ABSTRACT
The primary aim of this study was to investigate the impact of treatment with low-temperature plasma (LTP) for varying exposure durations on a multispecies cariogenic biofilm comprising C. albicans, L. casei, and S. mutans, as well as on single-species biofilms of L. casei and C. albicans, cultured on hydroxyapatite discs. Biofilms were treated with LTP-argon at a 10 mm distance for 30 s, 60 s, and 120 s. Chlorhexidine solution (0.12%) and NaCl (0.89%) were used as positive (PC) and negative controls (NC), respectively. Argon flow only was also used as gas flow control (F). Colony-forming units (CFU) recovery and confocal laser scanning microscopy (CLSM) were used to analyze biofilm viability. LTP starting at 30 s of application significantly reduced the viability of multispecies biofilms by more than 2 log10 in all treated samples (p < 0.0001). For single-species biofilms, L. casei showed a significant reduction compared to PC and NC of over 1 log10 at all exposure times (p < 0.0001). In the case of C. albicans biofilms, LTP treatment compared to PC and NC resulted in a significant decrease in bacterial counts when applied for 60 and 120 s (1.55 and 1.90 log10 CFU/mL, respectively) (p < 0.0001). A significant effect (p ≤ 0.05) of LTP in single-species biofilms was observed to start at 60 s of LTP application compared to F, suggesting a time-dependent effect of LTP for the single-species biofilms of C. albicans and L. casei. LTP is a potential mechanism in treating dental caries by being an effective anti-biofilm therapy of both single and multispecies cariogenic biofilms.
Subject(s)
Biofilms , Candida albicans , Plasma Gases , Streptococcus mutans , Biofilms/drug effects , Biofilms/growth & development , Plasma Gases/pharmacology , Candida albicans/physiology , Candida albicans/drug effects , Streptococcus mutans/drug effects , Streptococcus mutans/physiology , Dental Caries/microbiology , Dental Caries/therapy , Lacticaseibacillus casei/physiology , Humans , Microbial Viability/drug effects , Microscopy, Confocal , Cold TemperatureABSTRACT
Cariogenic biofilms have a matrix rich in exopolysaccharides (EPS), mutans and dextrans, that contribute to caries development. Although several physical and chemical treatments can be employed to remove oral biofilms, those are only partly efficient and use of biofilm-degrading enzymes represents an exciting opportunity to improve the performance of oral hygiene products. In the present study, a member of a glycosyl hydrolase family 66 from Flavobacterium johnsoniae (FjGH66) was heterologously expressed and biochemically characterized. The recombinant FjGH66 showed a hydrolytic activity against an early EPS-containing S. mutans biofilm, and, when associated with a α-(1,3)-glucosyl hydrolase (mutanase) from GH87 family, displayed outstanding performance, removing more than 80% of the plate-adhered biofilm. The mixture containing FjGH66 and Prevotella melaninogenica GH87 α-1,3-mutanase was added to a commercial mouthwash liquid to synergistically remove the biofilm. Dental floss and polyethylene disks coated with biofilm-degrading enzymes also degraded plate-adhered biofilm with a high efficiency. The results presented in this study might be valuable for future development of novel oral hygiene products.
Subject(s)
Biofilms , Dextranase , Flavobacterium , Glycoside Hydrolases , Streptococcus mutans , Biofilms/growth & development , Dextranase/metabolism , Dextranase/genetics , Flavobacterium/enzymology , Flavobacterium/genetics , Streptococcus mutans/enzymology , Streptococcus mutans/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hydrolysis , Biotechnology/methodsABSTRACT
OBJECTIVE: To evaluate the in vitro antimicrobial and antibiofilm properties and the immune modulatory activity of cannabidiol (CBD) and cannabigerol (CBG) on oral bacteria and periodontal ligament fibroblasts (PLF). METHODS: Cytotoxicity was assessed by propidium iodide flow cytometry on fibroblasts derived from the periodontal ligament. The minimum inhibitory concentration (MIC) of CBD and CBG for S. mutans and C. albicans and the metabolic activity of a subgingival 33-species biofilm under CBD and CBG treatments were determined. The Quantification of cytokines was performed using the LEGENDplex kit (BioLegend, Ref 740930, San Diego, CA, USA). RESULTS: CBD-treated cell viability was greater than 95%, and for CBG, it was higher than 88%. MIC for S. mutans with CBD was 20 µM, and 10 µM for CBG. For C. albicans, no inhibitory effect was observed. Multispecies biofilm metabolic activity was reduced by 50.38% with CBD at 125 µg/mL (p = 0.03) and 39.9% with CBG at 62 µg/mL (p = 0.023). CBD exposure at 500 µg/mL reduced the metabolic activity of the formed biofilm by 15.41%, but CBG did not have an effect. CBG at 10 µM caused considerable production of anti-inflammatory mediators such as TGF-ß and IL-4 at 12 h. CBD at 10 µM to 20 µM produced the highest amount of IFN-γ. CONCLUSION: Both CBG and CBD inhibit S. mutans; they also moderately lower the metabolic activity of multispecies biofilms that form; however, CBD had an effect on biofilms that had already developed. This, together with the production of anti-inflammatory mediators and the maintenance of the viability of mammalian cells from the oral cavity, make these substances promising for clinical use and should be taken into account for future studies.
ABSTRACT
The antimicrobial peptide LL-37 and D-amino acids (D-AAs) have been proposed as antibiofilm agents. Therefore, this study aimed to test the antimicrobial effect of antibiofilm agents associated with antibiotics used in regenerative endodontic procedures (the triple antibiotic pasteTAP: ciprofloxacin + metronidazole + minocycline). An endodontic-like biofilm model grown on bovine dentin discs was used in this study. After 21-day growth, the biofilms were treated with 1 mg/mL TAP, 10 µM LL-37, an association of LL-37 + TAP, 40 mM D-AAs solution, an association of D-AAs + TAP, and phosphate-buffered saline (negative control). Colony forming unit (CFU) data were analyzed by two-way ANOVA and Tukey's multiple comparison test (p < 0.05). LL-37 + TAP showed the best antibacterial activity (7-log10 CFU/mL ± 0.5), reaching a 1 log reduction of cells in relation to the negative control (8-log10 CFU/mL ± 0.7) (p < 0.05). In turn, no significant reduction in bacterial cells was observed with TAP, LL-37, D-AAs, and D-AAs + TAP compared to the negative control. In conclusion, the combination of antibiotics and LL-37 peptide showed mild antibacterial activity, while the combination of antibiotics and D-AAs showed no activity against complex biofilms.
ABSTRACT
This study investigated the effects of herbal toothpaste on bacterial counts and enamel demineralization. Thirty-six bovine enamel samples were exposed to a microcosm biofilm using human saliva and McBain saliva (0.2% sucrose) for 5 days at 37 °C and first incubated anaerobically, then aerobically-capnophilically. The following experimental toothpaste slurries (2 × 2 min/day) were applied: (1) Vochysia tucanorum (10 mg/g); (2) Myrcia bella (5 mg/g); (3) Matricaria chamomilla (80 mg/g); (4) Myrrha and propolis toothpaste (commercial); (5) fluoride (F) and triclosan (1450 ppm F), 0.3% triclosan and sorbitol (Colgate®, positive control); (6) placebo (negative control). The pH of the medium was measured, bacteria were analyzed using quantitative polymerase chain reaction, and enamel demineralization was quantified using transverse microradiography. The total bacterial count was reduced by toothpaste containing Myrcia bella, Matricaria chamomilla, fluoride, and triclosan (commercial) compared to the placebo. As far as assessable, Myrcia bella, Matricaria chamomilla, and Myrrha and propolis (commercial) inhibited the outgrowth of S. mutans, while Lactobacillus spp. were reduced/eliminated by all toothpastes except Vochysia tucanorum. Mineral loss and lesion depth were significantly reduced by all toothpastes (total: 1423.6 ± 115.2 vol% × µm; 57.3 ± 9.8 µm) compared to the placebo (2420.0 ± 626.0 vol% × µm; 108.9 ± 21.17 µm). Herbal toothpastes were able to reduce enamel demineralization.
ABSTRACT
Photodynamic therapy (PDT) mediated by Fotoenticine® (FTC), a new photosensitizer derived from chlorin e-6, has shown in vitro inhibitory activity against the cariogenic bacterium Streptococcus mutans. However, its antimicrobial effects must be investigated on biofilm models that represent the microbial complexity of caries. Thus, we evaluated the efficacy of FTC-mediated PDT on microcosm biofilms of dental caries. Decayed dentin samples were collected from different patients to form in vitro biofilms. Biofilms were treated with FTC associated with LED irradiation and analyzed by counting the colony forming units (log10 CFU) in selective and non-selective culture media. Furthermore, the biofilm structure and acid production by microorganisms were analyzed using microscopic and spectrophotometric analysis, respectively. The biofilms from different patients showed variations in microbial composition, being formed by streptococci, lactobacilli and yeasts. Altogether, PDT decreased up to 3.7 log10 CFU of total microorganisms, 2.8 log10 CFU of streptococci, 3.2 log10 CFU of lactobacilli and 3.2 log10 CFU of yeasts, and reached eradication of mutans streptococci. PDT was also capable of disaggregating the biofilms and reducing acid concentration in 1.1 to 1.9 mmol lactate/L. It was concluded that FTC was effective in PDT against the heterogeneous biofilms of dental caries.
ABSTRACT
Bacterial attachment to biomaterials is of great interest to the medical and dental field due to its impact on dental implants, dental prostheses, and others, leading to the need to introduce methods for biofilm control and mitigation of infections. Biofilm adhesion is a multifactorial process and involves characteristics relevant to the bacterial cell as well as biological, chemical, and physical properties relative to the surface of biomaterials. Bacteria encountered different environmental conditions during their growth and developed interspecies communication strategies, as well as various mechanisms to detect the environment and facilitate survival, such as chemical sensors or physical detection mechanisms. However, the factors that govern microbial attachment to surfaces are not yet fully understood. In order to understand how bacteria interact with surfaces, as well as to characterize the physical-chemical properties of bacteria adhesins, and to determine their interrelation with the adhesion to the substrate, in recent years new techniques of atomic force microscopy (AFM) have been developed and helped by providing quantitative results. Thus, the purpose of this review is to gather current studies about the factors that regulate microbial adhesion to surfaces in order to offer a guide to studies to obtain technologies that provide an antimicrobial surface.
ABSTRACT
BACKGROUND: Chlorhexidine digluconate (CHX) is commonly applied as positive control of new antimicrobials, because it is considered the gold-standard for chemical plaque control. The aim of this study was to compare the effect of treatments with curcumin-mediated aPDT and CHX in relation to the viability of specific microorganism groups in two distinct times (immediately and 24 h later). METHODS: Dentin caries microcosms were grown on bovine dentin discs (37 °C, anaerobiosis) for 3 days in the Active Attachment Amsterdam Biofilm Model. The biofilms were treated with 300 µM curcumin and 75 J.cm-² LED, or 0.06% and 0.12% CHX. Then, total microorganisms, total streptococci, mutans streptococci, and total lactobacilli counts were determined. The statistical analysis was conducted by Kruskal-Wallis and post-hoc Dunn's tests (P < 0.05). RESULTS: Curcumin-mediated aPDT (C + L+), 0.06% and 0.12% CHX reduced mutans streptococci counts (0.19, 0.10 and 0.07 log10 respectively) in the immediate analysis. After 24 h, it was observed a re-growth of microorganisms treated by curcumin-mediated aPDT, whereas both CHX concentrations demonstrated a decrease of the viable microorganisms. CONCLUSION: This study confirmed the substantive effect of CHX and the immediate effect of aPDT. The use of a neutralizer solution was important to block the substantivity of CHX and permit its fair comparison with aPDT, allowing its use as a positive control in further studies.