ABSTRACT
The physicochemical, microbiological and metabolomics analysis, antioxidant and lipid - lowering effect, and shelf life prediction of a functional beverage based on cocona pul p of SRN9 ecotype was to carry out. According to the results obtained, the beverage complies with all the characteristics of the Peruvian technical standard for juices, nectars and fruit beverages NTP 203.110:2009 and is within the limits established by th e sanitary technical standard NTS N° 071 - MINSA/DIGESA - V.01, with a shelf - life period of 4 months and 1 day. The metabolome regarding bioactive compounds showed the presence of 30 compounds, including several glycosylated flavonols, two flavanols, and two s permidines. Likewise, showed a lipid - lowering effect statistically significant (p < 0.05) about the serum levels of total cholesterol and triglycerides, with a mean reduction of 41.52 mg/dL for total cholesterol levels and 130.80 mg/dL for triglyceride lev els. This beverage could be an alternative for the treatment of atherosclerosis and prevention of cardiovascular diseases.
Se rea lizó el análisis fisicoquímico, microbiológico y metabolómico, efecto antioxidante e hipolipemiante, y vida útil de una bebida funcional a base de cocona ecotipo SRN9. De acuerdo a los resultados, la bebida cumple con las características de la norma técnic a peruana para jugos, néctares y bebidas de frutas NTP 203.110:2009 y se encuentra dentro de los límites establecidos por la norma técnica sanitaria NTS N° 071 - MINSA/DIGESA - V.01, con una vida útil de 4 meses y 1 día. Del perfil metabolómico se identificaro n 30 compuestos, entre ellos varios flavonoles glicosilados, dos flavanoles y dos espermidinas. Asimismo, mostró un efecto hipolipemiante estadísticamente significativo (p < 0,05) sobre los niveles séricos de colesterol total y triglicéridos, con una reduc ción media de 41,52 mg/dL y de 130,80 mg/dL para los niveles de colesterol total y de triglicéridos, respectivamente. Esta bebida podría ser una alternativa para el tratamiento de la aterosclerosis y prevención de enfermedades cardiovasculares.
Subject(s)
Solanum/chemistry , Fruit and Vegetable Juices/analysis , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Flavonols/analysis , Functional Food/analysis , Liquid Chromatography-Mass Spectrometry/methods , Hydrogen-Ion ConcentrationABSTRACT
Mycotoxins are a major source of contamination in cereals, posing risks to human health and causing significant economic losses to the industry. A comprehensive strategy for the analysis of 21 mycotoxins in Italian cereal grain samples (n = 200) was developed using a simple and quick sample preparation method combined with ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC Q-Orbitrap HRMS). The proposed method showed some advantages, such as multi-mycotoxin analyses with simple sample preparation, fast determination, and high sensitivity. The analysis of the sample revealed the presence of 11 mycotoxins, with α-zearalenol being the most frequently detected, while deoxynivalenol exhibited the highest contamination level. Furthermore, co-occurrence was identified in 15.5% of the samples under analysis. Among these, 13% of the samples reported the simultaneous presence of two mycotoxins, while 2.5% showed the co-occurrence of three mycotoxins. Currently, there has been a renewed interest in guaranteeing the quality and safety of products intended for human consumption. This study holds significant value due to its ability to simultaneously detect multiple mycotoxins within a complex matrix. Furthermore, it provides findings regarding the occurrence and co-occurrence of emerging mycotoxins that currently lack regulation under the existing European Commission Regulation.
Subject(s)
Drug Contamination , Mycotoxins , Humans , Chromatography, High Pressure Liquid , Edible Grain , Mass SpectrometryABSTRACT
Stingless bees (Meliponini) represent over than 500 species, found in tropical and sub-tropical regions of the world. They produce geopropolis, a resinous natural product containing bioactive compounds, which is commonly used in folk medicine. In the current study, LC-HRMS and bioinformatic tools were used to carry out for the first time the lipidomic analysis of geopropolis from indigenous Brazilian stingless bees. As a result, 61 compounds of several lipid classes were identified with elevated degree of confidence. Then, we demonstrated that lipids in geopropolis are not restricted to waxes and fatty acids; but fatty amides and amines, phenolic lipids, resorcinols, retinoids, abietanoids, diterpenoids, pentacyclic triterpenoids, prostaglandins, retinoids, and steroids were found. In addition, multivariate analysis, based on the lipidomic profile of extracts, reinforces the assumption that the species of stingless bees, as well as the geographical origin are relevant factors to affect geopropolis composition once that the lipidic profile allowed the discrimination of geopropolis in groups related to the geographical origin, bee specie or bee genus. The lipidic profile also suggest a selective forage habits of T. angustula, which seems to collect resins from more specific vegetal sources regardless geographic origin, while other stingless bees, such as M. marginata and M. quadrifasciata, are less selective and may adapt to collect resins from a wider variety of plants.
Subject(s)
Propolis , Bees , Animals , Propolis/analysis , Brazil , Lipidomics , Retinoids , LipidsABSTRACT
Naphthenic acids (NAs) are naturally occurring organic acids in petroleum and are found in waste waters generated during oil production (produced water, PW). Profiling this class of compounds is important due to flow assurance during oil exploration. Compositional analysis of PW is also relevant for waste treatment to reduce negative impacts on the environment. Here, comprehensive two-dimensional gas chromatography coupled with high-resolution mass spectrometry (GC×GC-HRMS) was applied as an ideal platform for qualitative analysis of NAs by combining the high peak capacity of the composite system with automated scripts for group-type identification based on accurate mass measurements and fragmentation patterns. To achieve high-throughput profiling of NAs in PW samples, direct-immersion solid phase microextraction (DI-SPME) was selected for extraction, derivatization and preconcentration. A fully automated DI-SPME method was developed to combine extraction, fiber rinsing and drying, and on-fiber derivatization with N-methyl-Ntert-butyldimethylsilyltrifluoroacetamide (MTBSTFA). Data processing was based on filtering scripts using the Computer Language for Identifying Chemicals (CLIC). The method successfully identified up to 94 NAs comprising carbon numbers between 6 and 18 and hydrogen deficiency values ranging from 0 to -4. The proposed method demonstrated wider extraction coverage compared to traditional liquid-liquid extraction (LLE) - a critical factor for petroleomic investigations. The method developed also enabled quantitative analysis, exhibiting detection limits of 0.5 ng L-1 and relative standard deviation (RSD) at a concentration of NAs of 30 µg L-1 ranging from 4.5 to 25.0%.
Subject(s)
Solid Phase Microextraction , Water Pollutants, Chemical , Immersion , Gas Chromatography-Mass Spectrometry/methods , Carboxylic Acids/analysis , Water Pollutants, Chemical/analysisABSTRACT
The widespread distribution of contaminants of emerging concern (CECs) is a major concern due to their potential effects on human health and the environment. The insufficient sewage treatment plant infrastructures is a global problem most accentuated in less developed countries and results in the discharge of CECs to water bodies. Pacu (Piaractus mesopotamicus) is a ray-finned freshwater fish species native to the Paraná basin. It is also the most produced aquaculture fish species in Argentina since 2012. Though uninvestigated to date, the occurrence of CECs in pacu may be of high relevance due to production volumes and relevance to human exposure through fish consumption. In this study, we applied a high-resolution mass spectrometry screening method to qualitatively analyze over 100 CECs in pacu. Four extraction/cleanup methods were tested on pooled pacu fillet, including solid-phase extraction and QuEChERS. The method that produced the highest number of detections was selected for further analysis of pacu purchased in supermarkets and fish markets in Argentina between 2017 and 2020. Residues of pesticides, antibiotics, pharmaceuticals, personal care products, plasticizers, sweeteners, drug metabolites, stimulants, and illegal drugs were detected in the samples. A total of 38 CECs were detected, ranging between 24 and 35 CECs per individual sample. 100% of the samples had positive detections of caffeine, 1,7-dimethylxanthine, xanthine, benzoylecgonine, methylparaben, ethylparaben, bis(2-ethylhexyl) phthalate (DEHP), metolachlor, carbendazim, salicylic acid, 2,4-D, saccharin, cyclamate, and dodecanedioic acid. Mappings generated with correspondence analysis were used to explore similarities/dissimilarities among the detected compounds. To our knowledge this is the first report of saccharin, cyclamate, 2,4 - D, carbendazim, metolachlor, ethylparaben, propylparben, bisphenol A, DEHP, and benzotriazole in fish from Argentina, and the first report on the presence of lisinopril, metropolol acid and dodecanedioic acid in fish worldwide.
Subject(s)
Illicit Drugs , Pesticides , Water Pollutants, Chemical , Animals , 2,4-Dichlorophenoxyacetic Acid , Anti-Bacterial Agents/analysis , Argentina , Caffeine/analysis , Cyclamates/analysis , Diethylhexyl Phthalate , Environmental Monitoring , Illicit Drugs/analysis , Lisinopril , Pesticides/analysis , Plasticizers/analysis , Saccharin/analysis , Salicylic Acid/analysis , Sewage/analysis , Sweetening Agents/analysis , Water Pollutants, Chemical/analysisABSTRACT
An in vivo study was performed in order to evaluate the depletion time of stanozolol and its main metabolites using naturally incurred urine sample collected after the administration of intramuscular injections in 12 steers. A stability study was also carried out to investigate the influence of the storage period and the freeze-thaw cycles. A fast parent drug metabolization was observed, because within 6 h after drug administration, the signal of the metabolite 16ß-hydroxystanozolol was predominant. After the second drug administration, a detection window of 17 days was obtained. The stability was studied using ANOVA, in which a storage condition of -20 °C proved stable during 240 days, which was also confirmed after 5 freeze-thaw cycles.
Subject(s)
Stanozolol , Animals , Cattle , Chromatography, High Pressure Liquid , Injections, Intramuscular , Stanozolol/urineABSTRACT
The following qualitative screening and quantitative determination of 201 pesticides present a detailed optimization making use of design of experiments (DoE). The post-targeted screening took advantage of an upgradeable database to extend the survey further to perform a standard-free novel quantitation by liquid chromatography high resolution mass spectrometry (LC-HRMS). The fine tuning of instrumental parameters allowed the best method selectivity, sensitivity and reproducibility for the compounds under study. Among the factors considered, the heated electrospray source (HESI), the sample composition and the MS/MS acquisition modes were assessed, including the all-ion fragmentation (AIF) mode and different versions of the variable data independent acquisition (vDIA). The results of the optimization showed that selected HESI conditions, a methanol/water (1:1) sample composition and a vDIA acquisition method increased the signal for most compounds with a remarkable benefit on signal shape and intensity. The method showed adequate analytical performance when assessed in local produce.
Subject(s)
Pesticide Residues , Pesticides , Chromatography, High Pressure Liquid , Chromatography, Liquid , Fruit/chemistry , Pesticide Residues/analysis , Pesticides/analysis , Reproducibility of Results , Tandem Mass Spectrometry , VegetablesABSTRACT
Haloarchaea are extreme halophilic microorganisms belonging to the domain Archaea, phylum Euryarchaeota, and are producers of interesting antioxidant carotenoid compounds. In this study, four new strains of Haloarcula sp., isolated from saline lakes of the Atacama Desert, are reported and studied by high-resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) for the first time. In addition, determination of the carotenoid pigment profile from the new strains of Haloarcula sp., plus two strains of Halorubrum tebenquichense, and their antioxidant activity by means of several methods is reported. The effect of biomass on cellular viability in skin cell lines was also evaluated by MTT assay. The cholinesterase inhibition capacity of six haloarchaea (Haloarcula sp. ALT-23; Haloarcula sp. TeSe-41; Haloarcula sp. TeSe-51; Haloarcula sp. Te Se-89 and Halorubrum tebenquichense strains TeSe-85 and Te Se-86) is also reported for the first time. AChE inhibition IC50 was 2.96 ± 0.08 µg/mL and BuChE inhibition IC50 was 2.39 ± 0.09 µg/mL for the most active strain, Halorubrum tebenquichense Te Se-85, respectively, which is more active in BuCHe than that of the standard galantamine. Docking calculation showed that carotenoids can exert their inhibitory activity fitting into the enzyme pocket by their halves, in the presence of cholinesterase dimers.
ABSTRACT
In this work, 37 growth promoters were quantitatively determined in bovine urine using a QuEChERS approach with acetonitrile, NaCl, and MgSO4:PSA for sample extraction. The analytes were separated and detected by liquid chromatography coupled to hybrid high-resolution mass spectrometry. The method was validated in accordance with the Decision 657/2002/EC guidelines, in which recoveries fell within the range 84-113%, relative standard varied between 2 and 32%, and detection limit between 0.1 and 2.5 µg L-1. An adequate performance was evidenced during a proficiency test evaluation, and the developed method has been applied to routine analysis of growth promoters in Brazil. A highlight is the easiness of sample extraction combined with a quantitative determination of forbidden drugs using high-resolution mass spectrometry, which enables retrospective analysis in a surveillance perspective.
Subject(s)
Chromatography, High Pressure Liquid , Animals , Brazil , Cattle , Chromatography, Liquid , Mass Spectrometry , Retrospective StudiesABSTRACT
Grape canes, also named vine shoots, are well-known viticultural byproducts containing high levels of phenolic compounds, which are associated with a broad range of health benefits. In this work, grape canes (Vitis vinifera cv. Pinot noir) were extracted in a 750 L pilot-plant reactor under the following conditions: temperature 80 °C, time 100 min, solid/liquid ratio 1:10. The comprehensive characterization of grape cane phenolic compounds was performed by liquid chromatography coupled to high-resolution/accurate mass measurement LTQ-Orbitrap mass spectrometry. A total of 44 compounds were identified and, 26 of them also quantified, consisting of phenolic acids and aldehydes (17), flavonoids (12), and stilbenoids (15). The most abundant class of phenolics were stilbenoids, among which (E)-ε-viniferin predominated. The phenolic profile of grape canes obtained using pilot plant extraction differed significantly from the results of laboratory-scale studies obtained previously. Additionally, we observed a high antioxidant capacity of grape cane pilot-plant extract measured by the radical antioxidant scavenging potential (ABTS+) (2209 ± 125 µmol TE/g DW) and oxygen radical absorbance capacity using fluorescein (ORAC-FL) (4612 ± 155 µmol TE/g DW). Grape cane pilot-plant extract for their phenolic profile may be used as a by-product for the development of novel nutraceutical and pharmaceutical products, improving the value and the sustainability of these residues.
Subject(s)
Vitis , Canes , Chromatography, Liquid , Mass Spectrometry , PhenolsABSTRACT
Drugs of abuse are psychoactive substances illicitly distributed and used worldwide. In Rio de Janeiro, Brazil, they represent a public health issue and are directly related to several social problems. The recent increase in appearances of new psychoactive substances (NPS), derived from structural modifications of existing psychoactive substances, poses a threat to public health and forensic laboratories worldwide, as little is known about these substances. This study aimed to chemically and geographically map drugs of abuse from blotter papers seized by the Civil Police of Rio de Janeiro State (PCERJ) between 2006 and 2019. High-performance analytical techniques, such as gas chromatography-mass spectrometry (GC-MS) and Orbitrap mass spectrometry (Orbitrap-MS), combined with statistical analyses, were employed to characterize the seized samples. The most common chemical compounds in NPS found in this study were synthetic phenethylamines, i.e., molecules from the 25I-NBOH (2-(((4-iodo-2,5-dimethoxyphenethyl)amino)methyl)phenol) and 25I-NBOMe (2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) families. Prior to 2014, the majority of seized blotter papers contained lysergic acid diethylamide (LSD) and were concentrated in the Metropolitan region. An upsurge in blotter paper seizures was observed from 2014 to 2017; the most common substances during this time were from the NBOMe family. NBOH compounds emerged in 2016 in coastal regions with high tourism, reaching over 1300 items only in 2017. Only one synthetic cannabinoid was found among the blotter papers seized in Rio de Janeiro between 2006 and 2019. The assembled chemical data and statistical analyses allowed the mapping and monitoring of the chemical profiles of the seized blotter papers, providing a strong foundation for the understanding of the origins and movement of these drugs around the RJ State.
Subject(s)
Drug Trafficking/statistics & numerical data , Drug and Narcotic Control/statistics & numerical data , Paper , Psychotropic Drugs/chemistry , Brazil , Cannabinoids/chemistry , Dosage Forms , Fentanyl/analogs & derivatives , Fentanyl/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Molecular StructureABSTRACT
Lipids play an important role in coffee bean development, coffee brew and in the effects of coffee on human health. They account for around 17% of the dry bean weight and encompass different classes and subclasses, mostly triacylglycerols (TAG) and a minor quantity of phospholipids (PL) and ßN-alkanoyl-5-hydroxytryptamides (C-5HT). To comprehensive profile these different lipids, it is important to evaluate extraction methods that provide high lipid coverage and to analyze the lipids in high-resolution techniques. In this work, liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) was employed to comprehensive profile lipids from green Arabica coffee beans and to evaluate the extraction efficiency and lipid coverage of three methods: Bligh-Dyer (BD), Folch (FO), and Matyash (MA). The MA method yielded the greatest number of annotated compounds (131 lipids) compared to the other methods. In the positive electrospray ionization (ESI) mode, the main difference among extraction methods was observed for TAG and diacylglycerols, whereas for the negative ESI it was observed differences for phosphatidylinositol (PI), lysophosphatidylinositol and phosphatidic acid (p < 0.05). The analysis of coffees from different maturation stages and/or post-harvest processes were also performed using the MA method. Immature beans were discriminated from mature and overripe beans by its lower levels of C-5HT, PI, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, and lysophosphatidylethanolamine. These results can help to better understand the coffee lipid composition and its association with coffee quality.
Subject(s)
Coffee , Phospholipids , Chromatography, Liquid , Humans , Mass SpectrometryABSTRACT
Mangifera indica Linn popularly known as mango is used in folk medicine to treat gastrointestinal disorders. The aim of this study was to identify the metabolomic composition of lyophilized extract of mango leaf (MIE), to evaluate the antioxidant activity on several oxidative stress systems (DPPH, FRAP, TBARS, and ABTS), the spasmolytic and antispasmodic activity, and intestinal protective effect on oxidative stress induced by H2O2 in rat ileum. Twenty-nine metabolites were identified and characterized based on their ultra-high-performance liquid chromatography (UHPLC) high-resolution orbitrap mass spectrometry, these include: benzophenone derivatives, xanthones, phenolic acids, fatty acids, flavonoids and procyanidins. Extract demonstrated a high antioxidant activity in in-vitro assays. MIE relaxed (p < 0.001) intestinal segments of rat pre-contracted with acetylcholine (ACh) (10-5 M). Pre-incubation of intestinal segments with 100 µg/mL MIE significantly reduced (p < 0.001) the contraction to H2O2. Similar effects were observed with mangiferin and quercetin (10-5 M; p < 0.05) but not for gallic acid. Chronic treatment of rats with MIE (50 mg/kg) for 28 days significantly reduced (p < 0.001) the H2O2-induced contractions. MIE exhibited a strong antioxidant activity, spasmolytic and antispasmodic activity, which could contribute to its use as an alternative for the management of several intestinal diseases related to oxidative stress.
Subject(s)
Antioxidants/pharmacology , Ileum/drug effects , Mangifera/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Benzophenones/chemistry , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Chromatography, High Pressure Liquid , Gallic Acid/pharmacology , Hydrogen Peroxide/chemistry , Lipid Peroxidation , Male , Metabolomics , Models, Biological , Oxidative Stress , Parasympatholytics/pharmacology , Phytochemicals/pharmacology , Picrates/chemistry , Quercetin/pharmacology , Rats , Sulfonic Acids/chemistry , Thiobarbituric Acid Reactive Substances/chemistry , Xanthones/chemistryABSTRACT
Hepatotoxic and genotoxic pyrrolizidine alkaloids have been involved in the acute poisoning of animals and humans. Crotalaria (Fabaceae) species contain these alkaloids. In this work, the diversity and distribution of pyrrolizidine alkaloids in roots, leaves, flowers, and seeds of Crotalaria pallida, Crotalaria maypurensis, Crotalaria retusa, Crotalaria spectabilis, Crotalaria incana, and Crotalaria nitens were studied. Matrix solid-phase dispersion and ultra-high-performance liquid chromatography coupled with Orbitrap mass spectrometry were successfully employed in pyrrolizidine alkaloids extraction and analysis, respectively. Forty-five pyrrolizidine alkaloids were detected and their identification was based on the mass spectrometry accurate mass measurement and fragmentation pattern analysis. The cyclic retronecine-type diesters monocrotaline, crotaleschenine, integerrimine, usaramine, and their N-oxides were predominantly present. Five novel alkaloids were identified for the first time in Crotalaria species, namely 14-hydroxymonocrotaline, 12-acetylcrotaleschenine, 12-acetylmonocrotaline, 12-acetylintegerrimine, and dihydrointegerrimine. Due to a lack of commercially available standards, the response factor of monocrotaline was used for quantification of pyrrolizidine alkaloids and their N-oxides. Seeds and flowers possessed higher pyrrolizidine alkaloids amounts than roots and leaves. Due to their 1,2-unsaturated pyrrolizidine alkaloids content, the ingestion of Crotalaria plant seeds or other parts through herbal products, infusions, or natural remedies is a serious health threat to humans and livestock.
Subject(s)
Crotalaria/chemistry , Pyrrolizidine Alkaloids/analysis , Chromatography, High Pressure Liquid , Flowers/chemistry , Mass Spectrometry , Molecular Structure , Plant Leaves/chemistry , Plant Roots/chemistry , Seeds/chemistryABSTRACT
Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) is a Chilean endemic plant popularly known as "quiscal" and produces an edible fruit consumed by the local Mapuche communities named as "chupón". In this study, several metabolites including phenolic acids, organic acids, sugar derivatives, catechins, proanthocyanidins, fatty acids, iridoids, coumarins, benzophenone, flavonoids, and terpenes were identified in G. sphacelata fruits using ultrahigh performance liquid chromatography-photodiode array detection coupled with a Orbitrap mass spectrometry (UHPLC-PDA-Orbitrap-MS) analysis for the first time. The fruits showed moderate antioxidant capacities (i.e., 487.11 ± 26.22 µmol TE/g dry weight) in the stable radical DPPH assay, 169.08 ± 9.81 TE/g dry weight in the ferric reducing power assay, 190.32 ± 6.23 TE/g dry weight in the ABTS assay, and 76.46 ± 3.18% inhibition in the superoxide anion scavenging assay. The cholinesterase inhibitory potential was evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the findings, promising results were observed for pulp and seeds. Our findings suggest that G. sphacelata fruits are a rich source of diverse secondary metabolites with antioxidant capacities. In addition, the inhibitory effects against AChE and BChE suggest that natural products or food supplements derived from G. sphacelata fruits are of interest for their neuroprotective potential.
Subject(s)
Bromeliaceae/chemistry , Cholinesterase Inhibitors/pharmacology , Chromatography, High Pressure Liquid/methods , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Tandem Mass Spectrometry/methods , Acetylcholinesterase , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Fruit/chemistry , GPI-Linked Proteins/antagonists & inhibitors , Humans , Plant Extracts/chemistryABSTRACT
Heliotropium taltalense is an endemic species of the northern coast of Chile and is used as folk medicine. The polyphenolic composition of the methanolic and aqueous extract of the endemic Chilean species was investigated using Ultrahigh-Performance Liquid Chromatography, Heated Electrospray Ionization and Mass Spectrometry (UHPLC-Orbitrap-HESI-MS). Fifty-three compounds were detected, mainly derivatives of benzoic acid, flavonoids, and some phenolic acids. Furthermore, five major compounds were isolated by column chromatography from the extract, including four flavonoids and one geranyl benzoic acid derivative, which showed vascular relaxation and were in part responsible for the activity of the extracts. Since aqueous extract of H. taltalense (83% ± 9%, 100 µg/mL) produced vascular relaxation through an endothelium-dependent mechanism in rat aorta, and the compounds rhamnocitrin (89% ± 7%; 10-4 M) and sakuranetin (80% ± 6%; 10-4 M) also caused vascular relaxation similar to the extracts of H. taltalense, these pure compounds are, to some extent, responsible for the vascular relaxation.
Subject(s)
Aorta/metabolism , Plant Extracts/chemistry , Polyphenols , Vasodilation/drug effects , Animals , Heliotropium/chemistry , Male , Polyphenols/chemistry , Polyphenols/pharmacology , Rats , Rats, Sprague-DawleyABSTRACT
Lycium minutifolium J. Remy (Solanaceae) is commonly used as an infusion in traditional medicine to treat stomach pain, meteorism, intestinal disorders, stomach ailments, and other severe problems including prostate cancer and stomach cancer. From the EtOAc extract of L. minutifolium bark five known metabolites were isolated using chromatographic techniques. The gastroprotective effects of the EtOAc fraction and edible infusion extract of the bark were assayed on the hydrochloric acid (HCl)/EtOH induced gastric ulcer model in mice to support the traditional use of the plant. The EtOAc extract and the edible infusion showed gastroprotective effect at dose of 100 mg/kg reducing lesions by 31% and 64%, respectively. The gastroprotective action mechanisms of the edible infusion at a single oral dose of 100 mg/kg were evaluated suggesting that prostaglandins, sulfhydryl groups, and nitric oxide are involved in the mode of gastroprotective action. The UHPLC analysis coupled to high-resolution mass spectrometry of the edible infusion showed the presence of twenty-three compounds. Our results can support the gastroprotective properties of the edible infusion extract, and at least can validate in part, the ethnopharmacological uses of the plant.
ABSTRACT
The full UHPLC-MS metabolome fingerprinting and anti-Helicobacter pylori effect of Gunnera tinctoria (Molina) Mirb. (Nalca) total extract (GTE) and fractions prepared from its edible fresh petioles were evaluated. The activity of G. tinctoria against H. pylori strains ATCC 45504 and J99 was assessed in vitro by means of agar diffusion assay, Minimum Inhibition Concentration (MIC), and Minimum Bactericidal Concentration (MBC), while killing curve and transmission electronic microscopy (TEM) were conducted in order to determine the effect of the plant extract on bacterial growth and ultrastructure. Additionally, the inhibitory effect upon urease was evaluated using both the Jack Bean and H. pylori enzymes. To determine which molecules could be responsible for the antibacterial effects, tentative identification was done by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-Q-Orbitrap®-HR-MS). Furthermore, the total G. tinctoria extract was fractionated using centrifugal partition chromatography (CPC), giving four active fractions (1-4). It was determined that the crude extract and centrifugal partition chromatography fractions of G. tinctoria have a bactericidal effect being the lowest MIC and MBC = 32 µg/ml. In the killing curves, fraction one acts faster than control amoxicillin. In the urease assay, F3 exhibited the lowest IC50 value of 13.5 µg/ml. Transmission electronic microscopy showed that crude G. tinctoria extract promotes disruption and separation of the cellular wall and outer membrane detachment on H. pylori causing bacterial cell death.
ABSTRACT
Grape canes (Vitis vinifera L.) are a viticulture industry by-product with an important content of secondary metabolites, mainly polyphenols with a broad spectrum of demonstrated health benefits. Grape canes, therefore, have considerable economic potential as a source of high-value phytochemicals. In this work, liquid chromatography coupled with electrospray ionization hybrid linear trap quadrupole-Orbitrap mass spectrometry (LC-LTQ-Orbitrap) was used for the comprehensive identification of polyphenolic compounds in grape canes. Identification of polyphenols was performed by comparing their retention times, accurate mass measured, and mass fragmentation patterns with those of reference substances or available data in the literature. A total of 75 compounds were identified, including phenolic acids, flavanols, flavonols, flavanonols, flavanones, and stilbenoids. The most abundant polyphenols were proanthocyanidins and stilbenoids and their oligomers. Moreover, the high-resolution mass spectrometry analysis revealed the occurrence of 17 polyphenols never described before in grape canes, thereby providing a more complete polyphenolic profile of this potentially valuable by-product.
Subject(s)
Polyphenols/chemistry , Polyphenols/isolation & purification , Vitis/chemistry , Chromatography, Liquid/methods , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methodsABSTRACT
Biofilm formation on exposed surfaces is a serious issue for the food industry and medical health facilities. There are many proposed strategies to delay, reduce, or even eliminate biofilm formation on surfaces. The present study focuses on the applicability of fire ant venom alkaloids (aka 'solenopsins', from Solenopsis invicta) tested on polystyrene and stainless steel surfaces relative to the adhesion and biofilm-formation by the bacterium Pseudomonas fluorescens. Conditioning with solenopsins demonstrates significant reduction of bacterial adhesion. Inhibition rates were 62.7% on polystyrene and 59.0% on stainless steel surfaces. In addition, solenopsins drastically reduced cell populations already growing on conditioned surfaces. Contrary to assumptions by previous authors, solenopsins tested negative for amphipathic properties, thus understanding the mechanisms behind the observed effects still relies on further investigation.