Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
Chemistry ; : e202401938, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984590

ABSTRACT

Nanoparticles (NPs), including perovskite nanocrystals (PNCs) with single photon purity, present challenges in fluorescence correlation spectroscopy (FCS) studies due to their distinct photoluminescence (PL) behaviors. In particular, the zero-time correlation amplitude [g2(0)] and the associated diffusion timescale (τD) of their FCS curves show substantial dependency on pump intensity (IP). Optical saturation inadequately explains the origin of this FCS phenomenon in NPs, thus setting them apart from conventional dye molecules, which do not manifest such behavior. This observation is apparently attributed to either photo-brightening or optical trapping, both lead to increased NP occupancy (N) in the excitation volume, consequently reducing the g2(0) amplitude [since g2(0) α 1/N] at high IP. However, an advanced FCS study utilizing alternating laser excitation at two different intensities dismisses such possibilities. Further investigation into single-particle blinking behaviors as a function of IP reveals that the intensity dependence of g2(0) primarily arises from the brightness heterogeneity prevalent in almost all types of NPs. This report delves into the complexities of the photophysical properties of NPs and their adverse impacts on FCS studies.

2.
Adv Mater ; : e2401344, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838094

ABSTRACT

This is a report on a pilot study that tests the feasibility of assembling photonic metamaterials (PMs) using light gradient forces. Following a strategy that works like modular construction, light gradient forces, produced by a tightly focused, 1D standing wave optical trap, time-multiplexed across a 2D lattice are used to assemble voxels consisting of prefabricated, monodispersed nanoparticles (NPs) with radii ranging from 30 to 500 nm into 3D structures on a hydrogel scaffold. Hundreds of NPs can be manipulated concurrently into a complex heterogeneous voxel this way, and then the process can be repeated by stitching together voxels to form a metamaterial of any size, shape, and constituency although imperfectly. Imperfections introduce random phase shifts and amplitude variations that can have an adverse effect on the band structure. Regardless, PMs are created this way using two different dielectric NPs, polystyrene and rutile, and then the near-infrared performance for each is analyzed with angle-, wavelength-, and polarization-dependent reflection spectroscopy. The cross-polarized spectra show evidence of a resonance peak. Interestingly, whereas the line shape from the polystyrene array is symmetric, the rutile array is not, which may be indicative of Fano resonance. So, even with the structural defects, reflection spectroscopy reveals a resonance.

3.
Nano Lett ; 24(22): 6753-6760, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38708988

ABSTRACT

Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.

4.
Nano Lett ; 24(19): 5699-5704, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695662

ABSTRACT

We report the second harmonic generation (SHG) response from a single 34 nm diameter lithium niobate nanoparticle. The experimental setup involves a first beam devoted to the optical trapping of single nanoparticles, whereas a second arm involves a femtosecond laser source leading to the SHG emission from the trapped nanoparticles. SHG operation where one to three nanoparticles are present in the optical trap is first demonstrated, highlighting the transition between coherent and incoherent SHG, the latter known as hyper-Rayleigh scattering (HRS). With a spatial light modulator moving the optical trap in and out of the focus of the femtosecond beam, the SHG intensity is switched back and forth between a low and a high level. This controlled operation opens new avenues for nanoparticle characterization and applications in sensing or communication and information technologies and constitutes the first step in the design of active substrateless metasurfaces.

5.
Small ; : e2308534, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573943

ABSTRACT

Thermal control at small scales is critical for studying temperature-dependent biological systems and microfluidic processes. Concerning this, optical trapping provides a contactless method to remotely study microsized heating sources. This work introduces a birefringent luminescent microparticle of NaLuF4:Nd3+ as a local heater in a liquid system. When optically trapped with a circularly polarized laser beam, the microparticle rotates and heating is induced through multiphonon relaxation of the Nd3+ ions. The temperature increment in the surrounding medium is investigated, reaching a maximum heating of ≈5 °C within a 30 µm radius around the static particle under 51 mW laser excitation at 790 nm. Surprisingly, this study reveals that the particle's rotation minimally affects the temperature distribution, contrary to the intuitive expectation of liquid stirring. The influence of the microparticle rotation on the reduction of heating transfer is analyzed. Numerical simulations confirm that the thermal distribution remains consistent regardless of spinning. Instead, the orientation-dependence of the luminescence process emerges as a key factor responsible for the reduction in heating. The anisotropy in particle absorption and the lag between the orientation of the particle and the laser polarization angle contribute to this effect. Therefore, caution must be exercised when employing spinning polarization-dependent luminescent particles for microscale thermal analysis using rotation dynamics.

6.
Small ; : e2312174, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586919

ABSTRACT

The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges. In this study, a novel approach is presented to facilitate chirality modulation through chiral crystallization using a helical optical force field originating from localized nanogap surface plasmon resonance. The force field emerges near a gold trimer nanogap and is propelled by linear and angular momentum transfer from the incident light to the resonant nanogap plasmon. By employing Gaussian and Laguerre-Gaussian incident laser beams, notable enantioselectivity is achieved through low-power plasmon-induced chiral crystallization of an organic compound-ethylenediamine sulfate. The findings provide new insights into chirality transmission orchestrated by the exchange of linear and angular momentum between light and nanomaterials.

7.
Micromachines (Basel) ; 15(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38675249

ABSTRACT

Current optical tweezering techniques are actively employed in the manipulation of nanoparticles, e.g., biomedical cells. However, there is still huge room for improving the efficiency of manipulating multiple nanoparticles of the same composition but different shapes. In this study, we designed an array of high-index all-dielectric disk antennas, each with an asymmetric open slot for such applications. Compared with the plasmonic counterparts, this all-dielectric metasurface has no dissipation loss and, thus, circumvents the Joule heating problem of plasmonic antennas. Furthermore, the asymmetry-induced excitation of quasi-bound states in continuum (QBIC) mode with a low-power intensity (1 mW/µm2) incidence imposes an optical gradient force of -0.31 pN on 8 nm radius nanospheres, which is four orders of magnitude stronger than that provided by the Fano resonance in plasmonic antenna arrays, and three orders of magnitude stronger than that by the Mie resonance in the same metasurface without any slot, respectively. This asymmetry also leads to the generation of large optical moments. At the QBIC resonance wavelength, a value of 88.3 pN-nm will act on the nanorods to generate a rotational force along the direction within the disk surface but perpendicular to the slot. This will allow only nanospheres but prevent the nanorods from accurately entering into the slots, realizing effective sieving between the nanoparticles of the two shapes.

8.
Rep Prog Phys ; 87(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373355

ABSTRACT

HoloTile is a patented computer generated holography approach with the aim of reducing the speckle noise caused by the overlap of the non-trivial physical extent of the point spread function in Fourier holographic systems from adjacent frequency components. By combining tiling of phase-only of rapidly generated sub-holograms with a PSF-shaping phase profile, each frequency component-or output 'pixel'- in the Fourier domain is shaped to a desired non-overlapping profile. In this paper, we show the high-resolution, speckle-reduced reconstructions that can be achieved with HoloTile, as well as present new HoloTile modalities, including an expanded list of PSF options with new key properties. In addition, we discuss numerous applications for which HoloTile, its rapid hologram generation, and the new PSF options may be an ideal fit, including optical trapping and manipulation of particles, volumetric additive printing, information transfer and quantum communication.

9.
Small ; 20(25): e2309395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38196155

ABSTRACT

Enantiomers (opposite chiral molecules) usually exhibit different effects when interacting with chiral agents, thus the identification and separation of enantiomers are of importance in pharmaceuticals and agrochemicals. Here an optical approach is proposed to enantioselective trapping of multiple pairs of enantiomers by a focused hybrid polarized beam. Numerical results indicate that such a focused beam shows multiple local optical chirality of opposite signs in the focal plane, and can trap the corresponding enantiomers near the extreme value of optical chirality density according to the handedness of enantiomers. The number and positions of trapped enantiomers can be changed by altering the value and sign of polarization orders of hybrid polarized beams, respectively. The key to realizing enantioselective optical trapping of enantiomers is that the chiral optical force exerted on enantiomers in this focused field is stronger than the achiral optical force. The results provide insight into the optical identification and separation of multiple pairs of enantiomers and will find applications in chiral detection and sensing.

10.
Small ; 20(27): e2308814, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38282203

ABSTRACT

There is a recent resurgence of interest in phage therapy (the therapeutic use of bacterial viruses) as an approach to eliminating difficult-to-treat infections. However, existing approaches for therapeutic phage selection and virulence testing are time-consuming, host-dependent, and facing reproducibility issues. Here, this study presents an innovative approach wherein integrated resonant photonic crystal (PhC) cavities in silicon are used as optical nanotweezers for probing and manipulating single bacteria and single virions with low optical power. This study demonstrates that these nanocavities differentiate between a bacterium and a phage without labeling or specific surface bioreceptors. Furthermore, by tailoring the spatial extent of the resonant optical mode in the low-index medium, phage distinction across phenotypically distinct phage families is demonstrated. The work paves the road to the implementation of optical nanotweezers in phage therapy protocols.


Subject(s)
Bacteriophages , Optical Tweezers , Virion , Bacteriophages/physiology
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123951, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38277790

ABSTRACT

Micro-Raman spectroscopy has emerged as one of the foremost techniques for analyzing biological cells in recent years due to its non-destructive nature and high spatial resolution. The development of optical tweezers has eased the research on biological cells as they confine living cells and organisms in the optical trap without causing much damage. Combining optical tweezers with Raman spectroscopy has opened a wide range of applications in the biomedical field as it facilitates biochemical analysis of biological samples by maintaining in-vivo conditions. Herein, we developed a light sheet-based optical tweezer that traps red blood cells (RBCs) at a very low power density spread across the whole cell, otherwise impossible with conventional optical tweezers. Furthermore, it is combined with micro-Raman spectroscopy to perform whole-cell biochemical analysis for the first time. Raman spectra of individual RBCs recorded under the line focal spot excitation are of superior quality and lack spectral signatures of photo-oxidation and heme aggregation, which is common in point focal spot excitations.


Subject(s)
Erythrocytes , Optical Tweezers , Erythrocytes/chemistry , Erythrocytes/metabolism , Spectrum Analysis, Raman/methods , Heme/metabolism
12.
J Forensic Sci ; 69(1): 273-281, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37710383

ABSTRACT

Optical tweezers have a wide range of uses for mechanical manipulation of objects in the microscopic range. This includes both living and static cells in a variety of biomedical and research applications. Single-focus optical tweezers, formed by focusing a laser beam through a high numerical aperture immersion objective, create a significant force, which enables controlled transport of a variety of different cell types and morphologies in three dimensions. Optical tweezers have been previously reported to capture and separate spermatozoa from a reconstituted simulated postcoital sample. We report herein the development of a simplified, more efficient cell transfer protocol that can separate and isolate both spermatozoa as well as leukocytes, with similar efficiencies as those previously reported. The new cell transfer method was used to separate sperm cells from a reconstituted mixture of spermatozoa and vaginal epithelial cells, with complete STR profiles developed from 50 cells with little evidence of contribution from the female contributor to the mixture. This modified protocol was then used to separate 21 samples of enriched leukocytes, with trapped cells ranging from 5 to 22 cells. Complete STR profiles were developed from as few as 10 leukocytes. Thus, with minimal sample preparation and a short trapping time, this method has the potential to provide an alternative to traditional differential extraction methods for separation of sperm:nonsperm mixtures while also providing versatility for separation of cells with differing morphologies.


Subject(s)
Optical Tweezers , Semen , Male , Female , Humans , Cell Separation/methods , Spermatozoa , Epithelial Cells
13.
ACS Nano ; 17(22): 22952-22959, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37787115

ABSTRACT

100 years ago, in 1923, the Nobel prize in physics was awarded for measurement of the unit charge. In addition to a profound impact on contemporary physics, this discovery has reshaped our understanding of charge-based interactions in chemistry and biology, ranging from oxidation and ionization to protein folding and metabolism. In a liquid, the discrete nature of the electric charge becomes prominent at the nanoscale when a charge carrier is exchanged between a molecule or a nanoparticle and the surrounding medium. However, our ability to observe the dynamics of such interactions at the level of a single elementary charge is limited due to the abundance of ions in water. Here, we report on the observation of single binding-unbinding events with elementary charge resolution at the surface of a nanoparticle suspended in water. Discrete steps in the electrical charge are revealed by analyzing the motion of optically trapped nanoparticles under the influence of an applied sinusoidal electric field. The measurements are sufficiently fast and long to observe individual (dis)charging events that occur on average every 3 s. Our results offer prospective routes for studying the dynamics of diverse chemical and biological phenomena on the nanoscale with elementary charge resolution.

14.
Appl Spectrosc ; 77(11): 1300-1310, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37710971

ABSTRACT

Single particles trapped in an optical trap may experience temperature elevation, yet direct measurement of temperature and its distribution inside the optical trap of several to hundreds of microns in size remains a big challenge. We introduce a method that can measure the temperature inside a universal optical trap (UOT) using Raman spectroscopy of single trapped particles of high thermal conductivity. We measured temperature and temperature distributions inside the UOT using Raman shifts of single-walled carbon nanotubes (SWCNTs) and micron-sized diamonds (MSDs), which are heated by trapping laser beams directly or indirectly, depending on the location of the particle in the trap. We show that the temperature at the center of the UOT is much lower than the temperature along the hollow beams that form a hollow, cage-shaped UOT. In the range of the trapping laser power of 200-2950 mW, the surface temperature of particles trapped at the center of a UOT changes from 322 K to 830 K, correspondingly. This result gives a heating rate as a high thermal-absorbing particle trapped in the center of the UOT with 18.3 ± 0.4 °C/100 mW. In addition, the temperature gradient outside the UOT was also characterized by trapping SWCNT particles outside the UOT. Results show that when a light-absorbing particle is trapped for the study of material property, phase transitions, surface equilibrium process, chemical reactions, etc., this method can be used to measure temperature distribution and its variations in the trap and its surroundings.

15.
Cell Rep ; 42(9): 113061, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37660294

ABSTRACT

Lon is a widely distributed AAA+ (ATPases associated with diverse cellular activities) protease known for degrading poorly folded and damaged proteins and is often classified as a weak protein unfoldase. Here, using a Lon-degron pair from Mesoplasma florum (MfLon and MfssrA, respectively), we perform ensemble and single-molecule experiments to elucidate the molecular mechanisms underpinning MfLon function. Notably, we find that MfLon unfolds and degrades stably folded substrates and that translocation of these unfolded polypeptides occurs with a ∼6-amino-acid step size. Moreover, the time required to hydrolyze one ATP corresponds to the dwell time between steps, indicating that one step occurs per ATP-hydrolysis-fueled "power stroke." Comparison of MfLon to related AAA+ enzymes now provides strong evidence that HCLR-clade enzymes function using a shared power-stroke mechanism and, surprisingly, that MfLon is more processive than ClpXP and ClpAP. We propose that ample unfoldase strength and substantial processivity are features that contribute to the Lon family's evolutionary success.


Subject(s)
Escherichia coli Proteins , Protease La , ATPases Associated with Diverse Cellular Activities/metabolism , Peptides/metabolism , Peptide Hydrolases/metabolism , Molecular Chaperones/metabolism , Adenosine Triphosphate/metabolism , Protease La/chemistry , Protease La/metabolism , Escherichia coli Proteins/metabolism
16.
ACS Nano ; 17(17): 16695-16702, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37603833

ABSTRACT

Optical tweezers have had a major impact on bioscience research by enabling the study of biological particles with high accuracy. The focus so far has been on trapping individual particles, ranging from the cellular to the molecular level. However, biology is intrinsically heterogeneous; therefore, access to variations within the same population and species is necessary for the rigorous understanding of a biological system. Optical tweezers have demonstrated the ability of trapping multiple targets in parallel; however, the multiplexing capability becomes a challenge when moving toward the nanoscale. Here, we experimentally demonstrate a resonant metasurface that is capable of trapping a high number of nanoparticles in parallel, thereby opening up the field to large-scale multiplexed optical trapping. The unit cell of the metasurface supports an anapole state that generates a strong field enhancement for low-power near-field trapping; importantly, the anapole state is also more angle-tolerant than comparable resonant modes, which allows its excitation with a focused light beam, necessary for generating the required power density and optical forces. We use the anapole state to demonstrate the trapping of 100's of 100 nm polystyrene beads over a 10 min period, as well as the multiplexed trapping of lipid vesicles with a moderate intensity of <250 µW/µm2. This demonstration will enable studies relating to the heterogeneity of biological systems, such as viruses, extracellular vesicles, and other bioparticles at the nanoscale.

17.
Anal Chim Acta ; 1273: 341530, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37423663

ABSTRACT

BACKGROUND: The thermally coupled energy states that contribute to the upconversion luminescence of rare earth element-doped nanoparticles have been the subject of intense research due to their potential nanoscale temperature probing. However, the inherent low quantum efficiency of these particles often limits their practical applications, and currently, surface passivation and incorporation of plasmonic particles are being explored to improve the inherent quantum efficiency of the particle. However, the role of these surface passivating layers and the attached plasmonic particles in the temperature sensitivity of upconverting nanoparticles while probing the intercellular temperature has not been investigated thus far, particularly at the single nanoparticle level. RESULTS: The analysis of the study on the thermal sensitivity of oleate-free UCNP, UCNP@SiO2, and UCNP@SiO2@Au particles is carried out at a single particle level in a physiologically relevant temperature range (299 K-319 K) by optically trapping the particle. The thermal relative sensitivity of the as-prepared upconversion nanoparticle (UCNP) is found to be greater than that of UCNP@SiO2 and UCNP@SiO2@Au particles in an aqueous medium. An optically trapped single luminescence particle inside the cell is used to monitor the temperature inside the cell by measuring the luminescence from the thermally coupled states. The absolute sensitivity of optically trapped particles inside the biological cell increases with temperature, with a greater impact on the bare UCNP, which exhibits higher values for thermal sensitivity than UCNP@SiO2 and UCNP@SiO2@Au. The thermal sensitivity of the trapped particle inside the biological cell at 317 K indicates the thermal sensitivity of UCNP > UCNP@SiO2@Au > UCNP@SiO2 particles. SIGNIFICANCE AND NOVELTY: Compared to bulk sample-based temperature probing, the present study demonstrates temperature measurement at the single particle level by optically trapping the particle and further explores the role of the passivating silica shell and the incorporation of plasmonic particles on thermal sensitivity. Furthermore, thermal sensitivity measurements inside a biological cell at the single particle level are investigated and illustrated that thermal sensitivity at a single particle is sensitive to the measuring environment.

18.
Micromachines (Basel) ; 14(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37241637

ABSTRACT

It is very important for holographic optical tweezers (OTs) to develop high-quality phase holograms through calculation by using some computer algorithms, and one of the most commonly used algorithms is the Gerchberg-Saxton (GS) algorithm. An improved GS algorithm is proposed in the paper to further enhance the capacities of holographic OTs, which can improve the calculation efficiencies compared with the traditional GS algorithm. The basic principle of the improved GS algorithm is first introduced, and then theoretical and experimental results are presented. A holographic OT is built by using a spatial light modulator (SLM), and the desired phase that is calculated by the improved GS algorithm is loaded onto the SLM to obtain expected optical traps. For the same sum of squares due to error SSE and fitting coefficient η, the iterative number from using the improved GS algorithm is smaller than that from using traditional GS algorithm, and the iteration speed is faster about 27%. Multi-particle trapping is first achieved, and dynamic multiple-particle rotation is further demonstrated, in which multiple changing hologram images are obtained continuously through the improved GS algorithm. The manipulation speed is faster than that from using the traditional GS algorithm. The iterative speed can be further improved if the computer capacities are further optimized.

19.
Small Methods ; 7(9): e2300076, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37226694

ABSTRACT

Controlling the nano- and micropatterning of metal structures is an important requirement for various technological applications in photonics and biosensing. This work presents a method for controllably creating silver micropatterns by laser-induced photosculpting. Photosculpting is driven by plasmonic interactions between pulsed laser radiation and silver nanorods (AgNRs) in aqueous suspension; this process leads to optical binding forces transporting the AgNRs in the surroundings, while electronic thermalization results in photooxidation, melting, and ripening of the AgNRs into well-defined 3D structures. This work call these structures Airy castles due to their structural similarity with a diffraction-limited Airy disk. The photosculpted Airy castles contain emissive Ag nanoclusters, allowing for the visualization and examination of the aggregation process using luminescence microscopy. This work comprehensively examines the factors that define the photosculpting process, namely, the concentration and shape of the AgNRs, as well as the energy, power, and repetition rate of the laser. Finally, this work investigates the potential applications by measuring the metal-enhanced luminescence of a europium-based luminophore using Airy castles.

20.
Materials (Basel) ; 16(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37110065

ABSTRACT

The manipulation of single molecules has attracted extensive attention because of their promising applications in chemical, biological, medical, and materials sciences. Optical trapping of single molecules at room temperature, a critical approach to manipulating the single molecule, still faces great challenges due to the Brownian motions of molecules, weak optical gradient forces of laser, and limited characterization approaches. Here, we put forward localized surface plasmon (LSP)-assisted trapping of single molecules by utilizing scanning tunneling microscope break junction (STM-BJ) techniques, which could provide adjustable plasmonic nanogap and characterize the formation of molecular junction due to plasmonic trapping. We find that the plasmon-assisted trapping of single molecules in the nanogap, revealed by the conductance measurement, strongly depends on the molecular length and the experimental environments, i.e., plasmon could obviously promote the trapping of longer alkane-based molecules but is almost incapable of acting on shorter molecules in solutions. In contrast, the plasmon-assisted trapping of molecules can be ignored when the molecules are self-assembled (SAM) on a substrate independent of the molecular length.

SELECTION OF CITATIONS
SEARCH DETAIL