Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.504
Filter
1.
Article in English | MEDLINE | ID: mdl-39231689

ABSTRACT

BACKGROUND: Atrazine (ATR), a commonly used herbicide, is linked to dopaminergic neurotoxicity, which may cause symptoms resembling Parkinson's disease (PD). This study aims to reveal the molecular regulatory networks responsible for ATR exposure and its effects on dopaminergic neurotoxicity based on an integration strategy. METHODS: Our approach involved network toxicology, construction of protein-protein interaction (PPI) networks, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as molecular docking techniques. Subsequently, we validated the predicted results in PC12 cells in vitro. RESULTS: An integrated analysis strategy indicating that 5 hub targets, including mitogen-activated protein kinase 3 (Mapk3), catalase (Cat), heme oxygenase 1 (Hmox1), tumor protein p53 (Tp53), and prostaglandin-endoperoxide synthase 2 (Ptgs2), may play a crucial role in ATR-induced dopaminergic injury. Molecular docking indicated that the 5 hub targets exhibited certain binding activity with ATR. Cell counting kit-8 (CCK8) results illustrated a dose-response relationship in PC12 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) displayed notable changes in the expression of hub targets mRNA levels, with the exception of Mapk3. Western blotting results suggested that ATR treatment in PC12 cells resulted in an upregulation of the Cat, Hmox1, and p-Mapk3 protein expression levels while causing a downregulation in Tp53, Ptgs2, and Mapk3. CONCLUSION: Our findings indicated that 5 hub targets identified could play a vital role in ATR-induced dopaminergic neurotoxicity in PC12 cells. These results provide preliminary support for further investigation into the molecular mechanism of ATR-induced toxicity.


Subject(s)
Atrazine , Dopaminergic Neurons , Herbicides , Molecular Docking Simulation , Atrazine/toxicity , Animals , PC12 Cells , Rats , Herbicides/toxicity , Dopaminergic Neurons/drug effects , Protein Interaction Maps , Dopamine/metabolism
2.
Mol Biol Rep ; 51(1): 986, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283367

ABSTRACT

BACKGROUND: Dysfunction of the cholinergic system and increased oxidative stress have a crucial role in cognitive disorders including Alzheimer's disease (AD). Here, we have investigated the protective effects of betanin, a novel acetylcholinesterase (AChE) inhibitor, on hydrogen peroxide (H2O2)-induced cell death in PC12 cells. METHODS AND RESULTS: The protective effects were assessed by measuring cell viability, the amount of reactive oxygen species (ROS) production, AChE activity, cell damage, and apoptosis using resazurin, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), Ellman method, lactate dehydrogenase (LDH) release, propidium iodide (PI) staining and flow cytometry, and Western blot analysis. H2O2 (150 µM) resulted in cell viability reduction and apoptosis induction while, pretreatment with the betanin (10, 20, and 50 µM) and N-Acetyl-L-cysteine (NAC) (2.5 and 5 mM) significantly increased the viability (P < 0.05, P < 0.01 and P < 0.001) and at 5-50 µM betanin decreased ROS amount (P < 0.05, P < 0.01 and P < 0.001). Whereas, pretreatment with the betanin (10, 20, and 50 µM) decreased AChE activity (P < 0.001), also at 20 and 50 µM betanin reduced the release of LDH (P < 0.001), and at 10-50 µM decreased the percentage of apoptotic cells (P < 0.001). Apoptosis biomarkers such as cleaved poly (ADP-ribose) polymerase (PARP) (P < 0.01 and P < 0.001) and cytochrome c (P < 0.05 and P < 0.001) were attenuated after pretreatment of PC12 cells with betanin at 10-20 µM and 10-50 µM respectively. Indeed, survivin (P < 0.001) increased after pretreatment of cells with betanin at 10-20 µM. CONCLUSIONS: Overall, betanin may use the potential to delay or prevent cell death caused by AD through decreasing the activity of AChE as well as attenuating the expression of proteins involved in the apoptosis pathway.


Subject(s)
Acetylcholinesterase , Apoptosis , Betacyanins , Cell Survival , Cholinesterase Inhibitors , Hydrogen Peroxide , Oxidative Stress , Reactive Oxygen Species , PC12 Cells , Animals , Rats , Apoptosis/drug effects , Cholinesterase Inhibitors/pharmacology , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species/metabolism , Betacyanins/pharmacology , Cell Survival/drug effects , Oxidative Stress/drug effects , Acetylcholinesterase/metabolism , Neuroprotective Agents/pharmacology
3.
Mol Cell Biol ; : 1-12, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264361

ABSTRACT

Parkinson's disease (PD) is an age-related progressive neurodegenerative disease. Previously, we identified midnolin (MIDN) as a genetic risk factor for PD. Although MIDN copy number loss increases the risk of PD, the molecular function of MIDN remains unclear. To investigate the role of MIDN in PD, we established monoclonal Midn knockout (KO) PC12 cell models. Midn KO inhibited neurite outgrowth and neurofilament light chain (Nefl) gene expression. Although MIDN is mainly localized in the nucleus, it does not encode DNA-binding domains. We therefore hypothesized that MIDN might bind to certain transcription factors and regulate gene expression. Of the candidate transcription factors, we focused on early growth response 1 (EGR1) because it is required for neurite outgrowth and its target genes are downregulated by Midn KO. An interaction between MIDN and EGR1 was confirmed by immunoprecipitation. Surprisingly, although EGR1 protein levels were significantly increased in Midn KO cells, the binding of EGR1 to the Nefl promoter and resulting transcriptional activity were downregulated as measured by luciferase assay and chromatin immunoprecipitation quantitative real-time polymerase chain reaction. Overall, we identified the MIDN-dependent regulation of EGR1 function. This mechanism may be an underlying reason for the neurite outgrowth defects of Midn KO PC12 cells.

4.
Mol Biol Rep ; 51(1): 1024, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340590

ABSTRACT

Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.


Subject(s)
Neurodegenerative Diseases , Neurons , Humans , Neurodegenerative Diseases/pathology , Neurons/metabolism , Animals , Coculture Techniques/methods , Cell Line , Models, Biological , Alzheimer Disease/pathology , Alzheimer Disease/genetics
5.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39338393

ABSTRACT

OBJECTIVES: Plant polysaccharides have attracted increasing attention due to their high efficiency and low toxicity. Codonopsis pilosula polysaccharide (CPP) is an essential substance extracted from Codonopsis pilosula, known for its excellent antioxidant and neuroprotective effects. However, it is still unclear how CPP improves nerve protection and what its underlying molecular mechanisms are. This study aimed to investigate the neuroprotective effect of CPP on Aß25-35-induced damage in PC12 cells and its underlying molecular mechanisms. METHODS: The neuroprotective effect of CPP was evaluated using Aß25-35-induced damage in pheochFfromocytoma (PC12) cells as an in vitro cell model. The cells were treated with CPP alone or in combination with SB203580 (an inhibitor of p38MAPK) in Aß25-35 culture. The cell viability was assessed using a 3-(4,5-Dimethylthiazol-2-yl)-2,diphenyltetrazolium (MTT) assay. Furthermore, reactive oxygen species (ROS) were detected using flow cytometry. The production levels of intracellular superoxide dismutase (SOD), dismutase (SOD), glutathione (GSH), catalase (CAT), and malondialdehyFde (MDA) were determined using the colorimetric method. Annexin V-FITC and propidium iodide (PI) staining, as well as 33258 were performed using fluorescence microscopy. Moreover, the effect of adding SB203580 was studied to determine the changes in cell apoptosis induced by CPP treatment and Aß25-35 induction. RESULTS: The CPP markedly inhibited Aß25-35-induced reduction in the viability and apoptosis of PC12 cells. CPP also reduced the Aß25-35-induced increase in the expression of the apoptosis factors and the levels of free radicals (ROS and MDA) and reversed the Aß25-35-induced suppression of antioxidant activity. Additionally, inhibition of p38MAPK via the addition of their antagonists reversed the observed anti-apoptosis effects of CPP. CONCLUSIONS: CPP can efficiently provide neuroprotection against Aß25-35-induced damage in PC12 cells brought about via oxidation and apoptosis reactions, and the underlying mechanisms involve the p38MAPK pathways. Therefore, CPP could potentially be useful as a neuroprotective agent in natural medicine, pharmacy, and the food industry.

6.
J Am Soc Mass Spectrom ; 35(9): 2082-2089, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39141521

ABSTRACT

Elemental analysis at the single-cell level is an emerging technique in the field of inductively coupled plasma mass spectrometry (ICP-MS). In comparison to the analysis of cell suspensions by fast time-resolved analysis, single-cell sampling by laser ablation (LA) allows the discriminatory analysis of single cells according to their size and morphology. In this study, we evaluated the changes in elemental contents in a single cell through differentiation of rat adrenal pheochromocytoma into neuron-like cells by LA-ICP-MS. The contents of seven essential minerals were increased about 2-3 times after the differentiation. In addition, we evaluated the degree of differentiation at the single-cell level by means of imaging cytometry after immunofluorescence staining of microtubule-associated protein 2 (Map2), a neuron-specific protein. The fluorescence intensities of Alexa Fluor 488-conjugated secondary antibody against the anti-Map2 primary antibody showed large variations among the cells after the onset of differentiation. Although the average fluorescence intensity was increased through the differentiation, there were still less-matured neuron-like cells that exhibited a lower fluorescence intensity after 5 days of differentiation. Since a positive correlation between the fluorescence intensity and the cell size in area was found, we separately measured the elemental contents in the less-matured smaller cells and well-matured larger cells by LA-ICP-MS. The larger cells had higher elemental contents than the smaller cells, indicating that the essential minerals are highly required at a later stage of differentiation.


Subject(s)
Cell Differentiation , Mass Spectrometry , Single-Cell Analysis , Animals , Rats , Single-Cell Analysis/methods , PC12 Cells , Mass Spectrometry/methods , Laser Therapy/methods , Neurons/chemistry , Neurons/cytology , Minerals/analysis , Minerals/chemistry
7.
Int J Mol Sci ; 25(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39201264

ABSTRACT

Some species of the Gentianaceae family are a valuable source of secondary metabolites. However, the phytochemical knowledge of some of these species remains insufficient. Therefore, this work focused on the isolation of the two main secondary metabolites in the methanolic extract from a Gentiana capitata cell suspension using preparative HPLC and the determination of their structure using UHPLC-DAD-IT-MS/MS and NMR methods. Their content in the methanolic extract was quantified using a previously validated HPLC method. The toxicity of the extract and two isolated compounds was also tested on the PC-12 cell line. The structures of the main secondary metabolites were identified as isosaponarin and 3,7,8-Trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-ß-D-ribopyranosyl-ß-D-allopyranoside by comparing the UHPLC-DAD-IT-MS/MS and NMR results with the literature data. The content of isosaponarin was determined to be 0.76 ± 0.04%, and the content of 3,7,8-trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-ß-D-ribopyranosyl-ß-D-allopyranoside was found to be 0.31 ± 0.02% in the dry extract. Additionally, a two-fold increase in the viability of the PC-12 cell line was observed compared to the control after treatment with the methanolic extract at a concentration of 500 µg/mL. These results suggest the potential use of G. capitata cell suspension methanolic extract as a new source of isosaponarin and 3,7,8-trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-ß-D-ribopyranosyl-ß-D-allopyranoside, highlighting their lack of toxicity to the PC-12 (rat pheochromocytoma) cell line.


Subject(s)
Cell Survival , Gentiana , Plant Extracts , Animals , Rats , PC12 Cells , Cell Survival/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gentiana/chemistry , Saponins/pharmacology , Saponins/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Magnetic Resonance Spectroscopy
8.
Food Chem ; 461: 140834, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39153375

ABSTRACT

Providing antioxidants and targeting acetylcholinesterase (AChE) are key strategies in treating neurocognitive dysfunction. In this study, bioactive sturgeon (Acipenser schrenckii) spinal cord peptides (SSCPs) with antioxidant and AChE inhibitory potency were extracted and separated from sturgeon spinal cord by enzymatic hydrolysis and ultrafiltration, and targeted peptide PGGW was screened via computer simulated molecular docking. Further, the molecular dynamic interactions of the PGGW with superoxide dismutase (SOD) and AChE were analyzed, and the protective effect of PGGW on glutamate-induced PC12 cells in vitro was evaluated. The <3 kDa fraction of SSCPs displays the most potent antioxidative efficacy (1 mg/mL, DPPH•: 89.07%, ABTS+: 76.35%). Molecular dynamics simulation showed that PGGW was stable within AChE and tightly bound to residues SER203, PHE295, ILE294 and TRP236. When combined with SOD, the indole group of PGGW was stuck inside SOD, but the tail chain PGG fluctuated greatly outside. Surface plasmon resonance demonstrated that PGGW has a high binding affinity for AChE (KD = 1.4 mM) and 0.01 mg/mL PGGW provided good protection against glutamate-induced apoptosis. The findings suggest a promising strategy for drug research on neurodegenerative diseases.


Subject(s)
Acetylcholinesterase , Antioxidants , Cholinesterase Inhibitors , Fish Proteins , Fishes , Molecular Docking Simulation , Peptides , Spinal Cord , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Peptides/chemistry , Peptides/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Fish Proteins/chemistry , Fish Proteins/pharmacology , Rats , Spinal Cord/chemistry , Spinal Cord/drug effects , Spinal Cord/metabolism , PC12 Cells , Superoxide Dismutase/metabolism , Superoxide Dismutase/chemistry
9.
Int J Biol Macromol ; 278(Pt 2): 134774, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39154681

ABSTRACT

Controlling biomolecular-cell interactions is crucial for the design of scaffolds for tissue engineering (TE). Regenerated silk fibroin (RSF) has been extensively used as TE scaffolds, however, RSF showed poor attachment of neuronal cells, such as rat pheochromocytoma (PC12) cells. In this work, amphiphilic peptides containing a hydrophobic isoleucine tail (I3) and laminin or fibronectin derived peptides (IKVAV, PDSGR, YIGSR, RGDS and PHSRN) were designed for promoting scaffold-cell interaction. Three of them (I3KVAV, I3RGDS and I3YIGSR) can self-assemble into nanofibers, therefore, were used to enhance the application of RSF in neuron TE. Live / dead assays revealed that the peptides exhibited negligible cytotoxicity against PC12 cells. The specific interaction between PC12 cells and the peptides were investigate using atomic force microscopy (AFM). The results indicated a synergistic effect in the designed peptides, promoting cellular attachment, proliferation and morphology changes. In addition, AFM results showed that co-assembling peptides I3KVAV and I3YIGSR possesses the best regulation of proliferation and attachment of PC12 cells, consistent with immunofluorescence staining results. Moreover, cell culture with hydrogels revealed that a mixture of peptides I3KVAV and I3YIGSR can also promote 3D neurites outgrowth. The approach of combining two different self-assembling peptides shows great potential for nerve regeneration applications.


Subject(s)
Nanofibers , Neuronal Outgrowth , Peptides , Silk , Tissue Scaffolds , Animals , PC12 Cells , Rats , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Neuronal Outgrowth/drug effects , Peptides/chemistry , Peptides/pharmacology , Silk/chemistry , Cell Proliferation/drug effects , Fibroins/chemistry , Fibroins/pharmacology , Tissue Engineering/methods , Cell Adhesion/drug effects
10.
Biomed Pharmacother ; 179: 117304, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39178813

ABSTRACT

Nymphaea candida Presl (NC), traditionally used in medicine for heat syndrome-related ailments, possesses antioxidative, anti-inflammatory, hepatoprotective, and neuroprotective properties. This research investigates the antidepressant and neuroprotective effects and mechanisms of Nymphaea candida Presl ethyl acetate (NCEA). Primary components of NCEA were identified as phenolic acids and flavonoids through UPLC-MS/MS analysis. The depression mouse model was induced via intracerebroventricular injection of Lipopolysaccharide (LPS), followed by oral administration of fluoxetine and NCEA for one week. Biochemical assays and HE staining confirmed NCEA's non-toxicity and protective effects on the liver and lungs. NCEA administration mitigated LPS-induced depressive behaviors, decreased IL-1ß, TNF-α levels in the hippocampus, suppressed microglial activation, reduced Iba-1 expression, and increased NA, brain-derived neurotrophic factor (BDNF), and dendritic spine density in the hippocampus. Furthermore, NCEA enhanced cell viability in a CORT-induced PC12 cell model, decreased lactate dehydrogenase (LDH) release rate, total superoxide dismutase (SOD) inhibition rate, intracellular nitric oxide (NO) release, and reduced reactive oxygen species (ROS) production. Our research findings suggest that NCEA exhibits significant antidepressant effects, which may be attributed to its reduction of neuroinflammation, improvement in neurotransmitter levels, neuronal protection, and antioxidative stress properties.


Subject(s)
Acetates , Antidepressive Agents , Neuroprotective Agents , Plant Extracts , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/isolation & purification , Antidepressive Agents/pharmacology , Antidepressive Agents/isolation & purification , Mice , Male , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Rats , Acetates/chemistry , Acetates/pharmacology , PC12 Cells , Depression/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Disease Models, Animal , Lipopolysaccharides , Behavior, Animal/drug effects
11.
Transl Neurosci ; 15(1): 20220347, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-39118829

ABSTRACT

Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvß3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvß3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvß3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.

12.
Curr Med Sci ; 44(4): 854-863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112916

ABSTRACT

OBJECTIVE: This study aimed to establish a neural cell injury model in vitro by stimulating PC12 cells with lipopolysaccharide (LPS) and to examine the effects of astragaloside IV on key targets using high-throughput sequence technology and bioinformatics analyses. METHODS: PC12 cells in the logarithmic growth phase were treated with LPS at final concentrations of 0.25, 0.5, 0.75, 1, and 1.25 mg/mL for 24 h. Cell morphology was evaluated, and cell survival rates were calculated. A neurocyte inflammatory model was established with LPS treatment, which reached a 50% cell survival rate. PC12 cells were treated with 0.01, 0.1, 1, 10, or 100 µmol/L astragaloside IV for 24 h. The concentration of astragaloside IV that did not affect the cell survival rate was selected as the treatment group for subsequent experiments. NOS activity was detected by colorimetry; the expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS and COX-2 mRNA and protein were detected by RT-qPCR and Western blotting. The differentially expressed genes (DEGs) between the groups were screened using a second-generation sequence (fold change>2, P<0.05) with the following KEGG enrichment analysis, RT-qPCR and Western blotting were used to detect the mRNA and protein expression of DEGs related to the IL-17 pathway in different groups of PC12 cells. RESULTS: The viability of PC12 cells was not altered by treatment with 0.01, 0.1, or 1 µmol/L astragaloside IV for 24 h (P>0.05). However, after treatment with 0.5, 0.75, 1, or 1.25 mg/mL LPS for 24 h, the viability steadily decreased (P<0.01). The mRNA and protein expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS, and COX-2 were significantly increased after PC12 cells were treated with 1 mg/mL LPS for 24 h (P<0.01); however, these changes were reversed when PC12 cells were pretreated with 0.01, 0.1, or 1 µmol/L astragaloside IV in PC12 cells and then treated with 1 mg/mL LPS for 24 h (P<0.05). Second-generation sequencing revealed that 1026 genes were upregulated, while 1287 genes were downregulated. The DEGs were associated with autophagy, TNF-α, interleukin-17, MAPK, P53, Toll-like receptor, and NOD-like receptor signaling pathways. Furthermore, PC12 cells treated with a 1 mg/mL LPS for 24 h exhibited increased mRNA and protein expression of CCL2, CCL11, CCL7, MMP3, and MMP10, which are associated with the IL-17 pathway. RT-qPCR and Western blotting analyses confirmed that the DEGs listed above corresponded to the sequence assay results. CONCLUSION: LPS can damage PC12 cells and cause inflammatory reactions in nerve cells and DNA damage. astragaloside IV plays an anti-inflammatory and DNA damage protective role and inhibits the IL-17 signaling pathway to exert a neuroprotective effect in vitro.


Subject(s)
Anti-Inflammatory Agents , Cell Survival , DNA Repair , Lipopolysaccharides , Saponins , Triterpenes , Animals , PC12 Cells , Rats , Lipopolysaccharides/pharmacology , Triterpenes/pharmacology , Saponins/pharmacology , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , DNA Repair/drug effects
13.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065782

ABSTRACT

INTRODUCTION: The proline-rich decapeptide 10c (Bj-PRO-10c; ENWPHPQIPP) from the Bothrops jararaca snake modulates argininosuccinate synthetase (AsS) activity to stimulate L-arginine metabolite production and neuroprotection in the SH-SY5Y cell line. The relationships between structure, interactions with AsS, and neuroprotection are little known. We evaluated the neuroprotective effects of Bj-PRO-10c and three other PROs (Bn-PRO-10a, Bn-PRO-10c > Bn-PRO-10a-MK > Bn-PRO-10a. The structure of PROs and their correlations with enzyme activity revealed that histidine (H5) and glutamine (Q7) in Bj-PRO-10c potentiated their affinity for AsS. CONCLUSIONS: Our investigation provides the first insights into the structure and molecular interactions of PROs with AsS, which could possibly further their neuropharmacological applications.

14.
J Pharmacol Sci ; 156(1): 45-48, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068034

ABSTRACT

The gene product of ocular albinism 1 (OA1)/G-protein-coupled receptor (GPR)143 is a receptor for L-3,4-dihydroxyphenylanine (l-DOPA), the most effective agent for Parkinson's disease. When overexpressed, human wild-type GPR143, but not its mutants, inhibits neurite outgrowth in PC12 cells. We investigated the downstream signaling pathway for GPR143-induced inhibition of neurite outgrowth. Nifedipine restored GPR143-induced neurite outgrowth inhibition to the level of control transfectant but did not affect outgrowth in GPR143-knockdown cells. Cilnidipine and flunarizine also suppressed the GPR143-induced inhibition, but their effects at higher concentrations still occurred even in GPR143-knockdown cells. These results suggest that GPR143 regulates neurite outgrowth via L-type calcium channel(s).


Subject(s)
Calcium Channels, L-Type , Neuronal Outgrowth , Nifedipine , Receptors, G-Protein-Coupled , PC12 Cells , Animals , Rats , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Nifedipine/pharmacology , Neuronal Outgrowth/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Humans , Eye Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/pharmacology , Flunarizine/pharmacology , Signal Transduction/drug effects , Levodopa/pharmacology , Gene Knockdown Techniques , Neurites/drug effects , Calcium Channel Blockers/pharmacology , Membrane Glycoproteins
15.
Biomedicines ; 12(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39062165

ABSTRACT

Rasagiline (Azilect®) is a selective monoamine oxidase B (MAO-B) inhibitor that provides symptomatic benefits in Parkinson's disease (PD) treatment and has been found to exert preclinical neuroprotective effects. Here, we investigated the neuroprotective signaling pathways of acute rasagiline treatment for 22 h in PC12 neuronal cultures exposed to oxygen-glucose deprivation (OGD) for 4 h, followed by 18 h of reoxygenation (R), causing 40% aponecrotic cell death. In this study, 3-10 µM rasagiline induced dose-dependent neuroprotection of 20-80%, reduced the production of the neurotoxic reactive oxygen species by 15%, and reduced the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by 75-90%. In addition, 10 µM rasagiline increased protein kinase B (Akt) phosphorylation by 50% and decreased the protein expression of the ischemia-induced α-synuclein protein by 50% in correlation with the neuroprotective effect. Treatment with 1-5 µM rasagiline induced nuclear shuttling of transcription factor Nrf2 by 40-90% and increased the mRNA levels of the antioxidant enzymes heme oxygenase-1, (NAD (P) H- quinone dehydrogenase, and catalase by 1.8-2.0-fold compared to OGD/R insult. These results indicate that rasagiline provides neuroprotection to the ischemic neuronal cultures through the inhibition of α-synuclein and GAPDH-mediated aponecrotic cell death, as well as via mitochondrial protection, by increasing mitochondria-specific antioxidant enzymes through a mechanism involving the Akt/Nrf2 redox-signaling pathway. These findings may be exploited for neuroprotective drug development in PD and stroke therapy.

16.
Biochem Pharmacol ; 226: 116410, 2024 08.
Article in English | MEDLINE | ID: mdl-38969302

ABSTRACT

Elevated homocysteine (Hcy) levels are detrimental to neuronal cells and contribute to cognitive dysfunction in rats. Mitochondria plays a crucial role in cellular energy metabolism. Interestingly, the damaging effects of Hcy in vivo and in vitro conditions exhibit distinct results. Herein, we aimed to investigate the effects of Hcy on mitochondrial function in primary neurons and PC12 cells and explore the underlying mechanisms involved. The metabolic intermediates of Hcy act as methyl donors and play important epigenetic regulatory roles. N6-methyldeoxyadenosine (6 mA) modification, which is enriched in mitochondrial DNA (mtDNA), can be mediated by methylase METTL4. Our study suggested that mitochondrial perturbation caused by Hcy in primary neurons and PC12 cells may be attributable to mtDNA 6 mA modification difference. Hcy could activate the expression of METTL4 within mitochondria to facilitate mtDNA 6 mA status, and repress mtDNA transcription, then result in mitochondrial dysfunction.


Subject(s)
Deoxyadenosines , Hippocampus , Homocysteine , Mitochondria , Neurons , Animals , Rats , PC12 Cells , Neurons/metabolism , Neurons/drug effects , Homocysteine/pharmacology , Homocysteine/analogs & derivatives , Homocysteine/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Deoxyadenosines/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Rats, Sprague-Dawley , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Cells, Cultured , Methyltransferases/metabolism , Methyltransferases/genetics
17.
Brain Res ; 1842: 149102, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38969084

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Accumulation of ß-amyloid (Aß) in the brain has been recognized as a key factor in the onset and progression of Alzheimer's disease (AD).The accumulation of Aß in the brain catalyzes the production of reactive oxygen species (ROS), which in turn triggers oxidative damage to cellular components such as DNA, lipids, and proteins. In the present study, we investigated the protective effect of Ganoderic acid A (GA.A) against Aß42-induced apoptosis in PC12 cells. Changes in mitochondrial membrane potential indicated that GA.A treats mitochondrial dysfunction by decreasing Aß42 deposition and inhibiting neural protofiber tangle formation. Changes in intracellular Ca2+ and caspase-3 indicated that GA.A reduced mitochondrial damage by Aß42 in PC12 cells, thereby decreasing ROS accumulation and reducing Aß protofiber-induced cytotoxicity. These features suggest that GA.A has great potential as an effective neuroprotective drug in the treatment of Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides , Apoptosis , Lanosterol , Membrane Potential, Mitochondrial , Mitochondria , Neuroprotective Agents , Peptide Fragments , Reactive Oxygen Species , Animals , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , PC12 Cells , Rats , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Peptide Fragments/toxicity , Membrane Potential, Mitochondrial/drug effects , Neuroprotective Agents/pharmacology , Apoptosis/drug effects , Lanosterol/pharmacology , Lanosterol/analogs & derivatives , Calcium/metabolism , Caspase 3/metabolism , Cell Survival/drug effects , Neurons/drug effects , Neurons/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Heptanoic Acids
18.
Eur J Pharmacol ; 980: 176864, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39084452

ABSTRACT

AIMS: This study investigates the neuroprotective effects of lipidized analogues of 2-SS-CART(61-102) derived from anorexigenic neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) in light of the link between obesity, its comorbidities, and the development of Alzheimer's disease. METHODS: We introduce novel lipidized analogues derived from 2-SS-CART(61-102), a specific analogue of natural CART(61-102), with two disulfide bridges. Using hypothermic PC12 cells, we tested the effect of the most potent analogues on Tau phosphorylation. We further described the anorexigenic and neuroprotective potential of subcutaneously (SC) injected lipidized CARTp analogue in a mouse model with prediabetes and obesity induced by neonatal monosodium glutamate (MSG) administration. RESULTS: Compared to the non-lipidized 2-SS-CART(61-102), all lipidized analogues exhibited a potent binding affinity to PC12 cells and enhanced in vitro stability in rat plasma. Two most potent lipidized analogues attenuated hypothermia-induced Tau hyperphosphorylation at multiple epitopes. Subsequently, chronic SC treatment with palm-2-SS-CART(61-102) significantly decreased body weight and food intake, improved metabolic parameters, decreased level of pTau and increased neurogenesis in hippocampi of obese MSG mice. CONCLUSION: Our unique CARTp analogue palm-2-SS-CART(61-102) shows promise as a potent anti-obesity and neuroprotective agent.


Subject(s)
Nerve Tissue Proteins , Neuroprotective Agents , Obesity , Sodium Glutamate , Animals , Male , Mice , Rats , Appetite Depressants/pharmacology , Disease Models, Animal , Lipids/chemistry , Lipids/blood , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neuroprotective Agents/pharmacology , Obesity/metabolism , Obesity/drug therapy , PC12 Cells , Phosphorylation/drug effects , tau Proteins/metabolism
19.
Talanta ; 278: 126496, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38996563

ABSTRACT

Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.


Subject(s)
Carbon , Dopamine , Electrochemical Techniques , Nanocomposites , Nanowires , Platinum , Dopamine/analysis , Dopamine/blood , Dopamine/chemistry , Platinum/chemistry , PC12 Cells , Nanowires/chemistry , Nanocomposites/chemistry , Animals , Carbon/chemistry , Rats , Porosity , Electrochemical Techniques/methods , Neurons/metabolism , Limit of Detection , Electrodes
20.
Protein Expr Purif ; 223: 106554, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39002828

ABSTRACT

Neuritin plays an important role in promoting nerve injury repair and maintaining synaptic plasticity, making it a potential therapeutic target for the treatment of nerve injury and neurodegenerative diseases. The present study aimed to obtain an active, unlabeled neuritin protein. Initially, a neuritin protein expression system with an enterokinase site was constructed in Escherichia coli. After optimizing induction conditions and screening for high expression, a neuritin recombinant protein with purity exceeding 85 % was obtained through Ni-affinity chromatography. Subsequently, unlabeled neuritin with a molecular weight of 11 kDa was obtained through the enzymatic cleavage of the His label using an enterokinase. Furthermore, a neuritin recombinant protein with purity exceeding 95 % was obtained using gel chromatography. Functional investigations revealed that neurite outgrowth of PC12 cells was stimulated by the isolated neuritin. This study establishes a method to obtain active and unlabeled neuritin protein, providing a foundation for subsequent research on its biological functions.


Subject(s)
Escherichia coli , GPI-Linked Proteins , Recombinant Proteins , Animals , PC12 Cells , Rats , GPI-Linked Proteins/genetics , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Neuropeptides/genetics , Neuropeptides/chemistry , Neuropeptides/metabolism , Enteropeptidase/metabolism , Enteropeptidase/genetics , Enteropeptidase/chemistry , Chromatography, Affinity , Neuronal Outgrowth/drug effects , Chromatography, Gel , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL