Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 754
Filter
1.
J Control Release ; 375: 116-126, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39236899

ABSTRACT

Many chemotherapeutic and molecular targeted drugs have been used to treat brain metastases, e.g., anti-angiogenic vandetanib. However, the blood-brain barrier and brain-specific resistance mechanisms make these systemic therapeutic approaches inefficacious. Brain metastatic cancer cells could mimic neurons to upregulate multiple serpins and secrete them into the extracellular environment to reduce local plasmin production to promote L1CAM-mediated vessel co-option and resist anti-angiogenesis therapy. Here, we developed brain-tumor-seeking and serpin-inhibiting outer membrane vesicles (DE@OMVs) to traverse across the blood-brain barrier, bypass neurons, and specially enter metastatic cancer cells via targeting GRP94 and vimentin. Through specific delivery of dexamethasone and embelin, reduced serpin secretion, restored plasmin production, significant L1CAM inactivation and tumor cell apoptosis were specially found in intracranial metastatic regions, leading to delayed tumor growth and prolonged survival in mice with brain metastases. By combining the brain-tumor-seeking properties with the regulation of the serpin/plasminogen activator/plasmin/L1CAM axis, this study provides a potent and highly-selective systemic therapeutic option for brain metastases.

2.
bioRxiv ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39229024

ABSTRACT

Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.

3.
Int J Antimicrob Agents ; : 107327, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245329

ABSTRACT

OBJECTIVES: This study aimed to investigate interspecies transfer of resistance gene blaNDM-1 and intraspecies transfer of blaKPC-2 in Serratia marcescens, and explore the epidemical and evolutionary characteristics of carbapenemase-producing S. marcescens (CPSM) regionally and globally. METHODS: Interspecies and intraspecies transfer of blaKPC-2- or blaNDM-1 were identified by antimicrobial susceptibility testing, plasmid conjugation and curing, discovery of transposable units (TUs), outer membrane vesicles (OMVs), qPCR, whole-genome sequencing and bioinformatic analysis. The genomic evolution of CPSM strains was explored by cgSNP and maximum-likelihood phylogenetic tree. RESULTS: CPSM S50079 strain, co-carrying blaKPC-2 and blaNDM-1 on one plasmid, was isolated from the blood of a patient with acute pancreatitis and could generate TUs carrying either blaKPC-2 or blaNDM-1. We identified the interspecies transfer of blaNDM-1-carrying plasmid from Providencia rettgeri P50213, producing the identical blaNDM-1-carrying TUs, to S. marcescens S50079K, an S50079 variant via plasmid curing, through blaNDM-1-harboring plasmid conjugation and OMVs transfer. Furthermore, the intraspecies transfer of blaKPC-2, mediated by IS26 from plasmid to chromosome in S50079, was identified. Likely, in another lung transplant patient, interspecies transfer of blaNDM-1 carried by IncX3 plasmid was also identified among S. marcescens and Citrobacter freundii as well as Enterobacter hormaechei via plasmid transfer. Furthermore, 11 CPSM from 349 non-repetitive S. marcescens strains were identified in the same hospital and clonal dissemination, with carbapenemase evolution from blaKPC-2 to both blaKPC-2 and blaNDM-1 was found in the 8 CPSM across four years. Finally, the analysis of 236 global CPSM from 835 non-repetitive S. marcescens genomes, retrieved from NCBI database, revealed long-term spread and evolution worldwide, and would cause the convergence of more carbapenemase genes. CONCLUSIONS: Interspecies transfer of resistance gene blaNDM-1 and intraspecies transfer of resistance gene blaKPC-2 in CPSM were identified. Nosocomial and global dissemination of CPSM were revealed and more urgent surveillance was acquired.

4.
Biochem Eng J ; 2102024 Oct.
Article in English | MEDLINE | ID: mdl-39092080

ABSTRACT

The development of novel antibacterial agents that are effective against Gram-negative bacteria is limited primarily by transport issues. This class of bacteria maintains a complex cell envelope consisting of two membrane bilayers, preventing the passage of most antibiotics. These drugs must therefore pass through protein channels called porins; however, many antibiotics are too large to pass through porins, and a common mechanism of acquired resistance is down-regulation of porins. To overcome this transport limitation, we have proposed the use of outer membrane vesicles (OMVs), released by Gram-negative bacteria, which deliver cargo to other bacterial cells in a porin-independent manner. In this work, we systematically studied the ability to load fluoroquinolones into purified Escherichia coli OMVs using in vivo and in vitro passive loading methods, and active loading methods such as electroporation and sonication. We observed limited loading of all of the antibiotics using passive loading techniques; sonication and electroporation significantly increased the loading, with electroporation at low voltages (200 and 400V) resulting in the greatest encapsulation efficiencies. We also demonstrated that imipenem, a carbapenem antibiotic, can be readily loaded into OMVs, and its administration via OMVs increases the effectiveness of the drug against E. coli. Our results demonstrate that small molecule antibiotics can be readily incorporated into OMVs to create novel delivery vehicles to improve antibiotic activity.

5.
Front Microbiol ; 15: 1401985, 2024.
Article in English | MEDLINE | ID: mdl-39101033

ABSTRACT

Advances in small RNAs (sRNAs)-related studies have posed a challenge for NGS-related bioinformatics, especially regarding the correct mapping of sRNAs. Depending on the algorithms and scoring matrices on which they are based, aligners are influenced by the characteristics of the dataset and the reference genome. These influences have been studied mainly in eukaryotes and to some extent in prokaryotes. However, in bacteria, the selection of aligners depending on sRNA-seq data associated with outer membrane vesicles (OMVs) and the features of the corresponding bacterial reference genome has not yet been investigated. We selected five aligners: BBmap, Bowtie2, BWA, Minimap2 and Segemehl, known for their generally good performance, to test them in mapping OMV-associated sRNAs from Aliivibrio fischeri to the bacterial reference genome. Significant differences in the performance of the five aligners were observed, resulting in differential recognition of OMV-associated sRNA biotypes in A. fischeri. Our results suggest that aligner(s) should not be arbitrarily selected for this task, which is often done, as this can be detrimental to the biological interpretation of NGS analysis results. Since each aligner has specific advantages and disadvantages, these need to be considered depending on the characteristics of the input OMV sRNAs dataset and the corresponding bacterial reference genome to improve the detection of existing, biologically important OMV sRNAs. Until we learn more about these dependencies, we recommend using at least two, preferably three, aligners that have good metrics for the given dataset/bacterial reference genome. The overlapping results should be considered trustworthy, yet their differences should not be dismissed lightly, but treated carefully in order not to overlook any biologically important OMV sRNA. This can be achieved by applying the intersect-then-combine approach. For the mapping of OMV-associated sRNAs of A. fischeri to the reference genome organized into two circular chromosomes and one circular plasmid, containing copies of sequences with rRNA- and tRNA-related features and no copies of sequences with protein-encoding features, if the aligners are used with their default parameters, we advise avoiding Segemehl, and recommend using the intersect-then-combine approach with BBmap, BWA and Minimap2 to improve the potential for discovery of biologically important OMV-associated sRNAs.

6.
Int J Biol Sci ; 20(10): 4029-4043, 2024.
Article in English | MEDLINE | ID: mdl-39113715

ABSTRACT

Helicobacter pylori has been recognized not only as a causative agent of a spectrum of gastroduodenal diseases including chronic gastritis, peptic ulcer, mucosa-associated lymphoid tissue lymphoma, and gastric cancer, but also as the culprit in several extra-gastric diseases. However, the association of H. pylori infection with extra-gastric diseases remains elusive, prompting a reevaluation of the role of H. pylori-derived outer membrane vesicles (OMVs). Like other gram-negative bacteria, H. pylori constitutively sheds biologically active OMVs for long-distance delivery of bacterial virulence factors in a concentrated and protected form, averting the need of direct bacterial contact with distant host cells to induce extra-gastric diseases associated with this gastric pathogen. Additionally, H. pylori-derived OMVs contribute to bacterial survival and chronic gastric pathogenesis. Moreover, the immunogenic activity, non-replicable nature, and anti-bacterial adhesion effect of H. pylori OMVs make them a desirable vaccine candidate against infection. The immunogenic potency and safety concerns of the OMV contents are challenges in the development of H. pylori OMV-based vaccines. In this review, we discuss recent advances regarding H. pylori OMVs, focusing on new insights into their biogenesis mechanisms and biological functions.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Animals , Virulence Factors/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/metabolism
7.
mSphere ; : e0033024, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158304

ABSTRACT

Outer membrane vesicles (OMVs) from Gram-negative bacteria can be used as a vaccine platform to deliver heterologous antigens. Here, the major protective antigens of Yersinia pestis, F1 and LcrV, were fused either with the leader sequence or the transmembrane domain of the outer membrane protein A (OmpA), resulting in chimeric proteins OmpA-ls-F1V and OmpA46-159-F1V, respectively. We show that OmpA-ls-F1V and OmpA46-159-F1V can be successfully delivered into the lumen and membrane of the OMVs of Escherichia coli, respectively. Mutation of ompA but not tolR in E. coli enhanced the delivery efficiency of OmpA-ls-F1V into OMVs. The OmpA-ls-F1V protein comprises up to 20% of the total protein in OMVs derived from the ompA mutant (OMVdA-ALS-F1V), a proportion significantly higher than the 1% observed for OmpA46-159-F1V in OMVs produced by an ompA mutant that expresses OmpA46-159-F1V, referred to as OMVdA-LATM5-F1V. Intramuscular (i.m.) immunization of mice with OMVdA-ALS-F1V induced significantly higher levels of serum anti-LcrV and anti-F1 IgG, and provided higher efficacy in protection against subcutaneous (s.c.) Y. pestis infection compared to OMVdA-LATM5-F1V and the purified recombinant F1V (rF1V) protein adsorbed to aluminum hydroxide. The three-dose i.m. immunization with OMVdA-ALS-F1V, administered at 14-day intervals, provides complete protection to mice against s.c. infection with 130 LD50 of Y. pestis 201 and conferred 80% against intranasal (i.n.) challenge with 11.4 LD50 of Y. pestis 201. Taken together, our findings indicate that the engineered OMVs containing F1V fused with the leader sequence of OmpA provide significantly higher protection than rF1V against both s.c. and i.n. infection of Y. pestis and more balanced Th1/Th2 responses.IMPORTANCEThe two major protective antigens of Y. pestis, LcrV and F1, have demonstrated the ability to elicit systemic and local mucosal immune responses as subunit vaccines. However, these vaccines have failed to provide adequate protection against pneumonic plague in African green monkeys. Here, Y. pestis F1 and LcrV antigens were successfully incorporated into the lumen and the surface of the outer membrane vesicles (OMVs) of E. coli by fusion either with the leader sequence or the transmembrane domain of OmpA. We compared the humoral immune response elicited by these OMV formulations and their protective efficacy in mice against Y. pestis. Our results demonstrate that the plague OMV vaccine candidates can induce robust protective immunity against both s.c. and i.n. Y. pestis infections, surpassing the effectiveness of rF1V. In addition, immunization with OMVs generated a relatively balanced Th1/Th2 immune response compared to rF1V immunization. These findings underscore the potential of OMVs-based plague vaccines for further development.

8.
Methods Mol Biol ; 2843: 15-23, 2024.
Article in English | MEDLINE | ID: mdl-39141291

ABSTRACT

Bacterial extracellular vesicles (BEVs) have emerged as mediators of transkingdom communication with numerous potential biotechnological applications. As such, investigation of BEV's protein composition holds promise to uncover new biological mechanisms, such as in microbiome-host communication or pathogen infection. Additionally, bioengineering of BEV protein composition can enhance their therapeutic potential. However, accurate assessment of BEV protein cargo is limited by their nanometer size, which precludes light microscopy imaging, as well as by co-isolation of protein impurities during separation processes. A solution to these challenges is found in immunogold transmission electron microscopy (TEM), which combines antibody-based labeling with direct visualization of BEVs. Several challenges are commonly encountered during immunogold TEM analysis of BEVs, most notably inefficient antibody labeling and poor contrast. Here, we present an optimized protocol for immunogold TEM analysis of BEVs that overcomes such challenges.


Subject(s)
Extracellular Vesicles , Microscopy, Electron, Transmission , Extracellular Vesicles/ultrastructure , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Microscopy, Electron, Transmission/methods , Immunohistochemistry/methods , Bacteria/ultrastructure , Bacteria/chemistry
9.
Methods Mol Biol ; 2843: 3-14, 2024.
Article in English | MEDLINE | ID: mdl-39141290

ABSTRACT

Bacterial membrane vesicles (BMVs) are small, spherical structures released by Gram-positive and Gram-negative bacteria that play essential roles in intercellular communication, nutrient acquisition, and antibiotic resistance. BMVs typically range from 40 to 400 nm in diameter and contain a single membrane derived from the bacterial membrane, comprising proteins, lipids, nucleic acids, and other biomolecules. Notably, the molecules located on the surface of BMVs facilitate interactions with neighboring cells, including the transfer of functional genes, coordination of bacterial growth through quorum sensing, and delivery of toxins during infections. In addition, BMVs exhibit heterogeneity in their surface composition, which influences their interactions with host and bacterial cells. It is therefore essential to understand not just the composition of BMVs, but the localization of the molecules of interest, particularly those on the surface. In this chapter, we describe several methods that can be used to quantify and characterize the protein and nucleic acid composition, particularly on the surface of BMVs. We describe quantitative immunoblot and ELISA protocols that enable quantification of the concentration of a particular protein of interest. We also describe an enzymatic digestion protocol to determine whether the protein of interest is located on the surface or within the lumen of the BMV, as well as a nucleic acid staining procedure that enables quantification of dsDNA specifically located on the surface of the BMVs. Together, these tools provide a detailed analysis of the protein and nucleic acid composition of BMVs that can be further combined with various separation techniques to study variations within different populations.


Subject(s)
Cell Membrane , Cell Membrane/metabolism , Bacterial Proteins/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Bacteria/metabolism , Bacteria/genetics
10.
Methods Mol Biol ; 2843: 95-117, 2024.
Article in English | MEDLINE | ID: mdl-39141296

ABSTRACT

Bacterial extracellular vesicles (BEVs) are released from the surface of bacterial cells and contain a diverse molecular cargo. Studies conducted primarily with bacterial pathogens of mammals have shown that BEVs are involved in multiple processes such as cell-cell communication, the delivery of RNA, DNA, and proteins to target cells, protection from stresses, manipulation of host immunity, and other functions. Until a decade ago, the roles of BEVs in plant-bacteria interactions were barely investigated. However, recent studies have shown that BEVs of plant pathogens possess similar functions as their mammalian pathogen counterparts, and more research is now devoted to study their roles and interactions with plants. In the following methods chapter, we provide five well-validated assays to examine the interaction of BEVs with the plant immune system. These assays rely on different markers or immune outputs, which indicate the activation of plant immunity (defense marker gene expression, reactive oxygen species burst, seedling inhibition). Furthermore, we offer assays that directly evaluate the priming of the immune system following BEV challenge and the effectiveness of its response to subsequent local or systemic infection. Altogether, these assays provide a thorough examination to the interactions of BEVs and the plant immune system.


Subject(s)
Extracellular Vesicles , Plant Immunity , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Host-Pathogen Interactions/immunology , Reactive Oxygen Species/metabolism , Bacteria/immunology , Bacteria/metabolism , Plants/immunology , Plants/microbiology , Plants/metabolism
11.
Methods Mol Biol ; 2843: 37-54, 2024.
Article in English | MEDLINE | ID: mdl-39141293

ABSTRACT

The molecular pathogenesis of Gram-negative bacteria remains a complex and incompletely understood phenomenon. Various factors are believed to contribute to the pathogenicity of these bacteria. One key mechanism utilized by Gram-negative bacteria is the production of outer membrane vesicles (OMVs), which are small spherical particles derived from the bacterial outer membrane. These OMVs are crucial in delivering virulence factors to the host, facilitating host-pathogen interactions. Within these OMVs, small regulatory RNAs (sRNAs) have been identified as important players in modulating the host immune response. One of the main challenges in studying OMVs and their cargo of sRNAs is the difficulty in isolating and purifying sufficient quantities of OMVs, as well as accurately predicting genuine sRNAs computationally. In this chapter, we present protocols aimed at overcoming these obstacles.


Subject(s)
Bacterial Outer Membrane , Computational Biology , RNA, Small Untranslated , Computational Biology/methods , RNA, Small Untranslated/genetics , Bacterial Outer Membrane/metabolism , RNA, Bacterial/genetics , Gram-Negative Bacteria/genetics
12.
Methods Mol Biol ; 2843: 137-152, 2024.
Article in English | MEDLINE | ID: mdl-39141298

ABSTRACT

Bacterial extracellular vesicles (bEVs) are produced by both Gram-negative and Gram-positive bacteria. These biological nanoparticles transport small molecules, nucleic acids, and proteins, enabling communication with both bacterial and mammalian cells. bEVs can evade and disrupt biological barriers, and their lipid membranes protect their cargo from degradation, facilitating long-distance communication in vivo. Furthermore, bacteria are easily manipulated and easily cultured. These combined factors make bEVs an ideal candidate for drug delivery applications. Thus, the study of how bEVs interact with biological barriers is interesting from both a signaling and drug delivery perspective. Here we describe methods for tracking bEV motion in biological matrices ex vivo. We outline methods for growth, isolation, quantification, and labeling, as well as techniques for tracking bEV motion ex vivo and quantifying these data. The methods described here are relevant to bEV communication with host cells as well as drug delivery applications using bEVs.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Bacteria/metabolism , Humans
13.
Methods Mol Biol ; 2843: 195-216, 2024.
Article in English | MEDLINE | ID: mdl-39141302

ABSTRACT

Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising vaccine technology for developing immunity against diverse pathogens. However, antigen display on OMVs can be challenging to control and highly variable due to bottlenecks in protein expression and localization to the bacterial host cell's outer membrane, especially for bulky and complex antigens. Here, we describe methods related to a universal vaccine technology called AvidVax (avidin-based vaccine antigen crosslinking) for rapid and simplified assembly of antigens on the exterior of OMVs during vaccine development. The AvidVax platform involves remodeling the OMV surface with multiple copies of a synthetic antigen-binding protein (SNAP), which is an engineered fusion protein comprised of an outer membrane scaffold protein linked to a biotin-binding protein. The resulting SNAPs enable efficient decoration of OMVs with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, nucleic acids, and short peptides. We detail the key steps in the AvidVax vaccine production pipeline including preparation and isolation of SNAP-OMVs, biotinylation and enrichment of vaccine antigens, and formulation and characterization of antigen-loaded SNAP-OMVs.


Subject(s)
Antigens, Bacterial , Biotinylation , Extracellular Vesicles , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Vaccines/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Vaccine Development , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/immunology
14.
Methods Mol Biol ; 2843: 155-162, 2024.
Article in English | MEDLINE | ID: mdl-39141299

ABSTRACT

Bacterial extracellular vesicles (BEVs) have extraordinary biotechnological potential, but traditional purification methods lack desirable scalability and commonly co-isolate protein impurities, limiting clinical translation. Anion exchange chromatography (AEC) separates molecules based on differences in net charge and is widely used for industrial biomanufacturing of protein therapeutics. Recently, AEC has recently been applied for purification of EVs from both mammalian and bacterial sources. Since most bacteria produce BEVs with a negative surface membrane change, AEC can potentially be widely used for BEV purification. Here, we describe a method utilizing high-performance AEC (HPAEC) in tandem with size-based tangential flow filtration for improved BEV purification. We have previously found this method can reduce co-isolated protein impurities and potentiate anti-inflammatory bioactivity of probiotic BEVs. Thus, this method holds promise as a scalable alternative for improved BEV purification.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Chromatography, Ion Exchange/methods , Bacteria/metabolism , Anions/chemistry , Filtration/methods
15.
Methods Mol Biol ; 2843: 239-251, 2024.
Article in English | MEDLINE | ID: mdl-39141304

ABSTRACT

Bacterial extracellular vesicles (BEVs) are nano-size vesicles containing a cargo of bioactive molecules that can play key roles in microbe-microbe and microbe-host interactions. In tracking their biodistribution in vivo, BEVs can cross several physical host barriers including the intestinal epithelium, vascular endothelium, and blood-brain-barrier (BBB) to ultimately accumulate in tissues such as the liver, lungs, spleen, and the brain. This tissue-specific dissemination has been exploited for the delivery of biomolecules such as vaccines for mucosal delivery. Although numerous strategies for labeling and tracking BEVs have been described, most have constraints that impact on interpreting in vivo bioimaging patterns. Here, we describe a general method for labeling BEVs using lipophilic fluorescent membrane stains which can be adopted by non-expert users. We also describe how the procedure can be used to overcome potential limitations. Furthermore, we outline methods of quantitative ex vivo tissue imaging that can be used to evaluate BEV organ trafficking.


Subject(s)
Extracellular Vesicles , Fluorescent Dyes , Extracellular Vesicles/metabolism , Animals , Tissue Distribution , Mice , Fluorescent Dyes/chemistry , Staining and Labeling/methods , Bacteria/metabolism
16.
Methods Mol Biol ; 2843: 177-194, 2024.
Article in English | MEDLINE | ID: mdl-39141301

ABSTRACT

Outer membrane vesicles (OMVs) are small, spherical, nanoscale proteoliposomes released from Gram-negative bacteria that play an important role in cellular defense, pathogenesis, and signaling, among other functions. The functionality of OMVs can be enhanced by engineering developed for biomedical and biochemical applications. Here, we describe methods for directed packaging of enzymes into bacterial OMVs of E. coli using engineered molecular systems, such as localizing proteins to the inner or outer surface of the vesicle. Additionally, we detail some modification strategies for OMVs such as lyophilization and surfactant conjugation that enable the protection of activity of the packaged enzyme when exposed to non-physiological conditions such as elevated temperature, organic solvents, and repeated freeze/thaw that otherwise lead to a substantial loss in the activity of the free enzyme.


Subject(s)
Escherichia coli , Proteolipids , Escherichia coli/metabolism , Escherichia coli/genetics , Proteolipids/metabolism , Bacterial Outer Membrane/metabolism , Freeze Drying/methods , Bacterial Outer Membrane Proteins/metabolism , Enzymes/metabolism , Enzymes/chemistry
17.
J Hazard Mater ; 478: 135588, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39181004

ABSTRACT

The persistent emergence of multidrug-resistant bacterial pathogens is leading to a decline in the therapeutic efficacy of antibiotics, with Pseudomonas aeruginosa (P. aeruginosa) emerging as a notable threat. We investigated the antibiotic resistance and quorum sensing (QS) system of P. aeruginosa, with a particular focused on outer membrane vesicles (OMVs) and polymyxin B as the last line of antibiotic defense. Our findings indicate that OMVs increase the resistance of P. aeruginosa to polymyxin B. The overall gene transcription levels within P. aeruginosa also reveal that OMVs can reduce the efficacy of polymyxin B. However, both OMVs and sublethal concentrations of polymyxin B suppressed the transcription levels of genes associated with the QS system. Furthermore, OMVs and polymyxin B acted in concert on the QS system of P. aeruginosa to produce a more potent inhibitory effect. This suppression was evidenced by a decrease in the secretion of virulence factors, impaired bacterial motility, and a notable decline in the ability to form biofilms. These results reveal that OMVs enhance the resistance of P. aeruginosa to polymyxin B, yet they collaborate with polymyxin B to inhibit the QS system. Our research contribute to a deeper understanding of the resistance mechanisms of P. aeruginosa in the environment, and provide new insights into the reduction of bacterial infections caused by P. aeruginosa through the QS system.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Polymyxin B , Pseudomonas aeruginosa , Quorum Sensing , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Polymyxin B/pharmacology , Drug Resistance, Bacterial/drug effects , Biofilms/drug effects , Bacterial Outer Membrane/drug effects , Bacterial Outer Membrane/metabolism , Microbial Sensitivity Tests
18.
Mar Drugs ; 22(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39195479

ABSTRACT

In marine ecosystems, communication among microorganisms is crucial since the distance is significant if considered on a microbial scale. One of the ways to reduce this gap is through the production of extracellular vesicles, which can transport molecules to guarantee nutrients to the cells. Marine bacteria release extracellular vesicles (EVs), small membrane-bound structures of 40 nm to 1 µm diameter, into their surrounding environment. The vesicles contain various cellular compounds, including lipids, proteins, nucleic acids, and glycans. EVs may contribute to dissolved organic carbon, thus facilitating heterotroph growth. This review will focus on marine bacterial EVs, analyzing their structure, composition, functions, and applications.


Subject(s)
Aquatic Organisms , Bacteria , Extracellular Vesicles , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Bacteria/metabolism , Humans , Animals
19.
Ann Clin Microbiol Antimicrob ; 23(1): 73, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164718

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is the most commonly encountered pathogen in clinical practice. Widespread use of broad-spectrum antibiotics has led to the current global dissemination of carbapenem-resistant K. pneumoniae, which poses a significant threat to antibacterial treatment efficacy and public health. Outer membrane vesicles (OMVs) have been identified as carriers capable of facilitating the transfer of virulence and resistance genes. However, the role of OMVs in carbapenem-resistant K. pneumoniae under external pressures such as antibiotic and phage treatments remains unclear. METHODS: To isolate and purify OMVs under the pressure of phages and tigecycline, we subjected K. pneumoniae 0692 harboring plasmid-mediated blaNDM-1 and blaKPC-2 genes to density gradient separation. The double-layer plate method was used to isolate MJ1, which efficiently lysed K. pneumoniae 0692 cells. Transmission electron microscopy (TEM) was used to characterize the isolated phages and extract OMV groups for relevant morphological identification. Determination of protein content of each OMV group was conducted through bicinchoninic acid assay (BCA) and proteomic analysis. RESULTS: K. pneumoniae 0692 released OMVs in response to different environmental stimuli, which were characterized through TEM as having the typical structure and particle size of OMVs. Phage or tigecycline treatment alone resulted in a slight increase in the mean protein concentration of OMVs secreted by K. pneumoniae 0692 compared to that in the untreated group. However, when phage treatment was combined with tigecycline, there was a significant reduction in the average protein concentration of OMVs compared to tigecycline treatment alone. Proteomics showed that OMVs encapsulated numerous functional proteins and that under different external stresses of phages and tigecycline, the proteins carried by K. pneumoniae 0692-derived OMVs were significantly upregulated or downregulated compared with those in the untreated group. CONCLUSIONS: This study confirmed the ability of OMVs to carry abundant proteins and highlighted the important role of OMV-associated proteins in bacterial responses to phages and tigecycline, representing an important advancement in microbial resistance research.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Carbapenems , Klebsiella pneumoniae , Proteomics , Tigecycline , Tigecycline/pharmacology , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Humans , Extracellular Vesicles/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Plasmids/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
20.
Adv Sci (Weinh) ; : e2405764, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166390

ABSTRACT

In treating infectious diseases, achieving selective bacterial inhibition is crucial for preserving the microecological equilibrium. The current approaches predominantly rely on synthetic materials tailored to specific bacteria, considering their cell walls or oxygen requirements. Herein, inspired by intricate bacterial communication, a natural implant is proposed coating utilizing bacterial outer membrane vesicles (OMVs), essential components in bacterial signaling, integrated onto diverse implant surfaces through a universal poly (tannic acid) bridging layer. This coating is homogenous and stable, unexpectedly promoting the proliferation of parental bacteria while inhibiting heterologous bacteria both in vitro and in vivo. Through high-throughput sequencing and bioinformatics analysis, the selective bacteriostatic ability arises from OMVs, upregulating anti-oxidative stress genes in heterologous bacteria and activating biofilm-related genes in parental bacteria. This study positions OMVs as an appealing biomaterial for selective bacterial inhibition through a biological approach, showcasing their potential in regulating the microecological balance through a natural interface modification strategy.

SELECTION OF CITATIONS
SEARCH DETAIL