Pseudomonas aeruginosa(PA)DNA vaccine delivery system. The cationic liposome was prepared by ethanol injection method. The cationic liposome loading pVAX1-OprF-VP22(Lip-pOprF-VP22)was prepared by electrostatic adsorption method. The encapsulation efficiency of Lip-pOprF-VP22 with different mass ratios of DOTAP/pDNA on pVAX1-OprF-VP22, cytotoxicity and transfection rate to DC2. 4 in vitro were discussed. The particle size and zeta potential of Lip-pOprF-VP22 with best mass ratio were tested. Aptamer-modified cationic liposome loading pVAX1-OprF-VP22(Apt-Lip-pOprF-VP22)was prepared by post-insertion method. The expression of OprF protein after transfection of DC2. 4 and its effect on the maturation of bone marrow-derived dendritic cells(BMDCs)were detected. Data showed that as the mass ratio of DOTAP/pDNA increased, the encapsulation efficiency of Lip-pOprF-VP22 on pVAX1-OprF-VP22 was gradually increased. When the mass ratio was 5 ∶1, pVAX1-OprF-VP22 was encapsulated well. When Lip-pOprF-VP22 with different mass ratios was applied to DC2. 4 for 24 h or 48 h, the survival rates of DC2. 4 were all above 80%. When the mass ratio of DOTAP/pDNA increased from 2 ∶1 to 10 ∶1, the transfection rate increased first and then decreased. When the mass ratios of DOTAP/pDNA were 4 ∶1 and 5 ∶1, the transfection rates were relatively high. When the mass ratio of DOTAP/pDNA was 5 ∶1, the particle size of Lip-pOprF-VP22 was(171. 67±1. 27)nm, and the Zeta potential was(11. 30±0. 57)mV. Furthermore, Apt-Lip-pOprF-VP22 can express more OprF protein and significantly promote the maturation of BMDCs. In conclusion, Apt-Lip-pOprF-VP22 can target to DC and promote the maturation of DC.

13.
Front Microbiol ; 9: 110, 2018.
Article in English | MEDLINE | ID: mdl-29449837

ABSTRACT

Recently, we reported that the stiffness of poly(dimethylsiloxane) (PDMS) affects the attachment of Pseudomonas aeruginosa, and the morphology and antibiotic susceptibility of attached cells. To further understand how P. aeruginosa responses to material stiffness during attachment, the wild-type P. aeruginosa PAO1 and several isogenic mutants were characterized for their attachment on soft and stiff PDMS. Compared to the wild-type strain, mutation of the oprF gene abolished the differences in attachment, growth, and size of attached cells between soft and stiff PDMS surfaces. These defects were rescued by genetic complementation of oprF. We also found that the wild-type P. aeruginosa PAO1 cells attached on soft (40:1) PDMS have higher level of intracellular cyclic dimeric guanosine monophosphate (c-di-GMP), a key regulator of biofilm formation, compared to those on stiff (5:1) PDMS surfaces. Consistently, the mutants of fleQ and wspF, which have similar high-level c-di-GMP as the oprF mutant, exhibited defects in response to PDMS stiffness during attachment. Collectively, the results from this study suggest that P. aeruginosa can sense the stiffness of substrate material during attachment and respond to such mechanical cues by adjusting c-di-GMP level and thus the following biofilm formation. Further understanding of the related genes and pathways will provide new insights into bacterial mechanosensing and help develop better antifouling materials.

14.
Microbiol Res ; 206: 159-167, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29146252

ABSTRACT

Pseudomonas fluorescens 2P24 produces 2,4-diacetylphloroglucinol (2,4-DAPG) as the major antibiotic compound that protects plants from soil-borne diseases. Expression of the 2,4-DAPG biosynthesis enzymes, which are encoded by the phlACBD locus, is under the control of a delicate regulatory network. In this study, we identified a novel role for the outer membrane protein gene oprF, in negatively regulating the 2,4-DAPG production by using random mini-Tn5 mutagentsis. A sigma factor gene sigX was located immediately upstream of the oprF gene and shown to be a positive regulator for oprF transcription and 2,4-DAPG production. Genetic analysis of an oprF and sigX double-mutant indicated that the 2,4-DAPG regulation by oprF was dependent on SigX. The sigX gene did not affect PhlA and PhlD expression, but positively regulated the level of malonyl-CoA, the substrate of 2,4-DAPG synthesis, by influencing the expression of acetyl-CoA carboxylases. Further investigations revealed that sigX transcription was induced under conditions of salt starvation or glycine addition. All these findings indicate that SigX is a novel regulator of substrate supplements for 2,4-DAPG production.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Membrane Proteins/genetics , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Sigma Factor/genetics , Acetyl-CoA Carboxylase/metabolism , Bacterial Proteins/metabolism , Base Sequence , Chromosome Mapping , DNA, Bacterial , Escherichia coli/genetics , Gene Expression Profiling , Genes, Bacterial/genetics , Genetic Vectors , Membrane Proteins/metabolism , Mutation , Phenotype , Phloroglucinol/analogs & derivatives , Phloroglucinol/metabolism , Protein Biosynthesis , Pseudomonas fluorescens/growth & development , Rhizoctonia , Sigma Factor/metabolism , Transcription, Genetic , Transcriptional Activation
15.
FEMS Microbiol Rev ; 41(5): 698-722, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28981745

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative bacterium belonging to the γ-proteobacteria. Like other members of the Pseudomonas genus, it is known for its metabolic versatility and its ability to colonize a wide range of ecological niches, such as rhizosphere, water environments and animal hosts, including humans where it can cause severe infections. Another particularity of P. aeruginosa is its high intrinsic resistance to antiseptics and antibiotics, which is partly due to its low outer membrane permeability. In contrast to Enterobacteria, pseudomonads do not possess general diffusion porins in their outer membrane, but rather express specific channel proteins for the uptake of different nutrients. The major outer membrane 'porin', OprF, has been extensively investigated, and displays structural, adhesion and signaling functions while its role in the diffusion of nutrients is still under discussion. Other porins include OprB and OprB2 for the diffusion of glucose, the two small outer membrane proteins OprG and OprH, and the two porins involved in phosphate/pyrophosphate uptake, OprP and OprO. The remaining nineteen porins belong to the so-called OprD (Occ) family, which is further split into two subfamilies termed OccD (8 members) and OccK (11 members). In the past years, a large amount of information concerning the structure, function and regulation of these porins has been published, justifying why an updated review is timely.


Subject(s)
Porins/chemistry , Pseudomonas aeruginosa/physiology , Bacterial Proteins/chemistry , Gene Expression Regulation, Bacterial , Protein Conformation , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
16.
Iran J Pathol ; 12(2): 165-170, 2017.
Article in English | MEDLINE | ID: mdl-29515639

ABSTRACT

BACKGROUND & OBJECTIVES: Due to the importance of Pseudomonas aeruginosa in severe inpatient infections and high mortality, the need for an efficient vaccine against these bacteria is increasing. In this regard, the general outer membrane porin of the most problematic microorganism P. aeruginosa, outer membrane protein F (OprF), is a good vaccine candidate. METHODS: The databank of NCBI was used to retrieve protein sequences recorded for OprF in P. aeruginosa.The current study aimed at investigating the conservation of the OprF in 150 reference sequences, clinical, and environmental strains of P. aeruginosa from different countries via bioinformatic tools.T-COFFEE and PRALINE software were used for alignment. RESULTS: Of these, 134 strains were isolated from clinical specimens and other strains from environmental samples. Evaluation of alignment by the mentioned software clearly showed that this protein was conserved. Antigenicity and grand average of hydropathicity were favorable. CONCLUSION: Conservation of OprF in all pathogenic and environmental strains of P. aeruginosa indicated that it can be considered as a good immunogen; however, the protectivity of OprF should be validated experimentally.

17.
Vaccine ; 34(37): 4399-405, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27449680

ABSTRACT

Pseudomonas aeruginosa antimicrobial resistance is a major therapeutic challenge. DNA vaccination is an attractive approach for antigen-specific immunotherapy against P. aeruginosa. We explored the feasibility of employing Herpes simplex virus type 1 tegument protein, VP22, as a molecular tool to enhance the immunogenicity of an OprF DNA vaccine against P. aeruginosa. Recombinant DNA vaccines, pVAX1-OprF, pVAX1-OprF-VP22 (encoding a n-OprF-VP22-c fusion protein) and pVAX1-VP22-OprF (encoding a n-VP22-OprF-c fusion protein) were constructed. The humoral and cellular immune responses and immune protective effects of these DNA vaccines in mice were evaluated. In this report, we showed that vaccination with pVAX1-OprF-VP22 induced higher levels of IgG titer, T cell proliferation rate. It also provided better immune protection against the P. aeruginosa challenge when compared to that induced by pVAX1-OprF or pVAX1-VP22-OprF DNA vaccines. Molecular mechanistic analyses indicated vaccination with pVAX1-OprF-VP22 triggered immune responses characterized by a preferential increase in antigen specific IgG2a and IFN-γ in mice, indicating Th1 polarization. We concluded that VP22 is a potent stimulatory molecular tool for DNA vaccination when fused to the carboxyl end of OprF gene. Our study provides a novel strategy for prevention and treatment of P. aeruginosa infection.


Subject(s)
Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Pseudomonas Infections/prevention & control , Viral Structural Proteins/immunology , Animals , Antibodies, Bacterial/blood , Female , Herpesvirus 1, Human , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/blood , Interferon-gamma/immunology , Mice , Mice, Inbred BALB C , Pseudomonas aeruginosa , Recombinant Fusion Proteins/immunology , T-Lymphocytes/immunology , Vaccines, DNA/immunology
18.
Biochim Biophys Acta ; 1860(10): 2202-10, 2016 10.
Article in English | MEDLINE | ID: mdl-27155575

ABSTRACT

BACKGROUND: Mineral iron(III) recognition by bacteria is considered a matter of debate. The peculiar surface chemistry of novel naked magnetic nanoparticles, called SAMNs (surface active maghemite nanoparticles) characterized by solvent exposed Fe(3+) sites on their surface, was exploited for studying mineral iron sensing in Pseudomonas fluorescens. METHODS: SAMNs were applied for mimicking Fe(3+) ions in solution, acting as magnetically drivable probes to evaluate putative Fe(3+) recognition sites on the microorganism surface. Culture broths and nano-bio-conjugates were characterized by UV-Vis spectroscopy and mass spectrometry. RESULTS: The whole heritage of a membrane porin (OprF) of P. fluorescens Ps_22 cells was recognized and firmly bound by SAMNs. The binding of nanoparticles to OprF porin was correlated to a drastic inhibition of a siderophore (pyoverdine) biosynthesis and to the stimulation of the production and rate of formation of a secondary siderophore. The analysis of metabolic pathways, based on P. fluorescens Ps_22 genomic information, evidenced that this putative secondary siderophore does not belong to a selection of the most common siderophores. CONCLUSIONS: In the scenario of an adhesion mechanism, it is plausible to consider OprF as the biological component deputed to the mineral iron sensing in P. fluorescens Ps_22, as well as one key of siderophore regulation. GENERAL SIGNIFICANCE: The present work sheds light on mineral iron sensing in microorganisms. Peculiar colloidal naked iron oxide nanoparticles offer a useful approach for probing the adhesion of bacterial surface on mineral iron for the identification of the specific recognition site for this iron uptake regulation in microorganisms.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Magnetite Nanoparticles/chemistry , Porins/genetics , Surface-Active Agents/chemistry , Bacterial Adhesion/genetics , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Ferric Compounds/chemistry , Iron/chemistry , Minerals/chemistry , Minerals/metabolism , Porins/chemistry , Porins/metabolism , Pseudomonas fluorescens/chemistry , Pseudomonas fluorescens/metabolism
19.
Biotechnol Bioeng ; 113(3): 492-500, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26370067

ABSTRACT

Intestinal inflammation has been implicated in a number of diseases, including diabetes, Crohn's disease, and irritable bowel syndrome. Important components of inflammation are interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), which are elevated both on the luminal and submucosal sides of the intestinal epithelial barrier in several diseases. Here, we developed a novel Escherichia coli based detection system for IFN-γ and TNF-α comprised of a chimeric protein and a simple signal transduction construct, which could be deployed on the luminal side of the intestine. OmpA of E. coli was engineered to detect IFN-γ or TNF-α through the replacement of extracellular loops with peptide fragments from OprF of P. aeruginosa. OmpA/OprF chimeras were developed, capable of binding IFN-γ or TNF-α. The specific peptide fragments that bind IFN-γ were identified. IFN-γ or TNF-α binding the OmpA/OprF chimera induced the pspA promoter, driving ß-galactosidase production. The OmpA/OprF chimera had a detection limit of 300 pM for IFN-γ and 150 pM for TNF-α. This work will further the development of bacteria based therapeutics for the treatment of inflammatory diseases of the gut.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Interferon-gamma/metabolism , Receptors, Artificial/metabolism , Tumor Necrosis Factor-alpha/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Escherichia coli/genetics , Receptors, Artificial/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
Front Microbiol ; 6: 630, 2015.
Article in English | MEDLINE | ID: mdl-26157434

ABSTRACT

OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL