Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77.314
Filter
1.
J Environ Sci (China) ; 147: 382-391, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003056

ABSTRACT

Arsenic-related oxidative stress and resultant diseases have attracted global concern, while longitudinal studies are scarce. To assess the relationship between arsenic exposure and systemic oxidative damage, we performed two repeated measures among 5236 observations (4067 participants) in the Wuhan-Zhuhai cohort at the baseline and follow-up after 3 years. Urinary total arsenic, biomarkers of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)), lipid peroxidation (8-isoprostaglandin F2alpha (8-isoPGF2α)), and protein oxidative damage (protein carbonyls (PCO)) were detected for all observations. Here we used linear mixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage. Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions. After adjusting for potential confounders, arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners. In cross-sectional analyses, each 1% increase in arsenic level was associated with a 0.406% (95% confidence interval (CI): 0.379% to 0.433%), 0.360% (0.301% to 0.420%), and 0.079% (0.055% to 0.103%) increase in 8-isoPGF2α, 8-OHdG, and PCO, respectively. More importantly, arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α (ß: 0.147; 95% CI: 0.130 to 0.164), 8-OHdG (0.155; 0.118 to 0.192), and PCO (0.050; 0.035 to 0.064) in the longitudinal analyses. Our study suggested that arsenic exposure was not only positively related with global oxidative damage to lipid, DNA, and protein in cross-sectional analyses, but also associated with annual increased rates of these biomarkers in dose-dependent manners.


Subject(s)
Arsenic , Environmental Exposure , Oxidative Stress , Adult , Female , Humans , Male , Middle Aged , 8-Hydroxy-2'-Deoxyguanosine , Arsenic/toxicity , Biomarkers/urine , China , Cross-Sectional Studies , DNA Damage , East Asian People , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Lipid Peroxidation/drug effects , Longitudinal Studies , Oxidative Stress/drug effects
2.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39182701

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Neuroprotective Agents , Oxidative Stress , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Endoplasmic Reticulum Stress/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Oxidative Stress/drug effects , Rats , PC12 Cells , Male , Neuroprotective Agents/pharmacology , Apoptosis/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Brain Ischemia/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
3.
Semina cienc. biol. saude ; 45(2): 113-120, jul./dez. 2024. ilus
Article in Portuguese | LILACS | ID: biblio-1568648

ABSTRACT

A instabilidade de microssatélites é um fenômeno genético caracterizado pela alteração na repetição de sequências de nucleotídeos conhecidas como microssatélites. Esta instabilidade pode ocorrer devido a defeitos nos genes reparadores de DNA, como os genes MLH1, MSH2, MSH6 e PMS2. A inflamação crônica tem sido associada ao desenvolvimento do câncer colorretal. Os genes da instabilidade de microssatélites estão envolvidos na regulação da resposta inflamatória, podendo influenciar a progressão tumoral. Estudos demonstraram que a presença de instabilidade de microssatélites em tumores colorretais está relacionada a uma maior infiltração de células imunes, como linfócitos T, macrófagos e neutrófilos, que podem modular a resposta inflamatória no microambiente tumoral. O estresse oxidativo é caracterizado pelo desequilíbrio entre a produção de espécies reativas de oxigênio e a capacidade antioxidante do organismo e desempenha um papel importante na carcinogênese. Os genes da instabilidade de microssatélites podem influenciar a resposta ao estresse oxidativo, afetando a capacidade das células tumorais de lidar com o dano oxidativo e promovendo a sobrevivência celular. O objetivo deste trabalho consiste na compreensão dos genes envolvidos na instabilidade de microssatélites no câncer colorretal e como eles contribuem para o desenvolvimento da doença, relacionando com processos inflamatórios e estresse oxidativo nas células tumorais. Justifica-se pela necessidade de compreensão das interconexões entre a instabilidade de microssatélites, inflamação e o estresse oxidativo em pacientes com câncer colorretal.


Microsatellite instability is a genetic phenomenon characterized by changes in the repetition of nucleotide sequences known as microsatellites. This instability may occur due to defects in DNA repair genes, such as the MLH1, MSH2, MSH6 and PMS2 genes. Chronic inflammation has been linked to the development of colorectal cancer. Microsatellite instability genes are involved in regulating the inflammatory response and may influence tumor progression. Studies have shown that the presence of microsatellite instability in colorectal tumors is related to a greater infiltration of immune cells, such as T lymphocytes, macrophages and neutrophils, which can modulate the inflammatory response in the tumor microenvironment. Oxidative stress is characterized by the imbalance between the production of reactive oxygen species and the body's antioxidant capacity and plays an important role in carcinogenesis. Microsatellite instability genes can influence the response to oxidative stress, affecting the ability of tumor cells to deal with oxidative damage and promoting cell survival. The objective of this work is to understand the genes involved in microsatellite instability in colorectal cancer and how they contribute to the development of the disease, relating it to inflammatory processes and oxidative stress in tumor cells. It is justified by the need to understand the interconnections between microsatellite instability, inflammation and oxidative stress in patients with colorectal cancer.


Subject(s)
Humans
4.
Front Oncol ; 14: 1468582, 2024.
Article in English | MEDLINE | ID: mdl-39228983

ABSTRACT

[This corrects the article DOI: 10.3389/fonc.2024.1393078.].

5.
Nanomedicine (Lond) ; : 1-12, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229808

ABSTRACT

Aim: The therapeutic potential of senolytic drugs in osteoarthritis (OA) is poorly known. Quercetin, a senolytic agent exhibits promising potential to treat OA, having limited bioavailability. We investigated the effects of Quercetin-loaded nanoparticles (Q-NP) with enhanced bioavailability in human chondrocytes mimicking OA phenotype.Materials & methods: The C-20/A4 chondrocytes were exposed to ferric ammonium citrate to induce OA phenotype, followed by treatment with free Quercetin/Q-NP for 24 and 48-h. Q-NP were synthesized by nanoprecipitation method. Following treatment chondrocytes were assessed for drug cellular bioavailability, viability, cell cycle, apoptosis, oxidative stress and expression of key senescence markers.Results: Q-NP exhibited 120.1 ± 1.2 nm particle size, 81 ± 2.4% encapsulation efficiency, increased cellular bioavailability and selective apoptosis of senescent chondrocytes compared with free Quercetin. Q-NP treatment also induced oxidative stress and reduced the expressions of senescence markers, including TRB3, p16, p62 and p21 suggesting their ability to eliminate senescent cells. Last, Q-NP arrested the cell cycle in the sub-G0 phase, potentially creating a beneficial environment for tissue repair.Conclusion: Q-NP propose a promising delivery system for treating OA by eliminating senescent chondrocytes through apoptosis. Furthermore, their enhanced cellular bioavailability and capacity to modify cell cycle and senescent pathways warrant further investigations.


[Box: see text].

6.
Article in English | MEDLINE | ID: mdl-39229977

ABSTRACT

Neurological disorders are devastating conditions affecting both cognitive and motorrelated functions in aged people. Yet there is no proper medication to treat these illnesses, and the currently available medications can only provide symptomatic relief to the patients. All neurological disorders share the same etiology, such as oxidative stress, mitochondrial dysfunction, neurochemical deficiency, neuronal loss, apoptosis, endoplasmic reticulum stress, neuroinflammation, and disease-related protein aggregation. Nowadays, researchers use antioxidant-based strategies to prevent or halt the disease progression. Nerolidol, a strong antioxidant, possesses various biological activities and properties that treat cardiotoxicity, nephrotoxicity, neurotoxicity, and many other diseases. Many recent publications and research studies highlight the beneficial effect of nerolidol on brain disorders. In Alzheimer's disease, nerolidol shows neuroprotection by decreasing amyloid plaque formation, lipid peroxidation, cholinergic neuronal loss, locomotor dysfunction, neuroinflammation, and hippocampal damage via enhancing antioxidant expression. Also, it shows neuroprotection against rotenone-induced neurotoxicity by inhibiting microglial activation. Another study reported that nerolidol shows antiepileptic effects in animal models by suppressing kindling-induced memory impairment by decreasing oxidative stress. It has been found that NRL administration increases the antioxidant levels, decreasing the proinflammatory cytokine release as well as decreasing the apoptotic protein and cerebral infarct size. In conclusion, nerolidol tends to reverse the harmful effects of disease-related factors, including OS, neuroinflammation, protein aggregation, and apoptosis, making nerolidol a choiceable drug for the management of neurological disorders. The purpose of this review is to discuss the mechanism of nerolidol in treating various neurological disorders.

7.
Article in English | MEDLINE | ID: mdl-39230587

ABSTRACT

Inflammatory bowel disease (IBD) is often accompanied by psychiatric disorders. Emerging evidence suggests that neuroinflammation and oxidative stress contribute to the psychiatric symptoms associated with IBD. Umbelliprenin (UMB) possesses several pharmacological properties, including anti-inflammatory and antioxidant effects. This study aimed to investigate the protective effects of UMB on comorbid behavioral disorders in a mouse model of experimental colitis, focusing on its potential anti-neuroinflammatory and antioxidant activities. After inducing colitis with acetic acid, male NMRI mice were treated for 7 consecutive days with UMB, saline, or dexamethasone. Behavioral assessments included the forced swimming test (FST), splash test, open field test (OFT), and elevated plus maze (EPM). Histopathological changes in the colon were evaluated, and total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and the expression of inflammatory genes (TNFα, IL1ß, and TLR4) were measured in the hippocampus. Colitis was associated with increased immobility time in the FST, reduced entries and time spent in the open arms of the EPM, decreased grooming behavior in the splash test, and reduced time spent in the central zone of the OFT. Colitis also resulted in a reduction in TAC and an increase in MDA levels and inflammatory gene expression in the hippocampus. UMB treatment mitigated the behavioral disorders associated with colitis, reduced neuroinflammation and oxidative stress in the hippocampus, and alleviated histopathological alterations in the colon. In conclusion, UMB may reduce behavioral disorders induced by colitis by decreasing oxidative stress and neuroinflammation in the hippocampus.

8.
J Autism Dev Disord ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230783

ABSTRACT

We aimed to investigate the potential role of biomarkers of transmethylation, oxidative stress, and mitochondrial dysfunction in children with Autism Spectrum Disorder (ASD) by comparing them with that of typically developing children (TDC) controls. We also tried to correlate them with severity of autism, sensory issues, behavioural comorbidities and developmental quotients 119 with ASD and 52 age and sex matched typically developing children (TDC) controls were enrolled excluding those with chronic-illness or on any antioxidant therapy/multivitamins/anti-epileptic drugs. Median levels of biomarkers - serum homocysteine, cysteine, methionine, urine uric acid-to-creatinine ratio, arterial lactate, serum vitamin E, vitamin B12, folate, Nε-carboxymethyllysine, Nω- carboxymethylarginine (CMA), dityrosine and MTHFR C677T polymorphism were calculated. Children with ASD were further characterised using Childhood Autism Rating Scale-2, Childhood behavioural checklist, child sensory profile 2 caregiver questionnaire, Developmental Profile 3 for any correlation with the various biomarker levels. The median level of serum homocysteine in ASD group was 9 µmol/L(Range, 7- 16µmol/L), which was significantly higher than controls 7 µmol/L(Range, 4- 11µmol/L)(p=0.01). The prevalence of hyper-homocystinemia(>15µmol/L) was 13.4% in ASD as compared to 3.8% in controls with a significant difference(p=0.04). Dityrosine level was higher among ASD children when compared to TDC (9.8 vs 2.2 counts per second(cps), p<0.001). No significant correlation was found between prevalence of hyperhomocysteinemia and severity of autism/DQ/behavioural issues. No significant difference was found between the median levels of other biomarkers. Results support possible role of transmethylation defects and oxidative stress in ASD pathogenesis. Further studies are warranted for a better understanding of ASD pathogenesis.

9.
Mol Neurobiol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230866

ABSTRACT

Spinal cord injury (SCI) is a severe neurological disorder that can lead to paralysis or death. Oxidative stress during SCI is a critical phase causing extensive nerve cell damage and apoptosis, thereby impairing spinal cord healing. Thus, a primary goal of SCI drug therapy is to mitigate oxidative stress. Curculigoside (CUR), a phenolic glucoside extracted from the dried root and rhizome of Curculigo orchioides Gaertn, possesses neuroprotective and antioxidant properties. This study aimed to investigate whether CUR effectively promotes the recovery of spinal cord tissue following SCI and elucidate its mechanism. We employed a hydrogen peroxide (H2O2)-induced PC12 cell model and an SCI rat model to observe the effects of CUR on oxidation and apoptosis. The results demonstrated that CUR significantly reduced the expression of apoptosis-related proteins (Bax and Caspase-3), Annexin V/propidium iodide (PI), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), while increasing the expression of the anti-apoptotic protein Bcl-2. Moreover, CUR effectively enhanced levels of antioxidants (glutathione [GSH)] and decreased reactive oxygen species (ROS) in vitro. Furthermore, CUR facilitated functional recovery through its anti-apoptotic and anti-oxidative stress effects on spinal cord tissues in SCI rats. These effects were mediated via the Nrf2/NQO1 signaling pathway. Therefore, our study showed that CUR acted as an anti-apoptotic and anti-oxidative stress agent, inhibiting astrocyte activation and promoting neuronal reconstruction and functional recovery. These findings may contribute significantly to the development of SCI treatments and advance the field of SCI drug therapy.

10.
Mol Neurobiol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230868

ABSTRACT

Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.

11.
Environ Res ; 262(Pt 1): 119894, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218340

ABSTRACT

Neonicotinoid insecticides are widely used in agriculture and have been linked to various detrimental physiological effects on wild birds. Despite this, the impact of acetamiprid - a less studied member of the neonicotinoid family - on the hypothalamic-pituitary-adrenal axis responsible for the hormonal regulation of the response to stress has rarely been examined in birds. In our study, we explored the effects of acetamiprid on feather levels of corticosterone, the major end product of the HPA, and blood oxidative status of House sparrows (Passer domesticus), following the ingestion of a low, field-realistic dose during two consecutive experiments in 2015 and 2016. We involved 112 birds in each experiment - 56 males and 56 females - that were administered a placebo or a dose of acetamiprid equivalent to 0.5% of the LD50 of the Zebra finch over the entire duration of the experiments, which lasted approximately three weeks. We measured corticosterone concentrations in feathers grown during an acclimation phase before ingestion and in newly grown feather after the experiment and assessed three oxidative stress markers in the blood. We found no impact of acetamiprid on oxidative stress markers. However, in 2015, male sparrows that ingested acetamiprid exhibited higher corticosterone levels in their feathers compared to those that received a placebo. No such difference was found in females. Interestingly, this effect was not observed in year 2016, which was characterised by less stressful conditions for the birds. These findings offer the first evidence of a potential effect of acetamiprid on corticosterone levels in a songbird, suggesting that ingesting this compound at very low dose may alter the endocrine physiology of the response to stress.

12.
Eur J Pharmacol ; 982: 176969, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218342

ABSTRACT

Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.

13.
Front Endocrinol (Lausanne) ; 15: 1428411, 2024.
Article in English | MEDLINE | ID: mdl-39220368

ABSTRACT

Introduction: Oxidative stress has been identified as a major contributor to the pathogenesis of DR, and many diagnostic and therapeutic strategies have been developed to target oxidative stress. Our aim was to understand the contribution of the country of origin of the publication, the institution, the authors, and the collaborative relationship between them. Methods: We performed a bibliometric analysis to summarize and explore the research hotspots and trends of oxidative stress in the DR. Results: We observe an upward trend in the number of posts on related topics from year to year. Expanding on this, Queens University Belfast is the most influential research institution. Current research hotspots and trends focus on the mechanism of autophagy and NLRP3 inflammasome's role in oxidative stress in DR. Discussion: We conducted a multi-dimensional analysis of the research status of oxidative stress in diabetic retinopathy through bibliometric analysis, and proposed possible future research trends and hotspots.


Subject(s)
Diabetic Retinopathy , Oxidative Stress , Oxidative Stress/physiology , Humans , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/epidemiology , Bibliometrics , Biomedical Research/trends
14.
Biomater Adv ; 165: 214010, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39222592

ABSTRACT

The application of biomaterials in bone regeneration is a prevalent clinical practice. However, its efficacy in elderly patients remains suboptimal, necessitating further advancements. While biomaterial properties are known to orchestrate macrophage (MΦ) polarization and local immune responses, the role of biomaterial cues, specifically stiffness, in directing the senescent macrophage (S-MΦ) is still poorly understood. This study aimed to elucidate the role of substrate stiffness in modulating the immunomodulatory properties of S-MΦ and their role in osteo-immunomodulation. Our results demonstrated that employing collagen-coated polyacrylamide hydrogels with varying stiffness values (18, 76, and 295 kPa) as model materials, the high-stiffness hydrogel (295 kPa) steered S-MΦs towards a pro-inflammatory M1 phenotype, while hydrogels with lower stiffness (18 and 76 kPa) promoted an anti-inflammatory M2 phenotype. The immune microenvironment created by S-MΦs promoted the bioactivities of senescent endothelial cells (S-ECs) and senescent bone marrow mesenchymal stem cells BMSCs (S-BMSCs). Furthermore, the M2 S-MΦs, particularly incubated on the 76 kPa hydrogel matrices, significantly enhanced the ability of angiogenesis of S-ECs and osteogenic differentiation of S-BMSCs, which are crucial and interrelated processes in bone healing. This modulation aided in reducing the accumulation of reactive oxygen species in S-ECs and S-BMSCs, thereby significantly contributing to the repair and regeneration of aged bone tissue.

15.
Genes Cells ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39219252

ABSTRACT

Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (Mt1a, Mt1m, and Mt2A) and epithelial-mesenchymal transition-related factors (Acta2, Anxa1, Cd81, Mki67, Timp1, and Tyms) contribute to the therapeutic effect of cataracts.

16.
Int J Mol Med ; 54(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39219277

ABSTRACT

Uveal melanoma (UM) is the most prevalent type of primary intraocular malignancy and is prone to metastasize, particularly to the liver. However, due to the poor understanding of the pathogenesis of UM, effective therapeutic approaches are lacking. As a phenolic compound extracted from grapes, piceatannol (PIC) exhibits anti­cancer properties. To the best of our knowledge, however, the effects of PIC on UM have not been well investigated. Therefore, in the present study, considering the impact of pyroptosis on modulating cell viability, the mechanism underlying the effects of PIC on UM cell proliferation was explored. The inhibitory effect of PIC on proliferation of UM cells was detected by cell counting kit­8 assay. Wound healing was used to investigate the effects of PIC on the migration of UM cells. Activity detecting assays were performed to test the apoptosis and oxidant level in UM cells. Western blotting and RT­qPCR were used to detect the inflammatory and pyroptotic levels of UM cell after PIC treatment. PIC­treated UM cells were screened by high­throughput sequencing to detect the differential expression of RNA and differential genes. Si­TREM2 transfection was used to verify the important role of TREM2 in the effects of PIC. Immunohistochemical staining was used to observe the expressions of TREM2 and GSDMR of tumor in nude mice after PIC administration. PIC effectively inhibited proliferation ability of C918 and Mum­2b UM cell lines via enhancing apoptosis, as evidenced by enhanced activities of caspase 3 and caspase 9. In addition, treatment of UM cells with PIC attenuated cell migration in a dose­dependent manner. PIC increased reactive oxygen species levels and suppressed the activity of the antioxidant enzymes superoxide dismutase, glutathione­S­transferase, glutathione peroxidase and catalase. PIC inhibited inflammatory responses in C918 cells. PIC treatment upregulated IL­1ß, IL­18 and Nod­like receptor protein 3 and downregulated gasdermin D (GSDMD). RNA sequencing results revealed the activation of an unconventional pyroptosis­associated signaling pathway, namely caspase 3/GSDME signaling, following PIC treatment, which was mediated by triggering receptor expressed on myeloid cells 2 (TREM2) upregulation. As an agonist of TREM2, COG1410­mediated TREM2 upregulation inhibited proliferation of C918 cells, displaying similar effects to PIC. Furthermore, PIC inhibited tumor growth via regulating the TREM2/caspase 3/GSDME pathway in a mouse model. Collectively, the present study revealed a novel mechanism underlying the inhibitory effects of PIC on UM, providing a potential treatment approach for UM in clinic.


Subject(s)
Caspase 3 , Melanoma , Pyroptosis , Receptors, Immunologic , Stilbenes , Uveal Neoplasms , Animals , Pyroptosis/drug effects , Uveal Neoplasms/drug therapy , Uveal Neoplasms/pathology , Uveal Neoplasms/metabolism , Mice , Cell Line, Tumor , Humans , Stilbenes/pharmacology , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Caspase 3/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Cell Proliferation/drug effects , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Mice, Nude , Membrane Glycoproteins
17.
J Anim Sci ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39219376

ABSTRACT

Stress and infection seriously threaten the reproductive performance and health of dairy cows. Various perinatal stresses increase plasma cortisol concentrations in cows, and chronically high cortisol levels may increase the incidence and severity of the uterine diseases. Selenium (Se) enhances antioxidant capacity of cows. The aim of this study was to explore how Se affects the oxidative stress of primary bovine endometrial stromal cells (BESC) with high cortisol background. The levels of reactive oxygen species (ROS) and other biomarkers of oxidative stress were measured using flow cytometry and assay kits. The changes in nuclear NF-E2-related factor 2 (Nrf2) pathway were detected by Western blot, qPCR, and immunofluorescence. The result showed that lipopolysaccharide (LPS) increased (P < 0.01) ROS and malondialdehyde (MDA) content and reduced (P <0.01) superoxide dismutase (SOD) concentration, provoking BESC oxidative stress. The elevated levels of cortisol resulted in the accumulation (P < 0.05) of ROS and MDA and inhibition (P < 0.05) of SOD in unstimulated BESC, but demonstrated an antioxidative effect in LPS-stimulated cells. Pretreatment with Se reduced (P < 0.01) the levels of ROS and MDA, while increasing (P < 0.05) the antioxidant capacities and the relative abundance of gene transcripts and proteins related to the Nrf2 pathway in BESC. This antioxidant effect was more pronounced in the presence of high cortisol level. Se alleviated the LPS-induced cellular oxidative stress, which is probably achieved through activating Nrf2 pathway. At high cortisol levels, Se supplement has a more significant protective effect on BESC oxidative stress. This study provided evidence for the protective role of Se in bovine endometrial oxidative damage of stressed animals and suggested the potential regulatory mechanism in vitro.

18.
Adv Healthc Mater ; : e2402349, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221686

ABSTRACT

Amplifying oxidative stress to disrupt intracellular redox homeostasis can accelerate tumor cell death. In this work, an oxidative stress amplifier (PP@T) is prepared for enhanced tumor oxidation therapy to reduce tumor growth and metastases. The nano-amplifier has been successfully constructed by embedding MTH1 inhibitor (TH588) in the PDA-coated porphyrin metal-organic framework PCN-224. The controllable-released TH588 is demonstrated from pores can hinder MTH1-mediated damage-repairing process by preventing the hydrolysis of 8-oxo-dG, thereby amplifying oxidative stress and exacerbating the oxidative DNA damage induced by the sonodynamic therapy of PP@T under ultrasound irradiation. Furthermore, PP@T can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response. When administered in combination with immune checkpoint blockade, PP@T not only impedes the progression of the primary tumor but also achieves obvious antimetastasis in breast cancer murine models, including orthotopic and artificial whole-body metastasis models. Furthermore, the nanoplatform also provides photoacoustic imaging for in vivo treatment guidance. In conclusion, by amplifying oxidative stress and reactive oxygen species sensitized immunotherapy, this image-guided nanosystem shows potential for highly specific, effective combined therapy against tumor cells with negligible side-effects to normal cells which will provide a new insight for precise tumor treatment.

19.
Environ Toxicol ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221838

ABSTRACT

Inflammatory cell infiltration is a characteristic feature of COPD and correlates directly with the severity of the disease. Interleukin-23 (IL-23) is a pro-inflammatory cytokine that regulates Th-17 inflammation, which mediates many pathophysiological events in COPD. The primary goal of this study was to determine the role of IL-23 as a mediator of key pathologic processes in cigarette smoke-induced COPD. In this study, we report an increase in IL23 gene expression in the lung biopsies of COPD patients compared to controls and identified a positive correlation between IL23 gene expression and disease severity. In a cigarette smoke-induced murine emphysema model, the suppression of IL-23 with a monoclonal blocking antibody reduced the severity of cigarette smoke-induced murine emphysema. Mechanistically, the suppression of IL-23 was associated with a reduction in immune cell infiltration, oxidative stress injury, and apoptosis, suggesting a role for IL-23 as an essential immune mediator of the inflammatory processes in the pathogenesis of CS-induced emphysema.

20.
Toxicol Sci ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222007

ABSTRACT

Air pollution, particularly fine particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5), has been recognized for its adverse effects on multiple organs beyond the lungs. Among these, the bone began to garner significant attention. This review covers epidemiological, animal and cell studies on PM2.5 exposure and bone health as well as studies on PM2.5-induced diseases with skeletal complications. Emerging evidence from epidemiological studies indicates a positive association between PM2.5 exposure and the incidence of osteoporosis and fractures, along with a negative association with bone mineral density. Experimental studies have demonstrated that PM2.5 can disrupt the metabolic balance between osteoclasts and osteoblasts through inflammatory responses, oxidative stress, and endocrine disruption, thereby triggering bone loss and osteoporosis. Additionally, this review proposes a secondary mechanism by which PM2.5 may impair bone homeostasis via pathological alterations in other organs, offering new perspectives on the complex interactions between environmental pollutants and bone health. In conclusion, this contemporary review underscores the often-overlooked risk factors of PM2.5 in terms of its adverse effects on bone and elucidates the mechanisms of both primary and secondary toxicity. Further attention should be given to exploring the molecular mechanisms of PM2.5-induced bone impairment and developing effective intervention strategies. With global climate change, increasing ozone pollution, emerging pollutants, and multifactorial exposure to environmental factors, these issues are likely to become of greater concern in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL