Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Protein Sci ; 33(6): e4996, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747383

ABSTRACT

The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.


Subject(s)
Optical Tweezers , SEC Translocation Channels , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Kinetics , Protein Binding , Protein Sorting Signals , Protein Transport , SEC Translocation Channels/chemistry , SEC Translocation Channels/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism
2.
Micromachines (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38793163

ABSTRACT

Pathological processes often change the mechanical properties of cells. Increased rigidity could be a marker of cellular malfunction. Erythrocytes are a type of cell that deforms to squeeze through tiny capillaries; changes in their rigidity can dramatically affect their functionality. Furthermore, differences in the homeostatic elasticity of the cell can be used as a tool for diagnosis and even for choosing the adequate treatment for some illnesses. More accurate types of equipment needed to study biomechanical phenomena at the single-cell level are very costly and thus out of reach for many laboratories around the world. This study presents a simple and low-cost technique to study the rigidity of red blood cells (RBCs) through the application of electric fields in a hand-made microfluidic chamber that uses a capacitor principle. As RBCs are deformed with the application of voltage, cells are observed under a light microscope. From mechanical force vs. deformation data, the elastic constant of the cells is determined. The results obtained with the capacitor-based method were compared with those obtained using optical tweezers, finding good agreement. In addition, P. falciparum-infected erythrocytes were tested with the electric field applicator. Our technique provides a simple means of testing the mechanical properties of individual cells.

3.
Protein Sci ; 32(7): e4706, 2023 07.
Article in English | MEDLINE | ID: mdl-37323096

ABSTRACT

BiP (immunoglobulin heavy-chain binding protein) is a Hsp70 monomeric ATPase motor that plays broad and crucial roles in maintaining proteostasis inside the cell. Structurally, BiP is formed by two domains, a nucleotide-binding domain (NBD) with ATPase activity connected by a flexible hydrophobic linker to the substrate-binding domain. While the ATPase and substrate binding activities of BiP are allosterically coupled, the latter is also dependent on nucleotide binding. Recent structural studies have provided new insights into BiP's allostery; however, the influence of temperature on the coupling between substrate and nucleotide binding to BiP remains unexplored. Here, we study BiP's binding to its substrate at the single molecule level using thermo-regulated optical tweezers which allows us to mechanically unfold the client protein and explore the effect of temperature and different nucleotides on BiP binding. Our results confirm that the affinity of BiP for its protein substrate relies on nucleotide binding, by mainly regulating the binding kinetics between BiP and its substrate. Interestingly, our findings also showed that the apparent affinity of BiP for its protein substrate in the presence of nucleotides remains invariable over a wide range of temperatures, suggesting that BiP may interact with its client proteins with similar affinities even when the temperature is not optimal. Thus, BiP could play a role as a "thermal buffer" in proteostasis.


Subject(s)
Heat-Shock Proteins , Nucleotides , Humans , Nucleotides/metabolism , Temperature , Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Endoplasmic Reticulum Chaperone BiP , HSP70 Heat-Shock Proteins/chemistry , Adenosine Triphosphatases/chemistry , Protein Binding
4.
Q Rev Biophys ; 55: e8, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35946323

ABSTRACT

Biomolecular interactions are at the base of all physical processes within living organisms; the study of these interactions has led to the development of a plethora of different methods. Among these, single-molecule (in singulo) experiments have become relevant in recent years because these studies can give insight into mechanisms and interactions that are hidden for ensemble-based (in multiplo) methods. The focus of this review is on optical tweezer (OT) experiments, which can be used to apply and measure mechanical forces in molecular systems. OTs are based on optical trapping, where a laser is used to exert a force on a dielectric bead; and optically trap the bead at a controllable position in all three dimensions. Different experimental approaches have been developed to study protein­protein interactions using OTs, such as: (1) refolding and unfolding in trans interaction where one protein is tethered between the beads and the other protein is in the solution; (2) constant force in cis interaction where each protein is bound to a bead, and the tension is suddenly increased. The interaction may break after some time, giving information about the lifetime of the binding at that tension. And (3) force ramp in cis interaction where each protein is attached to a bead and a ramp force is applied until the interaction breaks. With these experiments, parameters such as kinetic constants (koff, kon), affinity values (KD), energy to the transition state ΔG≠, distance to the transition state Δx≠ can be obtained. These parameters characterize the energy landscape of the interaction. Some parameters such as distance to the transition state can only be obtained from force spectroscopy experiments such as those described here.


Subject(s)
Optical Tweezers , Proteins , Biophysical Phenomena , Cell Communication , Kinetics , Proteins/chemistry
5.
Microsc Res Tech ; 85(10): 3431-3438, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35819025

ABSTRACT

Focus precision and stability is crucial in confocal microscopy not only for image sharpness but also to avoid radiometric fluctuations that can wrongly be interpreted as variations of the fluorescence intensity in the sample. Here we report a focus variation provoked by a continuous wave laser of 810-nm wavelength introduced along the optical path of an inverted confocal microscope with an oil immersion ×60 objective. When the laser is turned on or off, the focus position drifts toward lower or high values of the vertical coordinate z, respectively. The maximum drift observed was 2.25 ðœ‡m for a laser power of 40 mW at the sample and over a 600-s exposure time. The temporal evolution of the focus position is well fitted by exponential curves that mimic temperature variations due to a heat source. Our analysis strongly suggests that the focus drift is due to heating of the immersion oil.


Subject(s)
Lasers , Light , Hot Temperature , Microscopy, Confocal/methods , Temperature
6.
Phys Biol ; 19(5)2022 07 14.
Article in English | MEDLINE | ID: mdl-35767987

ABSTRACT

Diatoms are unicellular microalgae with a rigid cell wall, able to glide on surfaces by releasing nanopolymeric fibers through central slits known as raphes. Here we consider the modelNitszchia communisto perform quantitative studies on two complementary aspects involved in diatom gliding. Using video microscopy and automated image analysis, we measure the motion of test beads as they are pulled by extracellular polymeric substances (EPS) fibers at the diatom raphe (particle streaming). A multimodal distribution of particle speed is found, evidencing the appearance of short-time events of high speed and acceleration (known as jerky motion) and suggesting that different mechanisms contribute to set diatom velocity during gliding. Furthermore, we use optical tweezers to obtain force-extension records for extracellular diatom nanofibers; records are well described by the worm-like chain model of polymer elasticity. In contrast to previous studies based on application of denaturing force (in the nN regime), application of low force (up to 6 pN) and using enable us to obtain the persistence length of intact fibers. From these measurements, mechanical parameters of EPS fibers such as radius and elastic constant are estimated. Furthermore, by modeling particle streaming as a spring in parallel with a dashpot, we show that the time involved in the release of mechanical energy after fiber detachment from beads (elastic snapping) agrees with our observations of jerky motion. We conclude that the smooth and jerky motions displayed by gliding diatoms correspond to molecular motors and elastic snapping, respectively, thus providing quantitative elements that incorporate to current models of the mechanics behind diatom locomotion.


Subject(s)
Diatoms , Nanofibers , Diatoms/metabolism , Elasticity , Mechanical Tests
7.
BBA Adv ; 1: 100002, 2021.
Article in English | MEDLINE | ID: mdl-37082019

ABSTRACT

Polybia-MP1 is an antimicrobial peptide that shows a decreased activity in membranes with cholesterol (CHO). Since it is now accepted that hopanoids act as sterol-surrogates in some sterol-lacking bacteria, we here inquire about the impact of Polybia-MP1 on membranes containing the hopanoid diplopterol (DP) in comparison to membranes with CHO. We found that, despite the properties induced on lipid membranes by DP are similar to those induced by CHO, the effect of Polybia-MP1 on membranes with CHO or DP was significantly different. DP did not prevent dye release from LUVs, nor the insertion of Polybia-MP1 into monolayers, and peptide-membrane affinity was higher for those with DP than with CHO. Zeta potentials ( ζ ) for DP-containing LUVs showed a complex behavior at increasing peptide concentration. The effect of the peptide on membrane elasticity, investigated by nanotube retraction experiments, showed that peptide addition softened all membrane compositions, but membranes with DP got stiffer at long times. Considering this, and the ζ results, we propose that peptides accumulate at the interface adopting different arrangements, leading to a non-monotonic behavior. Possible correlations with cell membranes were inquired testing the antimicrobial activity of Polybia-MP1 against hopanoid-lacking bacteria pre-incubated with DP or CHO. The fraction of surviving cells was lower in cultures incubated with DP compared to those incubated with CHO. We propose that the higher activity of Polybia-MP1 against some bacteria compared to mammalian cells is not only related to membrane electrostatics, but also the composition of neutral lipids, particularly the hopanoids, could be important.

8.
Exp Cell Res ; 397(2): 112370, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33186602

ABSTRACT

The mechanical properties of erythrocytes have been investigated by different techniques. However, there are few reports on how the viscoelasticity of these cells varies during malaria disease. Here, we quantitatively map the viscoelastic properties of Plasmodium falciparum-parasitized human erythrocytes. We apply new methodologies based on optical tweezers to measure the viscoelastic properties and defocusing microscopy to measure the erythrocyte height profile, the overall cell volume, and its form factor, a crucial parameter to convert the complex elastic constant into complex shear modulus. The storage and loss shear moduli are obtained for each stage of parasite maturation inside red blood cells, while the former increase, the latter decrease. Employing a soft glassy rheology model, we obtain the power-law exponent for the storage and loss shear moduli, characterizing the soft glassy features of red blood cells in each parasite maturation stage. Ring forms present a liquid-like behavior, with a slightly lower power-law exponent than healthy erythrocytes, whereas trophozoite and schizont stages exhibit increasingly solid-like behaviors. Finally, the surface elastic shear moduli, low-frequency surface viscosities, and shape recovery relaxation times all increase not only in a stage-dependent manner but also when compared to healthy red blood cells. Overall, the results call attention to the soft glassy characteristics of Plasmodium falciparum-parasitized erythrocyte membrane and may provide a basis for future studies to better understand malaria disease from a mechanobiological perspective.


Subject(s)
Elastic Modulus , Erythrocyte Membrane/pathology , Erythrocytes, Abnormal/pathology , Erythrocytes/pathology , Malaria/blood , Plasmodium falciparum/growth & development , Blood Viscosity , Erythrocyte Membrane/parasitology , Erythrocytes/parasitology , Erythrocytes, Abnormal/parasitology , Humans , Malaria/parasitology , Plasmodium falciparum/pathogenicity , Rheology
9.
Biochem Biophys Res Commun ; 531(3): 372-376, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32800544

ABSTRACT

Europium oxide (Eu2O3) was used to evaluate the affinity of this rare earth element for interacting with double-stranded (ds) DNA molecules. To perform the study, we used single molecule force spectroscopy with optical tweezers and gel electrophoresis assays. Force spectroscopy experiments show that Eu2O3 presents a strong interaction with dsDNA, and the binding is independent on the ionic strength used in the surrounding environment. Among the main characteristics of the interaction, Eu2O3 tends to bind in a cooperative way, forming bound clusters of ∼ 3 molecules, and presents a high equilibrium association binding constant on the order of 105 M-1. In addition, gel electrophoresis confirm the weak electrostatic character of the interaction and explicit show that Eu2O3 does not interfere on drug intercalation into the double-helix. Such results demonstrate the potential of europium for interacting with nucleic acids and strongly suggest that this rare earth element may be considered for the design of new metal-based anticancer drugs in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Europium/pharmacology , DNA/chemistry , Models, Molecular , Single Molecule Imaging
10.
Cells ; 9(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32466390

ABSTRACT

Neural precursor cells differentiate into several cell types that display distinct functions. However, little is known about how cell surface mechanics vary during the differentiation process. Here, by precisely measuring membrane tension and bending modulus, we map their variations and correlate them with changes in neural precursor cell morphology along their distinct differentiation fates. Both cells maintained in culture as neural precursors as well as those plated in neurobasal medium reveal a decrease in membrane tension over the first hours of culture followed by stabilization, with no change in bending modulus. During astrocyte differentiation, membrane tension initially decreases and then increases after 72 h, accompanied by consolidation of glial fibrillary acidic protein expression and striking actin reorganization, while bending modulus increases following observed alterations. For oligodendrocytes, the changes in membrane tension are less abrupt over the first hours, but their values subsequently decrease, correlating with a shift from oligodendrocyte marker O4 to myelin basic protein expressions and a remarkable actin reorganization, while bending modulus remains constant. Oligodendrocytes at later differentiation stages show membrane vesicles with similar membrane tension but higher bending modulus as compared to the cell surface. Altogether, our results display an entire spectrum of how membrane elastic properties are varying, thus contributing to a better understanding of neural differentiation from a mechanobiological perspective.


Subject(s)
Cell Differentiation , Cell Membrane/physiology , Elasticity , Neural Stem Cells/cytology , Animals , Astrocytes/cytology , Biomarkers/metabolism , Biomechanical Phenomena , Cells, Cultured , Culture Media , Cytoskeleton/metabolism , Mice , Optical Tweezers
11.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(8): e9268, 2020. tab, graf
Article in English | LILACS, Coleciona SUS | ID: biblio-1132539

ABSTRACT

Leptospirosis is a zoonotic disease caused by bacteria of the genus Leptospira, which can cause lipid changes in the erythrocyte membrane. Optical tweezers were used to characterize rheological changes in erythrocytes from patients with leptospirosis in the late stage. Biochemical methods were also used for quantification of plasma lipid, erythrocyte membrane lipid, and evaluation of liver function. Our data showed that the mean elastic constant of erythrocytes from patients with leptospirosis was around 67% higher than the control (healthy individuals), indicating that patient's erythrocytes were less elastic. In individuals with leptospirosis, several alterations in relation to control were observed in the plasma lipids, however, in the erythrocyte membrane, only phosphatidylcholine showed a significant difference compared to control, increasing around 41%. With respect to the evaluation of liver function of individuals with leptospirosis, there was a significant increase in levels of alanine transaminase (154%) and aspartate transaminase (150%), whereas albumin was 43.8% lower than control (P<0.01). The lecithin-cholesterol acyltransferase fractional activity was 3.6 times lower in individuals with leptospirosis than in the healthy individuals (P<0.01). The decrease of the erythrocyte elasticity may be related to the changes of erythrocyte membrane phospholipids composition caused by disturbances that occur during human leptospirosis, with phosphatidylcholine being a strong candidate in the erythrocyte rheological changes.


Subject(s)
Humans , Erythrocytes , Leptospirosis , Phospholipids , Erythrocyte Membrane , Membrane Lipids
12.
Int J Biol Macromol ; 130: 1018-1024, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30844457

ABSTRACT

Here, we use single molecule force spectroscopy performed with optical tweezers in order to investigate the interaction between Caffeine and the DNA molecule for various different concentrations of the alkaloid and under two distinct ionic strengths of the surrounding buffer. We were able to determine the mechanical changes induced on the double-helix structure due to Caffeine binding, the binding mode and the binding parameters of the interaction. The results obtained show that Caffeine binds to DNA by outside the double-helix with a higher affinity at lower ionic strengths. On the other hand, a considerable cooperativity was found only for sufficient high ionic strengths, suggesting that Caffeine may binding forming dimers and/or trimers along the double-helix under this condition. Finally, it was also shown that Caffeine stabilizes the DNA double-helix upon binding, preventing force-induced DNA melting.


Subject(s)
Caffeine/pharmacology , DNA/chemistry , Nucleic Acid Conformation/drug effects , Algorithms , Caffeine/chemistry , Models, Theoretical , Molecular Structure , Nucleic Acid Denaturation/drug effects , Optical Tweezers , Spectrum Analysis
13.
Biophys Chem ; 239: 1-6, 2018 08.
Article in English | MEDLINE | ID: mdl-29753256

ABSTRACT

Melanoma accounts for only 4% of all skin cancers but is among the most lethal cutaneous neoplasms. Dacarbazine is the drug of choice for the treatment of melanoma in Brazil through the public health system mainly because of its low cost. However, it is an alkylating agent of low specificity and elicits a therapeutic response in only 20% of cases. Other drugs available for the treatment of melanoma are expensive, and tumor cells commonly develop resistance to these drugs. The fight against melanoma demands novel, more specific drugs that are effective in killing drug-resistant tumor cells. Dibenzoylmethane (1,3-diphenylpropane-1,3-dione) derivatives are promising antitumor agents. In this study, we investigated the cytotoxic effect of 1,3-diphenyl-2-benzyl-1,3-propanedione (DPBP) on B16F10 melanoma cells as well as its direct interaction with the DNA molecule using optical tweezers. DPBP showed promising results against tumor cells and had a selectivity index of 41.94. Also, we demonstrated the ability of DPBP to interact directly with the DNA molecule. The fact that DPBP can interact with DNA in vitro allows us to hypothesize that such an interaction may also occur in vivo and, therefore, that DPBP may be an alternative to treat patients with drug-resistant melanomas. These findings can guide the development of new and more effective drugs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , DNA, Neoplasm/chemistry , DNA, Neoplasm/drug effects , Animals , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Chalcones/chemical synthesis , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Mice , Molecular Structure , Optical Tweezers , Structure-Activity Relationship , Tumor Cells, Cultured
14.
Eur Biophys J ; 47(5): 499-514, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29164289

ABSTRACT

Membrane elastic properties play important roles in regulating cell shape, motility, division and differentiation. Here I review optical tweezer (OT) investigations of membrane surface tension and bending modulus, emphasizing didactic aspects and insights provided for cell biology. OT measurements employ membrane-attached microspheres to extract long cylindrical nanotubes named tethers. The Helfrich-Canham theory yields elastic parameters in terms of tether radius and equilibrium extraction force. It assumes initial point-like microsphere attachment and no cytoskeleton content within tethers. Experimental force-displacement curves reveal violations of those assumptions, and I discuss proposed explanations of such discrepancies, as well as recommended OT protocols. Measurements of elastic parameters for predominant cell types in the central nervous system yield correlations between their values and cell function. Micro-rheology OT experiments extend these correlations to viscoelastic parameters. The results agree with a quasi-universal phenomenological scaling law and are interpreted in terms of the soft glass rheology model. Spontaneously-generated cell nanotube protrusions are also briefly reviewed, emphasizing common features with tethers. Filopodia as well as tunneling nanotubes (TNT), which connect distant cells and allow transfers between their cytoplasms, are discussed, including OT tether pulling from TNTs which mediate communication among bacteria, even of different species. Pathogens, including bacteria, viruses and prions, opportunistically exploit TNTs for cell-to-cell transmission of infection, indicating that TNTs have an ancient evolutionary origin.


Subject(s)
Biophysics/methods , Cell Membrane , Optical Tweezers , Animals , Elasticity , Humans
15.
ACS Nano ; 11(10): 9678-9688, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28853862

ABSTRACT

Optical printing is a powerful all-optical method that allows the incorporation of colloidal nanoparticles (NPs) onto substrates with nanometric precision. Here, we present a systematic study of the accuracy of optical printing of Au and Ag NPs, using different laser powers and wavelengths. When using light of wavelength tuned to the localized surface plasmon resonance (LSPR) of the NPs, the accuracy improves as the laser power is reduced, whereas for wavelengths off the LSPR, the accuracy is independent of the laser power. Complementary studies of the printing times of the NPs reveal the roles of Brownian and deterministic motion. Calculated trajectories of the NPs, taking into account the interplay between optical forces, electrostatic forces, and Brownian motion, allowed us to rationalize the experimental results and gain a detailed insight into the mechanism of the printing process. A clear framework is laid out for future optimizations of optical printing and optical manipulation of NPs near substrates.

16.
Protein Sci ; 26(7): 1404-1412, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28176394

ABSTRACT

BiP (Immunoglobulin Binding Protein) is a member of the Hsp70 chaperones that participates in protein folding in the endoplasmic reticulum. The function of BiP relies on cycles of ATP hydrolysis driving the binding and release of its substrate proteins. It still remains unknown how BiP affects the protein folding pathway and there has been no direct demonstration showing which folding state of the substrate protein is bound by BiP, as previous work has used only peptides. Here, we employ optical tweezers for single molecule force spectroscopy experiments to investigate how BiP affects the folding mechanism of a complete protein and how this effect depends on nucleotides. Using the protein MJ0366 as the substrate for BiP, we performed pulling and relaxing cycles at constant velocity to unfold and refold the substrate. In the absence of BiP, MJ0366 unfolded and refolded in every cycle. However, when BiP was added, the frequency of folding events of MJ0366 significantly decreased, and the loss of folding always occurred after a successful unfolding event. This process was dependent on ATP and ADP, since when either ATP was decreased or ADP was added, the duration of periods without folding events increased. Our results show that the affinity of BiP for the substrate protein increased in these conditions, which correlates with previous studies in bulk. Therefore, we conclude that BiP binds to the unfolded state of MJ0366 and prevents its refolding, and that this effect is dependent on both the type and concentration of nucleotides.


Subject(s)
Bacterial Proteins/chemistry , Heat-Shock Proteins/chemistry , Methanocaldococcus/chemistry , Models, Chemical , Protein Folding , Bacterial Proteins/genetics , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Humans , Methanocaldococcus/genetics , Recombinant Proteins/chemistry
17.
Biopolymers ; 107(5)2017 May.
Article in English | MEDLINE | ID: mdl-28124375

ABSTRACT

In this work, we use force spectroscopy to investigate the interaction between the DAPI fluorescent dye and the λ-DNA molecule under high (174 mM) and low (34 mM) ionic strengths. Firstly, we have measured the changes on the mechanical properties (persistence and contour lengths) of the DNA-DAPI complexes as a function of the dye concentration in the sample. Then, we use recently developed models in order to connect the behavior of both mechanical properties to the physical chemistry of the interaction. Such analysis has allowed us to identify and to decouple two main binding modes, determining the relevant physicochemical (binding) parameters for each of these modes: minor groove binding, which saturates at very low DAPI concentrations ( CT ∼ 0.50 µM) and presents equilibrium binding constants of the order of ∼107 M-1 for the two ionic strengths studied; and intercalation, which starts to play a significant role only after the saturation of the first mode, presenting much smaller equilibrium binding constants (∼105 M-1 ).


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Indoles/chemistry , Bacteriophage lambda/genetics , DNA/metabolism , Kinetics , Osmolar Concentration
18.
Exp Cell Res ; 351(2): 173-181, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28034672

ABSTRACT

Mechanical properties of cells are known to be influenced by the actin cytoskeleton. In this article, the action of drugs that interact with the actin cortex is investigated by tether extraction and rheology experiments using optical tweezers. The influences of Blebbistatin, Cytochalasin D and Jasplakinolide on the cell mechanical properties are evaluated. The results, in contradiction to current views for Jasplakinolide, show that all three drugs and treatments destabilize the actin cytoskeleton, decreasing the cell membrane tension. The cell membrane bending modulus increased when the actin cytoskeleton was disorganized by Cytochalasin D. This effect was not observed for Blebbistatin and Jasplakinolide. All drugs decreased by two-fold the cell viscoelastic moduli, but only Cytochalasin D was able to alter the actin network into a more fluid-like structure. The results can be interpreted as the interplay between the actin network and the distribution of myosins as actin cross-linkers in the cytoskeleton. This information may contribute to a better understanding of how the membrane and cytoskeleton are involved in cell mechanical properties, underlining the role that each one plays in these properties.


Subject(s)
Actin Cytoskeleton/drug effects , Cytochalasin D/pharmacology , Depsipeptides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Myosins/chemistry , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Animals , Biomechanical Phenomena , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Elasticity/drug effects , Humans , Mice , NIH 3T3 Cells , Optical Tweezers , Rheology , Viscosity/drug effects
19.
Methods Mol Biol ; 1486: 25-39, 2017.
Article in English | MEDLINE | ID: mdl-27844424

ABSTRACT

Optical tweezers have become a powerful tool for basic and applied research in cell biology. Here, we describe an experimentally verified theory for the trapping forces generated by optical tweezers based on first principles that allows absolute calibration. For pedagogical reasons, the steps that led to the development of the theory over the past 15 years are outlined. The results are applicable to a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Protocols for implementing absolute calibration are given, explaining how to measure all required experimental parameters, and including a link to an applet for stiffness calculations.


Subject(s)
Models, Theoretical , Optical Tweezers , Optics and Photonics , Calibration
20.
Biopolymers ; 105(4): 227-33, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26615825

ABSTRACT

In this work we have investigated the role of high molecular weight poly(ethylene-glycol) 8000 (PEG 8000) in modulating the interactions of the DNA molecule with two hydrophobic compounds: Ethidium Bromide (EtBr) and GelRed (GR). Both compounds are DNA intercalators and are used here to mimic the behavior of more complex DNA ligands such as chemotherapeutic drugs and proteins whose domains intercalate DNA. By means of single-molecule stretching experiments, we have been able to show that PEG 8000 strongly shifts the binding equilibrium between the intercalators and the DNA even at very low concentrations (1% in mass). Additionally, microcalorimetry experiments were performed to estimate the strength of the interaction between PEG and the DNA ligands. Our results suggest that PEG, depending on the system under study, may act as an "inert polymer" with no enthalpic contribution in some processes but, on the other hand, it may as well be an active (non-neutral) osmolyte in the context of modulating the activity of the reactants and products involved in DNA-ligand interactions.


Subject(s)
DNA/chemistry , Intercalating Agents/chemistry , Polyethylene Glycols/chemistry , Calorimetry , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL