Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Huan Jing Ke Xue ; 45(8): 4419-4431, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168662

ABSTRACT

Based on the observation data of O3 concentration in Yinchuan in 2022, the monthly variation characteristics of O3 concentrations were analyzed. Further, based on the observation data of meteorological elements, conventional pollutants, and volatile organic compounds (VOCs) concentrations at an urban site in Yinchuan from May to July, the difference in meteorological elements and precursor concentrations between the polluted days and the non-polluted days were compared. Then, the O3 sensitivity and the VOCs sources were discussed using the Framework for 0-D Atmospheric Modeling (F0AM) and positive matrix factorization (PMF) model, respectively. The results showed that: ① The O3 pollution occurred from May to July in 2022, and the concentrations of O3-8h-90per were 156 µg·m-3, 170 µg·m-3, and 174 µg·m-3, respectively, with exceeding standard rates of 9.7%, 26.7%, and 29.0%, respectively. ② Compared with those on the non-polluted days, the hourly mean values of temperature, total solar radiation, and concentrations of various precursors on the O3-polluted days increased, including the volume concentrations of propane, isobutane, ethane, n-butane, and dichloromethane, which increased significantly by 33.1%, 29.1%, 25.0%, 22.7%, and 21.3%, respectively. The results showed that the combined increase in pollutant emissions and adverse meteorological conditions contributed to the formation of O3. ③ From May to July 2022, the top five VOCs species in terms of ozone formation potential (OFP) value on whole, non-polluted, and polluted days were the same. They were acetaldehyde, m/p-xylene, ethylene, isoprene, and toluene, mainly from solvent use sources, natural sources, and chemical industry emissions. ④ The local O3 production was mostly controlled by VOCs, and the relative incremental reactivity (RIR) results revealed that O3 production showed strong positive sensitivity to alkene and aromatic hydrocarbon but showed negative sensitivity to NOx on both polluted and non-polluted days. The relative contributions of active species such as acetone, ethylene, and isobutane to O3 production were high, and the implementation of an emission reduction scheme with the ratio of VOCs to NOx emission reduction much greater than 1 could effectively reduce the local O3 concentration. ⑤ The main sources of atmospheric VOCs in Yinchuan were motor vehicle emission sources (32.3%), process sources (20.7%), combustion sources (19.2%), solvent use sources (12.7%), gasoline volatile sources (9.1%), and natural sources (6%), and the contribution rate of motor vehicle emission sources on polluted days increased by 4.6% compared with that on non-polluted days, indicating that the motor vehicle emission source was an important object of summer VOCs control in Yinchuan.

2.
Huan Jing Ke Xue ; 45(7): 3799-3807, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022928

ABSTRACT

The sensitivity analysis of ozone generation in key ozone-polluted regions and cities is an important basis for the prevention and control of near-surface ozone (O3) pollution. Based on the five-year data of ozone, VOCs, and NOx from three typical stations in Shanghai, namely Dianshan Lake Station (suburban area), Pudong Station (urban area), and Xinlian Station (industrial area) from 2016 to 2020, the nonlinear relationship between ozone and precursors (VOCs and NOx) during the high-ozone season in the five years was quantitatively analyzed using an observation model. The results showed that the peak months of near-surface ozone in Shanghai were from April to September during 2016 to 2020, with the highest values appearing from June to August. The volume fraction of VOCs and NO2 concentration had a strong indicative significance for the O3 concentration at Pudong Station. The O3 concentration at Dianshan Lake Station was mainly influenced by regional environment, meteorological factors, and cross-regional transmission. The ozone concentration at Xinlian Station was a combination of environmental background concentration and industrial area photochemical pollution. Pudong Station and Dianshan Lake Station were in the VOCs control zone. Xinlian Station was gradually closer to the NOx control zone from 2016 to 2019, transitioning to the VOCs control zone since 2020. The L·OH of Pudong Station, Dianshan Lake Station, and Xinlian Station were: NOx control area>collaborative control area>VOCs control area.

3.
Huan Jing Ke Xue ; 45(3): 1382-1391, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471854

ABSTRACT

Tropospheric ozone (O3) is mainly produced through a series of photochemical reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs). The reaction process presents complex non-linear relationships. In this work, datasets of atmospheric ozone and volatile organic compounds (VOCs) observed during the summer of 2018 in Nanjing were used. Combining with the framework for 0-D atmospheric model-master chemical mechanism (F0AM-MCM), the characteristics of photochemical reactions for ozone (O3) formation in Nanjing during the O3 episode days and non-episode days were investigated. The results showed that φ(O3) and φ(TVOCs) in the O3 episode days were 47.8×10-9 and 49.0×10-9, respectively, exceeding those in the non-episode days by factors of 1.8 and 1.6. Furthermore, F0AM, the empirical kinetic modeling approach (EKMA), and relative incremental reactivity (RIR) were utilized for the calculation of ozone chemical sensitivity. It was found that O3 formation in Nanjing was attributed to both VOCs and NOx limitation. In addition, the modeled ·OH and HO2 concentrations in the O3 episode days were 1.3 and 1.8 times higher than those in the non-episode days. The higher formation and loss rates of ·OH and HO2 were also found during O3 episode days. These findings reflected that the enhancements of atmospheric oxidation capacity resulted in increased production rates of O3, providing an explanation for the enhancements of O3 concentrations in Nanjing during the O3 episode days. The findings also improved the understanding of the O3 photochemical characteristics over Nanjing in the summer during the O3 episode days.

4.
Huan Jing Ke Xue ; 45(2): 678-688, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471908

ABSTRACT

Based on the one-year observational data of volatile organic compounds (VOCs) in an urban area of Yuncheng in 2021, the concentration, composition, sources, and ozone-sensitive species of VOCs in four seasons were analyzed. The results showed that the average annual concentration of VOCs was (32.1 ±24.2)×10-9, i.e., at the national middle level. The seasonal concentrations of VOCs were in the order of: winter (46.3×10-9)> autumn (35.5×10-9)> spring (25.6×10-9)> summer (21.2×10-9). Alkanes and OVOCs were the most dominant VOCs compounds, accounting for 69.0%-80.4% of TVOCs in Yuncheng. Affected by changes in source emissions, the proportion of OVOCs was higher in spring and summer (41%-43%), whereas the proportion of alkanes was higher in autumn and winter (42%-43%). Vehicle exhaust, LPG/NG, industrial production, and combustion sources were identified as the main sources of VOCs in Yuncheng. The largest contributors in the four seasons were vehicle exhaust (28.5% in spring), secondary + combustion sources (29.0% in summer), LPG/NG sources (30.4% in autumn), and coal combustion (27.3% in winter). The ozone formation was located in the transitional regime in summer and in the VOC-limited regime in other seasons. Ozone production was more sensitive to alkenes (isoprene, ethylene, and propene), OVOCs (acetaldehyde and propanal), and aromatics (xylene, toluene, and benzene). Winter was more sensitive to ethylene, and the other seasons were more sensitive to isoprene. The primary emission sources related to these sensitive species should be reduced to achieve the goal of air quality improvement.

5.
Sci Total Environ ; 912: 169180, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38072281

ABSTRACT

High tropospheric ozone (O3) concentrations prevent the improvement of the air quality in the Mexico City Metropolitan Area (MCMA). Although the problem has improved considerably since the 1990s, a rebound in O3 levels in recent years has raised concerns about the deteriorating air quality. The nonlinear relationship between O3 formation and the emissions of its main precursors, i.e., volatile organic compounds (VOCs) and nitrogen oxides (NOx), is a challenge when measures are enacted for effective mitigation of the O3 problem. This study evaluated the reduction in precursors, VOCs and NOx, using an up-to-date regional air quality model (HERMES-Mex-WRF-CMAQ). For evaluating realizable scenarios, the decline in VOC achieved in Japan after policy implementation was the targeted VOC reduction (40 % from area sources), and the NOx reduction observed in the MCMA during the COVID-19 pandemic was the targeted NOx reduction (40 % from mobile sources). The analysis evaluated the O3 responses to changes in a single precursor and a combination of both during a period of high O3 concentrations (April 2019). The results showed that 40 % reduction in VOC emissions would decrease the O3 8-h maximum concentrations by 16 %. However, 40 % reduction in NOx emissions would increase O3 by >15 %. The simultaneous reduction of both precursors did not significantly affect O3 levels. The diagnosis of ozone sensitivity using the H2O2/HNO3 ratios reinforced the simulation findings, indicating that VOC emissions limited ozone formation in most MCMA areas. As the simulated scenarios were based on factual case studies, our research offers insights into the realistic aims of MCMA policies to reduce O3 levels.

6.
Huan Jing Ke Xue ; 44(9): 4799-4808, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699799

ABSTRACT

Based on ambient air quality data, meteorological observation data, and satellite remote sensing data, the temporal and spatial variations in ozone (O3) pollution, the sensitivity of O3, and its relationship with meteorological factors in Hainan Island were analyzed in this study. The results showed that the maximum daily 8-h moving mean (O3-8h) in western and northern cities in Hainan Island was higher than that in the central, eastern, and southern cities. O3-8h was the highest in 2015, and O3-8h exceeding the standard proportion was the largest in 2019. In addition, O3-8h was positively correlated with average temperature (P<0.1), sunshine duration (P<0.01), total solar radiation (P<0.01), atmospheric pressure, and average wind speed and was negatively correlated with precipitation (P<0.05) and relative humidity. The satellite remote sensing data showed that the tropospheric NO2 column concentration (NO2-OMI) and HCHO column concentration (HCHO-OMI) displayed opposite trends in Hainan Island from 2015 to 2020. Compared with those in 2015, NO2-OMI increased by 7.74% and HCHO-OMI decreased by 10.2% in 2020. Moreover, Hainan Island belongs to the NOx control area, and the FNR value exhibited a fluctuating downward trend in the past 6 years, with a trend coefficient and climatic trend rate of -0.514 and -0.123 a-1, respectively. A strong correlation was observed between meteorological factors and the FNR value of Hainan Island.

7.
Sci Total Environ ; 903: 166182, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37562614

ABSTRACT

Due to the nonlinear impacts of meteorology and precursors, the response of ozone (O3) trends to emission changes is very complex over different regions in megacity Beijing. Based on long-term in-situ observations at 35 air quality sites (four categories, i.e., urban, traffic, northern suburban and southern suburban sites) and satellite data, spatiotemporal variability of O3, gaseous precursors, and O3-VOCs-NOx sensitivity were explored through multiple metrics during the warm season from 2013 to 2020. Additionally, the contribution of meteorology and emissions to O3 was separated by a machine-learning-based de-weathered method. The annual averaged MDA8 O3 and O3 increased by 3.7 and 2.9 µg/m3/yr, respectively, with the highest at traffic sites and the lowest in northern suburb, and the rate of Ox (O3 + NO2) was 0.2 µg/m3/yr with the highest in southern suburb, although NO2 declined strongly and HCHO decreased slightly. However, the increment of O3 and Ox in the daytime exhibited decreasing trends to some extent. Additionally, NOx abatements weakened O3 loss through less NO titration, which drove narrowing differences in urban-suburban O3 and Ox. Due to larger decrease of NO2 in urban region and HCHO in northern suburb, the extent of VOCs-limited regime fluctuated over Beijing and northern suburb gradually shifted to transition or NOx-limited regime. Compared with the directly observed trends, the increasing rate of de-weathered O3 was lower, which was attributed to favorable meteorological conditions for O3 generation after 2017, especially in June (the most polluted month); whereas the de-weathered Ox declined except in southern suburb. Overall, clean air actions were effective in reducing the atmospheric oxidation capacity in urban and northern suburban regions, weakening local photochemical production over Beijing and suppressing O3 deterioration in northern suburb. Strengthening VOCs control and keeping NOx abatement, especially in June, will be vital to reverse O3 increase trend in Beijing.

8.
Sci Total Environ ; 894: 165023, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37348726

ABSTRACT

Tropospheric ozone (O3) is a typical air pollutant with harmful effects on plants, whereas arbuscular mycorrhizal (AM) fungi are ubiquitous plant symbionts that enhance plant resistance to various abiotic stresses. However, whether AM symbiosis decreases plant O3 sensitivity and what the underlying mechanisms are remain unclear. In this study, O3-tolerant poplar clone 107 and O3-sensitive poplar clone 546 were used as test plants. An open-top chamber experiment was conducted to investigate the effects of AM inoculation on plant growth and physiological parameters under O3 enrichment. The results showed that O3 enrichment significantly decreased plant biomass and net photosynthetic rate and increased the leaf shedding rate and malondialdehyde concentration of clone 546. Generally, clone 107 was less responsive to O3 enrichment than clone 546 was. Differences in antioxidant enzyme activity, rather than in specific leaf weight or stomatal conductance, were responsible for the differences in O3 sensitivity between the two clones. AM inoculation significantly increased the biomass and decreased the leaf shedding rate and malondialdehyde concentration of clone 107 but had no significant effect on almost all the indexes of clone 546, suggesting a species-specific mycorrhizal effect on plant O3 sensitivity. Mechanistically, AM symbiosis did not significantly affect nutrient uptake, stomatal conductance, or specific leaf weight of poplar but did significantly increase antioxidant enzyme activity. Linear regression analysis of antioxidant enzyme activities and the effect of O3 on growth and physiological parameters showed that AM symbiosis mediated antioxidant enzyme activities to mitigate O3 injury to the two poplar clones. This study improved the understanding of the protective effects of AM fungi on plants against O3 pollution.


Subject(s)
Mycorrhizae , Ozone , Populus , Antioxidants/pharmacology , Symbiosis , Ozone/analysis , Photosynthesis , Populus/physiology , Plant Leaves/chemistry , Plants
9.
Huan Jing Ke Xue ; 44(5): 2472-2480, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177922

ABSTRACT

This study was based on the observation of volatile organic compounds (VOCs), conventional gaseous air pollutants, and meteorological parameters observed at the Xinxiang Municipal Party School site from June to August 2021. The ozone (O3) characteristics and sensitivity of O3 pollution days and the control strategy of its precursors were studied using an observation-based model (OBM). It was found that the meteorological conditions were characterized by high temperature, low humidity, and low pressure in O3-pollution days. The concentrations of O3 and its precursors all increased in the O3 pollution days. Oxygenated volatile organic compounds (OVOCs) and alkanes were the highest-concentration components of VOCs on O3 pollution days in Xinxiang, and OVOCs had the highest ozone formation potential (OFP) and hydroxyl (·OH) reactivity. According to the relative incremental reactivity (RIR) analysis, during the O3 pollution days in Xinxiang, O3sensitivity was in the VOCs-limited regime in June and in the transitional regime in July and August. Ozone production was more sensitive to alkenes and OVOCs. The RIR values of the precursors in June changed throughout the day, but O3 sensitivity remained the VOCs-limited regime. In July and August, O3 sensitivity was the VOCs-limited regime in the morning, transitional regime at noon, transitional and NOx-limited regime, respectively in the afternoon. By simulating different precursor-reduction scenarios, the results showed that the reduction of VOCs was always beneficial to the control of O3, whereas the reduction of NOx had little effect on the control of O3 and a risk of increasing O3.

10.
Huan Jing Ke Xue ; 44(1): 75-84, 2023 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-36635797

ABSTRACT

Liucheng county, as a suburb of Liuzhou City in Guangxi province, has a prominent ozone (O3) pollution problem; however, there have been no relevant analyses of the cause of local O3 pollution reported. In order to investigate the causes of O3 pollution, an online observation of 116 VOCs with a time resolution of 1 h was carried out in Liucheng county from October 1st to 15th, and the sensitivity of ozone to the relative changes in the NOx and VOCs was analyzed. The results showed that the average value of φï¼»total volatile organic compounds (TVOCs)ï¼½ during the observation period was 27.52×10-9, and the average value of φ(TVOCs) during the polluting process (October 1st to 6th) was 32.15×10-9, which was 32.79% higher than that of the non-pollution process (October 8th to 15th). In terms of species concentration, oxygenated volatile organic compounds (OVOCs) contributed the highest, accounting for 43.70%, followed by alkanes (23.00%), aromatics (11.75%), and halocarbons (7.35%). In terms of ozone formation potential (OFP), OVOCs contributed the highest (41.96%) to OFP, followed by aromatics (32.60%) and alkenes (17.92%). During the observation period, VOCs mainly came from motor vehicle emissions (32.44%), biomass combustion sources (29.31%), solvent use sources (16.43%), plant sources (11.34%), and chemical industry emissions (10.49%). The contribution ratios of solvent use sources and plant sources in the pollution process increased by 28.58% and 28.53%, respectively. The EKMA curve shows that, during the observation period, Liucheng county was in a synergistic control area for VOCs and nitric oxide (NOx). Therefore, in the high ozone-occurrence autumn of Liucheng county, the key will be to reduce both VOCs and NOx emissions.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Ozone/analysis , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring/methods , China , Vehicle Emissions/analysis , Solvents/analysis , Nitric Oxide/analysis
11.
Sci Total Environ ; 858(Pt 2): 159831, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36336049

ABSTRACT

Continuous measurements of volatile organic compounds (VOCs), ozone (O3), fine particulate matter (PM2.5), and related parameters were conducted between April 2020 and March 2021 in Beijing, China, to characterize potential sources of VOCs and their impacts on secondary organic aerosols (SOAs) and O3 levels. The annual average mixing ratio of VOCs was 17.4 ± 10.1 ppbv, with monthly averages ranging from 11.6 to 25.2 ppbv. According to the empirical kinetic modeling approach (EKMA), O3 formation during O3 season was "VOCs-limited", while it was in a "transition" regime during O3 pollution episodes. In the O3 season, higher ozone formation potential (OFP) of m/p-xylene, o-xylene, toluene, isopentane, and n-butane were evident during O3 pollution episodes, in line with the increasing contributions of solvent usage and coating, as well as gasoline evaporation to OFP obtained through a matrix factorization model (PMF). Aromatics contributed the most to the secondary organic aerosol formation potential (SOAFP). In the non-O3 season, the contribution of vehicle exhaust to SOAFP elevated on hazy days, thereby revealing the importance of traffic-derived VOCs for PM2.5 pollution. Our results indicate that the prior control of different VOC sources should vary by season, thereby facilitating the synergistic control of O3 and PM2.5 in Beijing.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Beijing , Environmental Monitoring/methods , Vehicle Emissions/analysis , Ozone/analysis , Particulate Matter/analysis , Aerosols , China
12.
Sci Total Environ ; 860: 160520, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36442628

ABSTRACT

Significant upward trends in surface ozone (O3) have been widely reported in China during recent years, especially during warm seasons in the North China Plain (NCP), exerting adverse environmental effects on human health and agriculture. Quantifying long-term O3 variations and their attributions helps to understand the causes of regional O3 pollution and to formulate according control strategy. In this study, we present long-term trends of O3 in the warm seasons (April-September) during 2006-2019 at an agricultural site in the NCP and investigate the relative contributions of meteorological and anthropogenic factors. Overall, the maximum daily 8-h average (MDA8) O3 exhibited a weak decreasing trend with large interannual variability. < 6 % of the observed trend could be explained by changes in meteorological conditions, while the remaining 94 % was attributed to anthropogenic impacts. However, the interannual variability of warm season MDA8 O3 was driven by both meteorology (36 ± 28 %) and anthropogenic factors (64 ± 27 %). Daily maximum temperature was the most essential factor affecting O3 variations, followed by ultraviolet radiation b (UVB) and boundary layer height (BLH), with rising temperature trends inducing O3 inclines throughout April to August, while UVB mainly influenced O3 during summer months. Under changes in emissions and air quality, warm season O3 production regime gradually shifted from dominantly VOCs-limited during 2006-2015 to NOx-limited afterwards. Relatively steady HCHO and remarkably rising NOx levels resulted in the fast decreasing MDA8 O3 (-2.87 ppb yr-1) during 2006-2012. Rapidly decreasing NOx, flat or slightly increasing HCHO promoted O3 increases during 2012-2015 (9.76 ppb yr-1). While afterwards, slow increases in HCHO and downwards fluctuating NOx led to decreases in MDA8 O3 (-4.97 ppb yr-1). Additionally, continuous warming trends might promote natural emissions of O3 precursors and magnify their impacts on agricultural O3 by inducing high variability, which would require even more anthropogenic reduction to compensate for.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Ozone/analysis , Air Pollutants/analysis , Meteorology , Ultraviolet Rays , Environmental Monitoring/methods , Air Pollution/analysis , China
13.
Front Plant Sci ; 13: 1045239, 2022.
Article in English | MEDLINE | ID: mdl-36544872

ABSTRACT

In this study, we determined the short-term effects of ozone exposure on the growth and accumulation of bioactive compounds in red lettuce leaves grown in a controlled environment plant factory with artificial light, also known as a vertical farm. During cultivation, twenty-day-old lettuce (Lactuca sativa L. var. Redfire) seedlings were exposed to 100 and 200 ppb of ozone concentrations for 72 h. To find out how plants react to ozone and light, complex treatments were done with light and ozone concentrations (100 ppb; 16 h and 200 ppb; 24 h). Ozone treatment with 100 ppb did not show any significant difference in shoot fresh weight compared to that of the control, but the plants exposed to the 200 ppb treatment showed a significant reduction in fresh weight by 1.3 fold compared to the control. The expression of most genes in lettuce plants exposed to 100 and 200 ppb of ozone increased rapidly after 0.5 h and showed a decreasing trend after reaching a peak. Even when exposed to a uniform ozone concentration, the pattern of accumulating bioactive compounds such as total phenolics, antioxidant capacity and total flavonoids varied based on leaf age. At a concentration of 200 ppb, a greater accumulation was found in the third (older) leaf than in the fourth leaf (younger). The anthocyanin of lettuce plants subjected to 100 and 200 ppb concentrations increased continuously for 48 h. Our results suggest that ozone control is a novel method that can effectively increase the accumulation of bioactive compounds in lettuce in a plant factory.

14.
Huan Jing Ke Xue ; 43(8): 3934-3943, 2022 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-35971692

ABSTRACT

To investigate the ambient pollution caused by volatile organic compounds (VOCs) in a typical industrial city in summer, the characteristics and chemical reactivity from VOCs and the causes of ozone (O3) pollution were analyzed using online VOCs measurements during polluted and non-polluted periods in Zibo city in July 2020. The results showed that the average hourly concentration of total volatile organic compounds (TVOC) during the polluted period[(50.6±28.3)] µg·m-3 was 32.5% higher than that during the non-polluted period[(38.2±24.9) µg·m-3]. The contribution of all VOCs categories were as follows:alkanes>aromatics>alkenes>alkynes, and the diurnal averages of TVOC and O3 concentrations were opposite during the polluted and non-polluted period. Ozone formation potential (OFP),·OH radical loss rate (L·OH), and secondary organic aerosol formation potential (SOAp) during the polluted period were higher than those during the non-polluted period. Alkenes contributed most to OFP and L·OH, whereas aromatics contributed most to SOAp. The tendency of the diurnal average of OFP and SOAp was overall consistent with that of TVOC. The priority species of OFP, L·OH, and SOAp were alkenes and aromatics. The VOCs/NOx method was applied to identify the O3-VOC-NOx sensitivity during the polluted and non-polluted periods, and the results showed that the photochemical regimes were VOCs-limited and transition regions. In addition, the smog production model (SPM) was employed to identify the O3 formation regime, and the results showed that those during the polluted period were identified as VOCs-limited and transition regions from 08:00 to 16:00, whereas the non-polluted period was mainly considered to be VOCs-limited. To mitigate the O3 pollution in summertime, the synergistic control of VOCs (especially alkenes and aromatics) and NOx emissions should be enforced.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Alkenes , China , Environmental Monitoring , Ozone/analysis , Volatile Organic Compounds/analysis
15.
J Environ Sci (China) ; 114: 115-125, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35459477

ABSTRACT

Surface ozone (O3) has become a critical pollutant impeding air quality improvement in many Chinese megacities. Chengdu is a megacity located in Sichuan Basin in southwest China, where O3 pollution occurs frequently in both spring and summer. In order to understand the elevated O3 during spring in Chengdu, we conducted sampling campaign at three sites during O3 pollution episodes in April. Volatile organic compounds (VOCs) compositions at each site were similar, and oxygenated VOCs (OVOCs) concentrations accounted for the highest proportion (35%-45%), followed by alkanes, alkens (including acetylene), halohydrocarbons, and aromatics. The sensitivity of O3 to its precursors was analyzed using an observation based box model. The relative incremental reactivity of OVOCs was larger than other precursors, suggesting that they also played the dominant role in O3 formation. Furthermore, the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city. The main sources of VOCs in spring were from combustion (27.75%), industrial manufacturing (24.17%), vehicle exhaust (20.35%), and solvent utilization (18.35%). Discussions on VOCs and NOx reduction schemes suggested that Chengdu was typical in the VOC-limited regime, and VOC emission reduction would help to prevent and control O3. The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO2 needs to reach more than 3 in order to achieve O3 prevention. Emission reduction from vehicular exhaust source and solvent utilization source may be more effective.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Solvents , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
16.
J Environ Sci (China) ; 114: 454-464, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35459508

ABSTRACT

Comprehensive air quality model with extensions (CAMx)-decoupled direct method (DDM) was used to simulate ozone-NOx-VOCs sensitivity of for May-November in 2016-2018 in China. Based on the relationship between the simulated ozone (O3) sensitivity values and the ratio of formaldehyde (HCHO) to NO2 (FNR) and the ratio of production rate of hydrogen peroxide (H2O2) to production rate of nitric acid (HNO3) ( [Formula: see text] ), the localized range of FNR and [Formula: see text] thresholds in different regions in China were obtained. The overall simulated FNR values are about 1.640-2.520, and [Formula: see text] values are about 0.540-0.830 for the transition regime. Model simulated O3 sensitivities or region specific FNR or [Formula: see text] thresholds should be applied to ensure the accurate local O3 sensitivity regimes. Using the tropospheric column FNR values from ozone monitoring instrument (OMI) satellite data as an indicator with the simulated threshold values, the spatial distributions of O3 formation regimes in China are determined. The O3 sensitivity regimes from eastern to central China are gradually from VOC-limited, transition to NOx-limited spatially, and moving toward to transition or NOx-limited regime from 2005 to 2019 temporally.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Hydrogen Peroxide , Ozone/analysis , Volatile Organic Compounds/analysis
17.
Glob Chang Biol ; 28(10): 3379-3393, 2022 05.
Article in English | MEDLINE | ID: mdl-35092127

ABSTRACT

There is tremendous interspecific variability in O3  sensitivity among C3  species, but variation among C4  species has been less clearly documented. It is also unclear whether stomatal conductance and leaf structure such as leaf mass per area (LMA) determine the variation in sensitivity to O3 across species. In this study, we investigated leaf morphological, chemical, and photosynthetic responses of 22 genotypes of four C4 bioenergy species (switchgrass, sorghum, maize, and miscanthus) to elevated O3 in side-by-side field experiments using free-air O3 concentration enrichment (FACE). The C4  species varied largely in leaf morphology, physiology, and nutrient composition. Elevated O3 did not alter leaf morphology, nutrient content, stomatal conductance, chlorophyll fluorescence, and respiration in most genotypes but reduced net CO2 assimilation in maize and photosynthetic capacity in sorghum and maize. Species with lower LMA and higher stomatal conductance tended to show greater losses in photosynthetic rate and capacity in elevated O3 compared with species with higher LMA and lower stomatal conductance. Stomatal conductance was the strongest determinant of leaf photosynthetic rate and capacity. The response of both area- and mass-based leaf photosynthetic rate and capacity to elevated O3 were not affected by LMA directly but negatively influenced by LMA indirectly through stomatal conductance. These results demonstrate that there is significant variation in O3  sensitivity among C4  species with maize and sorghum showing greater sensitivity of photosynthesis to O3 than switchgrass and miscanthus. Interspecific variation in O3  sensitivity was determined by direct effects of stomatal conductance and indirect effects of LMA. This is the first study to provide a test of unifying theories explaining variation in O3  sensitivity in C4 bioenergy grasses. These findings advance understanding of O3 tolerance in C4  grasses and could aid in optimal placement of diverse C4 bioenergy feedstock across a polluted landscape.


Subject(s)
Ozone , Photosynthesis/physiology , Plant Leaves/physiology , Zea mays/genetics
18.
Huan Jing Ke Xue ; 43(1): 160-169, 2022 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-34989500

ABSTRACT

With the rapid development of urbanization, ozone (O3) pollution is an ongoing occurrence in the Pearl River Delta (PRD) region in China. The effective control of O3 pollution is a great challenge owing to the nonlinear relationship between O3 and precursor emissions and the effect of meteorological conditions. Based on the regional air quality model CAMx-OSAT (ozone source apportionment technology), O3 formation regimes were determined, and inter-city transportation across PRD was quantified under different transmission channels. The results showed that spatial differences were observed for the O3 formation regimes under different transmission channels. The VOCs-sensitive regime was mainly located in the central areas of the PRD region, and the NOx-sensitive regime was distributed in the suburban areas of the PRD regions under calm wind conditions. When the northeast wind was prevailing, the polluted air mass of the urban agglomeration was transmitted southwesterly downward, resulting in the downwind areas being transformed to VOCs-sensitive; the upwind areas were still NOx-sensitive. Under the southeast wind, the VOCs-sensitive regime had a banding distribution along the southeast-northwest direction, and the remaining areas were NOx-sensitive. With the influence of transmission channels, downwind cities were significantly affected by the transmission of upwind urban agglomerations (41%-87%), whereas the local formation was the main contributor under the calm wind conditions (60%-87%). To explore the relationship between O3 and precursor emissions, a series of sensitivity tests were designed. The results showed that maximized areas (20%-36%) with reductions in O3 can be achieved by reducing VOCs and NOx in the corresponding sensitive regimes, and the maximized level with the reduction in O3 can be fulfilled by reducing VOCs in the VOCs-sensitive regime. For the typical city Jiangmen, the area that met the standard increased the most under the calm wind (11%) and southeast wind (8%) conditions when VOCs and NOx were reduced in the corresponding sensitive regimes. Additionally, under northeast wind conditions, reducing VOCs in the VOCs-sensitive regime can more effectively control O3, as the area up to the standard increased by 140%.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Rivers , Volatile Organic Compounds/analysis
19.
Planta ; 253(3): 75, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33629150

ABSTRACT

MAIN CONCLUSION: Plants exposed to equivalent ozone fluxes administered during day-time versus night-time exhibited greater losses in biomass at night and this finding is attributed to night-time depletion of cell wall-localised ascorbate. The present study employed Lactuca sativa and its closest wild relative, L. serriola, to explore the relative sensitivity of plants to ozone-induced oxidative stress during day-time versus night-time. By controlling atmospheric ozone concentration and measuring stomatal conductance, equivalent ozone uptake into leaves was engineered during day and night, and consequences on productivity and net CO2 assimilation rate were determined. Biomass losses attributable to ozone were significantly greater when an equivalent dose of ozone was taken-up by foliage at night compared to the day. Linkages between ozone impacts and ascorbic acid (AA) content, redox status and cellular compartmentation were probed in both species. Leaf AA pools were depleted by exposure of plants to darkness, and then AA levels in the apoplast and symplast were monitored on subsequent transfer of plants to the light. Apoplast AA appeared to be more affected by light-dark transition than the symplast pool. Moreover, equivalent ozone fluxes administered to leaves with contrasting AA levels resulted in contrasting effects on the light-saturated rate of CO2 assimilation (Asat) in both species. Once apoplast AA content recovered to pre-treatment levels, the same ozone flux resulted in no impacts on Asat. The results of the present investigation reveal that plants are significantly more sensitive to equivalent ozone fluxes taken-up at night compared with those during the day and were consistent with diel shifts in apoplast AA content and/or redox status. Furthermore, findings suggest that some thought should be given to weighing regional models of ozone impacts for extraordinary night-time ozone impacts.


Subject(s)
Lactuca/physiology , Ozone , Periodicity , Plant Leaves/physiology , Ascorbic Acid/analysis , Biological Transport , Oxidation-Reduction , Ozone/toxicity
20.
J Environ Sci (China) ; 93: 13-22, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32446449

ABSTRACT

Ground-level ozone (O3) has become a critical pollutant impeding air quality improvement in Yangtze River Delta region of China. In this study, we present O3 pollution characteristics based on one-year online measurements during 2016 at an urban site in Nanjing, Jiangsu Province. Then, the sensitivity of O3 to its precursors during 2 O3 pollution episodes in August was analyzed using a box model based on observation (OBM). The relative incremental reactivity (RIR) of hydrocarbons was larger than other precursors, suggesting that hydrocarbons played the dominant role in O3 formation. The RIR values for NOX ranged from -0.41%/% to 0.19%/%. The O3 sensitivity was also analyzed based on relationship of simulated O3 production rates with reductions of VOC and NOX derived from scenario analyses. Simulation results illustrate that O3 formation was between VOCs-limited and transition regime. Xylenes and light alkenes were found to be key species in O3 formation according to RIR values, and their sources were determined using the Positive Matrix Factorization (PMF) model. Paints and solvent use was the largest contributor to xylenes (54%), while petrochemical industry was the most important source to propene (82%). Discussions on VOCs and NOX reduction schemes suggest that the 5% O3 control goal can be achieved by reducing VOCs by 20%. To obtain 10% O3 control goal, VOCs need to be reduced by 30% with VOCs/NOX larger than 3:1.


Subject(s)
Air Pollutants/analysis , Ozone/analysis , Volatile Organic Compounds/analysis , China , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL