Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Syst Evol ; 310(4): 29, 2024.
Article in English | MEDLINE | ID: mdl-39105137

ABSTRACT

Connaraceae is a pantropical family of about 200 species containing lianas and small trees with remarkably diverse floral polymorphisms, including distyly, tristyly, homostyly, and dioecy. To date, relationships within the family have not been investigated using a targeted molecular phylogenetic treatment, severely limiting systematic understanding and reconstruction of trait evolution. Accordingly, their last infrafamilial classification was based only on morphological data. Here, we used phylogenomic data obtained using the Angiosperms353 nuclear target sequence capture probes, sampling all tribes and almost all genera, entirely from herbarium specimens, to revise infrafamilial classification and investigate the evolution of heterostyly. The backbone of the resulting molecular phylogenetic tree is almost entirely resolved. Connaraceae consists of two clades, one containing only the African genus Manotes (4 or 5 species), which we newly recognize at the subfamily level. Vegetative and reproductive synapomorphies are proposed for Manotoideae. Within Connaroideae, Connareae is expanded to include the former Jollydoreae. The backbone of Cnestideae, which contains more than half of the Connaraceae species, remains incompletely resolved. Reconstructions of reproductive system evolution are presented that tentatively support tristyly as the ancestral state for the family, with multiple parallel losses, in agreement with previous hypotheses, plus possible re-gains. However, the great diversity of stylar polymorphisms and their phylogenetic lability preclude a definitive answer. Overall, this study reinforces the usefulness of herbarium phylogenomics, and unlocks the reproductive diversity of Connaraceae as a model system for the evolution of complex biological phenomena. Supplementary Information: The online version contains supplementary material available at 10.1007/s00606-024-01909-y.

2.
Am J Bot ; 109(7): 1139-1156, 2022 07.
Article in English | MEDLINE | ID: mdl-35709353

ABSTRACT

PREMISE: To date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target-enriched nuclear data to improve our understanding of phylogenetic relationships in the family. METHODS: We used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species in Brunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to infer Brunellia phylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral-state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections in Brunellia. RESULTS: Brunellia comprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses. CONCLUSIONS: Phylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene-tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character-state reconstructions. While target enrichment data allows us to broaden our understanding of diversification in Brunellia, the relationships among subclades remain incompletely understood.


Subject(s)
Cell Nucleus , Hybridization, Genetic , Cell Nucleus/genetics , Phenotype , Phylogeny
3.
Plant Divers ; 43(4): 281-291, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34485770

ABSTRACT

The wood sorrel family, Oxalidaceae, is mainly composed of annual or perennial herbs, a few shrubs, and trees distributed from temperate to tropical zones. Members of Oxalidaceae are of high medicinal, ornamental, and economic value. Despite the rich diversity and value of Oxalidaceae, few molecular markers or plastomes are available for phylogenetic analysis of the family. Here, we reported four new whole plastomes of Oxalidaceae and compared them with plastomes of three species in the family, as well as the plastome of Rourea microphylla in the closely related family Connaraceae. The eight plastomes ranged in length from 150,673 bp (Biophytum sensitivum) to 156,609 bp (R. microphylla). Genome annotations revealed a total of 129-131 genes, including 83-84 protein-coding genes, eight rRNA genes, 37 tRNA genes, and two to three pseudogenes. Comparative analyses showed that the plastomes of these species have minor variations at the gene level. The smaller plastomes of herbs B. sensitivum and three Oxalis species are associated with variations in IR region sizes, intergenic region variation, and gene or intron loss. We identified sequences with high variation that may serve as molecular markers in taxonomic studies of Oxalidaceae. The phylogenetic trees of selected superrosid representatives based on 76 protein-coding genes corroborated the Oxalidaceae position in Oxalidales and supported it as a sister to Connaraceae. Our research also supported the monophyly of the COM (Celastrales, Oxalidales, and Malpighiales) clade.

5.
PhytoKeys ; 169: 137-175, 2020.
Article in English | MEDLINE | ID: mdl-33354143

ABSTRACT

The pantropical genus Rourea Aubl. (Connaraceae) is composed of ca. 70 species, most of which occur in the Neotropics. Rourea is currently subdivided into three subgenera, with the American taxa included in Rourea subgen. Rourea. Forero (1976) recognised six sections for the species of the New World, with Rourea subgen. R. sect. Multifoliolatae being exclusive to Brazil, characterised by multifoliolate leaves, relatively small leaflets and the staminal tube (0.8-)1-1.5 mm long. Following Forero's (1976) treatment, additional botanical collections have become available in Brazilian herbaria, allowing re-evaluation of species concepts. This work recognises and revises 12 species in this section, mainly restricted to southeastern Brazil and southern Bahia. A nomenclatural and taxonomic study of these species is here presented, including an identification key, morphological descriptions, illustrations and geographic distribution maps. A new species is also described.

6.
PeerJ ; 8: e8392, 2020.
Article in English | MEDLINE | ID: mdl-32025370

ABSTRACT

Here we present the first two complete plastid genomes for Brunelliaceae, a Neotropical family with a single genus, Brunellia. We surveyed the entire plastid genome in order to find variable cpDNA regions for further phylogenetic analyses across the family. We sampled morphologically different species, B. antioquensis and B. trianae, and found that the plastid genomes are 157,685 and 157,775 bp in length and display the typical quadripartite structure found in angiosperms. Despite the clear morphological distinction between both species, the molecular data show a very low level of divergence. The amount of nucleotide substitutions per site is one of the lowest reported to date among published congeneric studies (π = 0.00025). The plastid genomes have gene order and content coincident with other COM (Celastrales, Oxalidales, Malpighiales) relatives. Phylogenetic analyses of selected superrosid representatives show high bootstrap support for the ((C,M)O) topology. The N-fixing clade appears as the sister group of the COM clade and Zygophyllales as the sister to the rest of the fabids group.

7.
Am J Bot ; 104(5): 685-693, 2017 May.
Article in English | MEDLINE | ID: mdl-28500228

ABSTRACT

PREMISE OF THE STUDY: Permineralized wood is common in the Miocene beds exposed during the expansion of the Panama Canal. We describe a stem with the distinctive anatomy of a liana and evaluate the evolutionary, biogeographic, and ecological significance of this discovery. METHODS: The object of the study was obtained from a collection of fossil woods and fruits from a locality in the lower Miocene Cucaracha Formation, where the formation is exposed by the Culebra Cut of the Panama Canal. Thin sections were prepared using the cellulose acetate peel technique and examined using transmitted light microscopy. We described the anatomy and compared it with that of extant and fossil species. We also reviewed and evaluated published reports of fossils attributed to Connaraceae. KEY RESULTS: The anatomy of this fossil wood matches the genus Rourea (Connaraceae). The stem is only 1 cm in diameter, but vessels >200 µm in diameter also occur, indicating the perennial climbing habit. We evaluated 12 other pre-Quaternary occurrences attributed to Connaraceae. Four are accepted, three are rejected, and we consider five unknown or uncertain. CONCLUSIONS: The discovery of this Rourea stem confirms the presence of Connaraceae in the Neotropics by the early Miocene, provides the oldest evidence of the climbing habit in the family, and contributes to our understanding of the flora of Panama 19 mya. Although the fossil record of Connaraceae is sparse, reliable occurrences span three continents and indicate that the family originated as early as the Late Cretaceous-Paleocene and was widespread by the early Miocene.


Subject(s)
Biological Evolution , Connaraceae/classification , Phylogeny , Fossils , Panama , Plant Stems
SELECTION OF CITATIONS
SEARCH DETAIL