Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 44(11): 2282-2295, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37280363

ABSTRACT

Abnormalities of FGFR1 have been reported in multiple malignancies, suggesting FGFR1 as a potential target for precision treatment, but drug resistance remains a formidable obstacle. In this study, we explored whether FGFR1 acted a therapeutic target in human T-cell acute lymphoblastic leukemia (T-ALL) and the molecular mechanisms underlying T-ALL cell resistance to FGFR1 inhibitors. We showed that FGFR1 was significantly upregulated in human T-ALL and inversely correlated with the prognosis of patients. Knockdown of FGFR1 suppressed T-ALL growth and progression both in vitro and in vivo. However, the T-ALL cells were resistant to FGFR1 inhibitors AZD4547 and PD-166866 even though FGFR1 signaling was specifically inhibited in the early stage. Mechanistically, we found that FGFR1 inhibitors markedly increased the expression of ATF4, which was a major initiator for T-ALL resistance to FGFR1 inhibitors. We further revealed that FGFR1 inhibitors induced expression of ATF4 through enhancing chromatin accessibility combined with translational activation via the GCN2-eIF2α pathway. Subsequently, ATF4 remodeled the amino acid metabolism by stimulating the expression of multiple metabolic genes ASNS, ASS1, PHGDH and SLC1A5, maintaining the activation of mTORC1, which contributed to the drug resistance in T-ALL cells. Targeting FGFR1 and mTOR exhibited synergistically anti-leukemic efficacy. These results reveal that FGFR1 is a potential therapeutic target in human T-ALL, and ATF4-mediated amino acid metabolic reprogramming contributes to the FGFR1 inhibitor resistance. Synergistically inhibiting FGFR1 and mTOR can overcome this obstacle in T-ALL therapy.


Subject(s)
Amino Acids , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Cell Line, Tumor , Minor Histocompatibility Antigens , Amino Acid Transport System ASC/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Activating Transcription Factor 4/metabolism
2.
Cartilage ; 13(2_suppl): 1122S-1133S, 2021 12.
Article in English | MEDLINE | ID: mdl-33111549

ABSTRACT

OBJECTIVE: Previously we showed that genetic deletion of Fgfr1 in chondrocytes protected mice from progression of osteoarthritis (OA). The aim of this study is to evaluate the effect of PD166866, a potent selective inhibitor of Fgfr1, on cartilage degeneration induced by interleukin-1ß (IL-1ß) and to clarify underlying global gene expression pattern. DESIGN: Cartilage explants and primary rat chondrocytes were stimulated with IL-1ß to establish an inflammatory OA in vitro model. The effects of PD166866 were determined by measuring the release of glycosaminoglycans (GAG) in cartilage explants and primary rat chondrocytes, and the underlying molecular mechanism was analyzed by microarray and RT-PCR analysis in primary chondrocytes. RESULTS: In cartilage explants, PD166866 significantly counteracts IL-ß stimulated GAG release. In addition, PD166866 impede IL-1ß-stimulated nuclear translocation of p65 in rat chondrocytes. Based on microarray analysis, a total of 67 and 132 genes with more than 1.5-fold changes were identified in IL-1ß-treated versus control and PD166866 cotreatment versus IL-1ß treatment alone, respectively. Only 19 thereof were coregulated by IL-1ß and PD166866 simultaneously. GO and KEGG pathway analysis showed that some pathways, including "cytokine-cytokine receptor interaction," "chemokine signaling pathway," and "complement and coagulation cascades," as well as some key genes like chemokines, complement, and matrix metalloproteinases may relevant for therapeutic application of Fgfr1 blockade in IL-1ß-stimulated chondrocytes. CONCLUSION: Our results clearly demonstrated that blockade of Fgfr1 with PD166866 could effectively suppress the catabolic effects induced by IL-1ß, and elucidated whole genomic targets of Fgfr1 inhibition responsible for the therapeutic effects of Fgfr1 blockade against inflammatory OA.


Subject(s)
Osteoarthritis , Signal Transduction , Animals , Cartilage/metabolism , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , Mice , Osteoarthritis/metabolism , Rats
3.
Biochem Biophys Res Commun ; 474(1): 1-7, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26993162

ABSTRACT

Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery.


Subject(s)
Autophagy/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Pyrimidines/administration & dosage , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Urea/analogs & derivatives , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Treatment Outcome , Urea/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL