Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
BMC Med Genomics ; 17(1): 173, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956522

ABSTRACT

BACKGROUND: Autosomal recessive non-syndromic hearing loss (NSHL) and cone dystrophies (CODs) are highly genetically and phenotypically heterogeneous disorders. In this study, we applied the whole exome sequencing (WES) to find the cause of HL and COD in an Iranian consanguineous family with three affected individuals. METHODS: Three members from an Iranian consanguineous family who were suffering from NSHL and visual impairment were ascertained in this study. Comprehensive clinical evaluations and genetic analysis followed by bioinformatic and co-segregation studies were performed to diagnose the cause of these phenotypes. Data were collected from 2020 to 2022. RESULTS: All cases showed congenital bilateral NSHL, decreased visual acuity, poor color discrimination, photophobia and macular atrophy. Moreover, cornea, iris and anterior vitreous were within normal limit in both eyes, decreased foveal sensitivity, central scotoma and generalized depression of visual field were seen in three cases. WES results showed two variants, a novel null variant (p.Trp548Ter) in the PDE6C gene causing COD type 4 (Achromatopsia) and a previously reported variant (p.Ile84Thr) in the PDZD7 gene causing NSHL. Both variants were found in the cis configuration on chromosome 10 with a genetic distance of about 8.3 cM, leading to their co-inheritance. However, two diseases could appear independently in subsequent generations due to crossover during meiosis. CONCLUSIONS: Here, we could successfully determine the etiology of a seemingly complex phenotype in two adjacent genes. We identified a novel variant in the PDE6C gene, related to achromatopsia. Interestingly, this variant could cooperatively cause visual disorders: cone dystrophy and cone-rod dystrophy.


Subject(s)
Color Vision Defects , Cyclic Nucleotide Phosphodiesterases, Type 6 , Pedigree , Adult , Child , Female , Humans , Male , Color Vision Defects/genetics , Consanguinity , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Exome Sequencing , Eye Proteins , Hearing Loss/genetics , Iran , Mutation , Phenotype
2.
Acta Ophthalmol ; 102(6): e893-e905, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38348755

ABSTRACT

PURPOSE: To describe the phenotype of Danish patients with genetically verified achromatopsia (ACHM) with special focus on signs of progression on structural or functional parameters, and possible genotype-phenotype correlations. METHODS: Forty-eight patients were identified, with disease-causing variants in five different genes: CNGA3, CNGB3, GNAT2, PDE6C and PDE6H. Longitudinal evaluation was possible for 11 patients and 27 patients participated in a renewed in-depth phenotyping consisting of visual acuity assessment, optical coherence tomography (OCT), fundus autofluorescence, colour vision evaluation, contrast sensitivity, mesopic microperimetry and full-field electroretinography. Foveal morphology was evaluated based on OCT images for all 48 patients using a grading system based on the integrity of the hyperreflective photoreceptor band, the inner segment ellipsoid zone (ISe). Signs of progression were evaluated based on longitudinal data and correlation with age. RESULTS: We found a statistically significant positive correlation between OCT grade and age (Spearman ρ = 0.62, p < 0.0001) and we observed changes in the foveal morphology in 2 of 11 patients with ≥5 years of follow-up. We did not find any convincing correlation between age and functional parameters (visual acuity, retinal sensitivity and contrast sensitivity) nor did we find correlation between structural and functional parameters, or any clear genotype-phenotype correlation. CONCLUSIONS: Some patients with ACHM demonstrate signs of progressive foveal changes in OCT characteristics with increasing age. This is relevant in terms of possible new treatments. However, functional characteristics, such as visual acuity, remained stable despite changing foveal structure. Thus, seen from a patient perspective, ACHM can still be considered a non-progressive condition.


Subject(s)
Color Vision Defects , Cyclic Nucleotide-Gated Cation Channels , Electroretinography , Phenotype , Tomography, Optical Coherence , Visual Acuity , Humans , Color Vision Defects/genetics , Color Vision Defects/physiopathology , Color Vision Defects/diagnosis , Male , Tomography, Optical Coherence/methods , Female , Visual Acuity/physiology , Adult , Denmark , Adolescent , Young Adult , Child , Middle Aged , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Mutation , Visual Field Tests , Contrast Sensitivity/physiology , Follow-Up Studies , Fluorescein Angiography/methods , Eye Proteins/genetics , Guanylate Cyclase/genetics , Visual Fields/physiology , Genetic Association Studies , DNA Mutational Analysis , DNA/genetics , Color Vision/physiology
3.
Prog Retin Eye Res ; 100: 101244, 2024 May.
Article in English | MEDLINE | ID: mdl-38278208

ABSTRACT

Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.


Subject(s)
Eye Diseases, Hereditary , Retinal Diseases , Humans , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/physiopathology , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/physiopathology , Genotype , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/therapy , Leber Congenital Amaurosis/physiopathology , Molecular Biology , Phenotype , Retinal Diseases/genetics , Retinal Diseases/physiopathology , Retinal Diseases/therapy
4.
Genes (Basel) ; 14(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36980963

ABSTRACT

Achromatopsia is a rare congenital condition with cone photoreceptor dysfunction causing color blindness, reduced vision, nystagmus and photophobia. New treatments are being developed, but the current evidence is still conflicting regarding possible progression over time, and there is no clear genotype-phenotype correlation. This natural history study aimed to further explore the course of disease and potential clinical differences between various genotypes. The retrospective design allowed for the study of a large cohort with a long follow-up. Patients were identified from the Danish national registries. If not already available, genetic analysis was offered to the patient. Clinical data from 1945-2022 were retrieved from medical records and included best-corrected visual acuity (BCVA), color vision, refractive error, nystagmus, visual fields and fundoscopic findings. We identified variants believed to be disease causing in five of the known achromatopsia genes: CNGA3; CNGB3; GNAT2; PDE6C and PDE6H; and novel variants were identified in CNGB3 and PDE6C. Progressive deterioration of BCVA only attributable to achromatopsia was found in three of 58 patients. Progressive phenotype was seen with variants in CNGB3 and PDE6C. The results indicate that myopia could be more frequently occurring with variants in GNAT2, PDE6C and PDE6H and support the evidence that achromatopsia is a predominantly stationary condition with respect to BCVA. Although a clear genotype-phenotype correlation can still not be concluded, there may be differences in phenotypical characteristics with variants in different genes.


Subject(s)
Color Vision Defects , Humans , Color Vision Defects/genetics , Retrospective Studies , Cyclic Nucleotide-Gated Cation Channels/genetics , Denmark
5.
Genes (Basel) ; 14(2)2023 02 18.
Article in English | MEDLINE | ID: mdl-36833446

ABSTRACT

This multicenter study aimed to characterize Korean patients with achromatopsia. The patients' genotypes and phenotypes were retrospectively evaluated. Twenty-one patients (with a mean age at the baseline of 10.9 years) were enrolled and followed up for a mean of 7.3 years. A targeted gene panel or exome sequencing was performed. The pathogenic variants of the four genes and their frequencies were identified. CNGA3 and PDE6C were equally the most prevalent genes: CNGA3 (N = 8, 38.1%), PDE6C (N = 8, 38.1%), CNGB3 (N = 3, 14.3%), and GNAT2 (N = 2, 9.5%). The degree of functional and structural defects varied among the patients. The patients' age exhibited no significant correlation with structural defects. During the follow-up, the visual acuity and retinal thickness did not change significantly. In CNGA3-achromatopsia patients, a proportion of patients with a normal foveal ellipsoid zone on the OCT was significantly higher than that of patients with other causative genes (62.5% vs. 16.7%; p = 0.023). In PDE6C-achromatopsia patients, the same proportion was significantly lower than that of patients with other causative genes (0% vs. 58.3%; p = 0.003). Korean patients with achromatopsia showed similar clinical features but a higher prevalence of PDE6C variants than those of other ethnic groups. The retinal phenotypes of the PDE6C variants were more likely to be worse than those of other genes.


Subject(s)
Color Vision Defects , Humans , Color Vision Defects/genetics , Retrospective Studies , Cyclic Nucleotide-Gated Cation Channels/genetics , Republic of Korea
6.
Dev Biol ; 488: 131-150, 2022 08.
Article in English | MEDLINE | ID: mdl-35644251

ABSTRACT

How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Cone Photoreceptor Cells , Animals , Humans , Mice , Animals, Genetically Modified , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Eye Proteins/genetics , Introns/genetics , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Transcription Factors/metabolism
7.
Case Rep Ophthalmol ; 12(3): 749-760, 2021.
Article in English | MEDLINE | ID: mdl-34720973

ABSTRACT

We report the clinical phenotype and genetic findings of two variants in PDE6C underlying achromatopsia (ACHM). Four patients with the variant c.1670G>A in exon 13 of the PDE6C gene were identified. Additionally, one had compound heterozygous genotype, with two variants in the PDE6C gene, a variant of c.2192G>A in exon 18 and c.1670G>A in exon 13. All patients presented the symptomatic triad of decreased visual acuity, severe photophobia, and colour vision disturbances. SD-OCT showed an absence of the ellipsoid zone, creating an optically empty cavity at the fovea in three patients. The patient with the compound heterozygous genotype presented a more severe subfoveal outer retina atrophy. ERG recordings showed extinguished responses under photopic and 30-Hz flicker stimulation, with a normal rod response. We identified two new variants in the PDE6C gene that leads to ACHM.

8.
Ophthalmic Genet ; 41(6): 591-598, 2020 12.
Article in English | MEDLINE | ID: mdl-32787476

ABSTRACT

Background: Achromatopsia (ACHM) is an inherited retinal disease affecting the cone cell function. To date, six pathogenic genes of ACHM have been identified. However, the diagnostic and therapeutic methods of this disorder remain limited. Herein, to characterize the clinical features and genetic causes of three affected siblings in a Chinese family with ACHM, we used target next-generation sequencing (NGS) and found new pathogenic factors associated with ACHM in this family. Materials and methods: Three patients with ACHM and three healthy family members were included in this study. All participants received comprehensive ophthalmic tests. NGS approach was performed on the patients to determine the causative mutation for this family. The silico analysis was also applied to predict the pathogenesis of identified mutations. Results: Genetic assessments revealed compound heterozygous mutations of the PDE6C gene (c.1413 + 1 G > C, c.305 G > A), carried by all three patients. Both mutations were novel and predicted to be deleterious by six types of online predictive software. The heterozygous PDE6C missense mutation (c.305 G > A) was found from the mother and the heterozygous PDE6C splice site mutation (c.1413 + 1 G > C) was found in the father and all the children. All patients in the family showed typical signs and symptoms of ACHM. Conclusions: We report novel compound heterozygous PDE6C mutations in causing ACHM and further confirm the clinical diagnosis. Our study extends the genotypic spectrums for PDE6C-ACHM and better illustrates its genotype-phenotype correlations, which would help the ACHM patients with better genetic diagnosis, prognosis, and gene treatment.


Subject(s)
Asian People/genetics , Color Vision Defects/genetics , Color Vision Defects/pathology , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Eye Proteins/genetics , Genetic Association Studies , Mutation , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Humans , Male , Pedigree
9.
Iran Biomed J ; 24(4): 257-63, 2020 07.
Article in English | MEDLINE | ID: mdl-32306724

ABSTRACT

Background: The clinical phenotyping of patients with achromatopsia harboring variants in phosphordiesterase 6C (PDE6C) has poorly been described in the literature. PDE6C encodes the catalytic subunit of the cone phosphodiesterase, which hydrolyzes the cyclic guanosine monophosphate that proceeds with the hyperpolarization of photoreceptor cell membranes, as the final step of the phototransduction cascade. Methods: In the current study, two patients from a consanguineous family underwent full ophthalmologic examination and molecular investigations including WES. The impact of the variant on the functionality of the protein has been analyzed using in silico molecular modeling. Results: The patients identified with achromatopsia segregated a homozygous missense variant (c.C1775A:p.A592D) in PDE6C gene located on chromosome 10q23. Molecular modeling demonstrated that the variant would cause a protein conformational change and result in reduced phosphodiesterase activity. Conclusion: Our data extended the phenotypic spectrum of retinal disorders caused by PDE6C variants and provided new clinical and genetic information on achromatopsia.


Subject(s)
Alleles , Color Vision Defects/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Eye Proteins/genetics , Mutation, Missense/genetics , Adult , Base Sequence , Color Vision Defects/physiopathology , Cyclic Nucleotide Phosphodiesterases, Type 6/chemistry , Electroretinography , Eye Proteins/chemistry , Female , Humans , Male , Models, Molecular , Pedigree
10.
BMC Genomics ; 21(1): 132, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32033529

ABSTRACT

BACKGROUND: Retinal degenerative diseases affect millions of people and represent the leading cause of vision loss around the world. Retinal degeneration has been attributed to a wide variety of causes, such as disruption of genes involved in phototransduction, biosynthesis, folding of the rhodopsin molecule, and the structural support of the retina. The molecular pathogenesis of the biological events in retinal degeneration is unclear; however, the molecular basis of the retinal pathological defect can be potentially determined by gene-expression profiling of the whole retina. In the present study, we analyzed the differential gene expression profile of the retina from a wild-type zebrafish and phosphodiesterase 6c (pde6c) mutant. RESULTS: The datasets were downloaded from the Sequence Read Archive (SRA), and adaptors and unbiased bases were removed, and sequences were checked to ensure the quality. The reads were further aligned to the reference genome of zebrafish, and the gene expression was calculated. The differentially expressed genes (DEGs) were filtered based on the log fold change (logFC) (±4) and p-values (p < 0.001). We performed gene annotation (molecular function [MF], biological process [BP], cellular component [CC]), and determined the functional pathways Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for the DEGs. Our result showed 216 upregulated and 3527 downregulated genes between normal and pde6c mutant zebrafish. These DEGs are involved in various KEGG pathways, such as the phototransduction (12 genes), mRNA surveillance (17 genes), phagosome (25 genes), glycolysis/gluconeogenesis (15 genes), adrenergic signaling in cardiomyocytes (29 genes), ribosome (20 genes), the citrate cycle (TCA cycle; 8 genes), insulin signaling (24 genes), oxidative phosphorylation (20 genes), and RNA transport (22 genes) pathways. Many more of all the pathway genes were down-regulated, while fewer were up-regulated in the retina of pde6c mutant zebrafish. CONCLUSIONS: Our data strongly indicate that, among these genes, the above-mentioned pathways' genes as well as calcium-binding, neural damage, peptidase, immunological, and apoptosis proteins are mostly involved in the retinal and neural degeneration that cause abnormalities in photoreceptors or retinal pigment epithelium (RPE) cells.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Retinal Degeneration/genetics , Zebrafish Proteins/genetics , Animals , Gene Ontology , Gene Regulatory Networks , Light Signal Transduction/genetics , Mutation , RNA-Seq , Retina/metabolism , Zebrafish/genetics
11.
Ophthalmic Genet ; 39(6): 678-683, 2018 12.
Article in English | MEDLINE | ID: mdl-30289319

ABSTRACT

PURPOSE: To report five novel genetic variants in seven unrelated consanguineous families with achromatopsia (ACHM). METHODS: Patients were examined with multimodal retinal imaging and full-field electroretinography (ffERG). Genetic testing was conducted using next-generation sequencing (NGS). RESULTS: Three novel homozygous variants were detected in CNGA3: a missense c.967G > C (p.Ala323Pro) variant was detected in exon 8 (one patient), a splice site variant c.101 + 1G > A in intron 2 (three patients), and a splice site variant c.395 + 1G > T in intron 4(one patient). Another two novel variants were found in PDE6C: a homozygous missense variant c.1899C > A (p.His633Gln) in exon 15 (one patient) and a homozygous splice site variant c.1072-1G > C in intron 7 (one patient). Mutation segregation assessment was possible in 3 of the 7 families. All patients had nonrecordable ffERG 30-Hz flicker responses, reduced single-flash cone responses but preserved rod responses. Patients presented with variable degrees of foveal outer retinal layer loss and variable patterns of foveal hyperautofluorescence. CONCLUSIONS: These novel variants expand the genotypes associated with ACHM and may help in future therapy development for ACHM.


Subject(s)
Color Vision Defects/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , Eye Proteins/genetics , Genetic Variation , Adult , Child , Child, Preschool , Color Vision Defects/diagnostic imaging , Color Vision Defects/physiopathology , Consanguinity , DNA Mutational Analysis , Electroretinography , Exons/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Introns/genetics , Male , Multimodal Imaging , Retina/physiopathology , Retrospective Studies , Tomography, Optical Coherence
12.
Hum Mutat ; 39(10): 1366-1371, 2018 10.
Article in English | MEDLINE | ID: mdl-30080950

ABSTRACT

Biallelic PDE6C mutations are a known cause for rod monochromacy, better known as autosomal recessive achromatopsia (ACHM), and early-onset cone photoreceptor dysfunction. PDE6C encodes the catalytic α'-subunit of the cone photoreceptor phosphodiesterase, thereby constituting an essential part of the phototransduction cascade. Here, we present the results of a study comprising 176 genetically preselected patients who remained unsolved after Sanger sequencing of the most frequent genes accounting for ACHM, and were subsequently screened for exonic and splice site variants in PDE6C applying a targeted next generation sequencing approach. We were able to identify potentially pathogenic biallelic variants in 15 index cases. The mutation spectrum comprises 18 different alleles, 15 of which are novel. Our study significantly contributes to the mutation spectrum of PDE6C and allows for a realistic estimate of the prevalence of PDE6C mutations in ACHM since our entire ACHM cohort comprises 1,074 independent families.


Subject(s)
Catalytic Domain/genetics , Color Vision Defects/diagnosis , Color Vision Defects/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Eye Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Alleles , Child, Preschool , Computational Biology/methods , Cyclic Nucleotide Phosphodiesterases, Type 6/chemistry , Databases, Genetic , Eye Proteins/chemistry , Genotype , Humans , Infant , Infant, Newborn , Phenotype , Retinal Cone Photoreceptor Cells/metabolism , Sequence Analysis, DNA
13.
J Neurogenet ; 31(3): 88-101, 2017 09.
Article in English | MEDLINE | ID: mdl-28812418

ABSTRACT

Zebrafish are an excellent animal model for research on vertebrate development and human diseases. Sophisticated genetic tools including large-scale mutagenesis methodology make zebrafish useful for studying neuronal degenerative diseases. Here, we review zebrafish models of inherited ophthalmic diseases, focusing on cGMP metabolism in photoreceptors. cGMP is the second messenger of phototransduction, and abnormal cGMP levels are associated with photoreceptor death. cGMP concentration represents a balance between cGMP phosphodiesterase 6 (PDE6) and guanylate cyclase (GC) activities in photoreceptors. Various zebrafish cGMP metabolism mutants were used to clarify molecular mechanisms by which dysfunctions in this pathway trigger photoreceptor degeneration. Here, we review the history of research on the retinal degeneration (rd) mutant mouse, which carries a genetic mutation of PDE6b, and we also highlight recent research in photoreceptor degeneration using zebrafish models. Several recent discoveries that provide insight into cGMP toxicity in photoreceptors are discussed.


Subject(s)
Cyclic GMP , Disease Models, Animal , Retina/drug effects , Retinal Degeneration/genetics , Animals , Cyclic GMP/genetics , Cyclic GMP/metabolism , Cyclic GMP/toxicity , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Humans , Mice , Mice, Mutant Strains , Mutation/genetics , Photoreceptor Cells, Vertebrate/metabolism , Vision, Ocular/genetics , Zebrafish
14.
Ophthalmic Genet ; 36(2): 137-44, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25605338

ABSTRACT

PURPOSE: We have previously reported clinical features of two siblings, a sister with complete achromatopsia (ACHM) and a brother with incomplete ACHM, in a consanguineous Japanese family. With the current study, we intended to identify a disease-causing mutation in the siblings and to investigate why the phenotypes of the siblings differed. METHODS: We performed a comprehensive ophthalmic examination for each sibling and parent. Whole-exome and Sanger sequencing were performed on genomic DNA. Molecular modeling was analyzed in an in silico study. RESULTS: The ophthalmic examination revealed severe macular atrophy in the older female sibling at 30 years of age and mild macular atrophy in the brother at 26 years of age. The genetic analysis identified a novel homozygous PDE6C mutation (p.E591K) as the disease-causing allele in the siblings. Each parent was heterozygous for the mutation. Molecular modeling showed that the mutation could cause a conformational change in the PDE6C protein and result in reduced phosphodiesterase activity. We also identified an OPN1SW mutation (p.G79R), which is associated with congenital tritan deficiencies, in the sister and the father but not in the brother. CONCLUSIONS: A novel homozygous PDE6C mutation was identified as the cause of ACHM. In addition, we identified an OPN1SW mutation in the sibling with complete ACHM, which might explain the difference in phenotype (complete versus incomplete ACHM) between the siblings.


Subject(s)
Color Vision Defects/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Eye Proteins/genetics , Genes, Recessive/genetics , Mutation , Retina/pathology , Rod Opsins/genetics , Adult , Asian People/genetics , Atrophy , Color Perception Tests , Consanguinity , DNA Mutational Analysis , Electroretinography , Exome/genetics , Female , Humans , Male , Models, Molecular , Pedigree , Phenotype , Siblings , Tomography, Optical Coherence , Visual Acuity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL