Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
1.
J Environ Sci (China) ; 148: 116-125, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095150

ABSTRACT

Perfluoroalkyl substances (PFASs) are typical persistent organic pollutants, and their removal is urgently required but challenging. Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts. Herein, hexagonal ZnIn2S4 (ZIS) nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques. In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate (OBS), one kind of representative PFASs, the as-synthesized ZIS showed activity superior to P25 TiO2 under both simulated sunlight and visible-light irradiation. The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation. The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface. Photogenerated e- and h+ were the main active species involved in OBS degradation in the ZIS system. This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.


Subject(s)
Fluorocarbons , Light , Photolysis , Fluorocarbons/chemistry , Nanostructures/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Zinc/chemistry , Indium/chemistry , Models, Chemical
2.
Water Res ; 263: 122189, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096813

ABSTRACT

A variety of per- and polyfluoroalkyl substances (PFASs) have been released into the environment via wastewater treatment plant (WWTP) effluent, with current target and nontarget analytical methods typically focusing on negatively ionized PFASs while largely overlooking positively ionized ones. In this study, five cationic PFASs, perfluoroalkyl sulfonyl quaternary ammonium substances (PFAQASs), were first identified in surface water impacted by the WWTP effluent, applying a metabolomics-based nontarget analysis method. Environmental behaviors of identified novel PFAQASs were further investigated. In surface water, sediment, and fish (Coilia mystus) samples collected from the Yangtze River, 8:3 PFAQA was consistently the predominant PFAQASs, with the mean concentrations of 90 ng/L (< LOD-558 ng/L), 92 ng/g dw (< LOD-421 ng/g dw), and 2.3 ng/g ww (< LOD-4.6 ng/g ww), respectively. This study highlights the necessity to discover other cationic PFASs in the environment. Among PFAQASs, 8:4 PFAQA (4.2, range 3.4 - 4.6) had the highest mean sediment-water partitioning coefficient (log Koc), followed by 8:3 PFAQA (3.9, 2.8 - 4.5) and 6:3 PFAQA (3.7, 3.3 - 4.1). The log Koc of PFAQASs showed a general increase trend with the increasing carbon chain length. Mean bioaccumulation factor (BAF) values of PFAQASs calculated in the collected fish from the Yangtze River ranged from 1.9 ± 0.32 (4:3 PFAQA) to 2.9 ± 0.34 (8:4 PFAQA). The mean BAF values of PFAQASs generally increased with the carbon chain length. Further studies are warranted to elucidate the environmental fate, potential toxicity, and human exposure implications for these identified novel PFASs.

3.
Sci Total Environ ; : 175205, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097023

ABSTRACT

Crop contamination of perfluoroalkyl substances (PFASs) may threaten human health, with root and leaves representing the primary uptake pathways of PFASs in crops. Therefore, it is imperative to elucidate the uptake characteristics of PFASs by crop roots and leaves as well as the critical influencing factors. In this study, the uptake and translocation of PFASs by roots and leaves of pak choi and radish were systematically explored based on perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). Additionally, the roles of root Casparian strips, leaf stomata, and PFAS structures in the aforementioned processes were elucidated. Compared with pak choi, PFASs are more easily transferred to leaves after root uptake in radish, resulting from the lack of root Casparian strips. In pak choi root, the bioaccumulation of C4-C8 perfluoroalkyl carboxylic acids (PFCAs) showed a U-shaped trend with the increase of their carbon chain lengths, and the translocation potentials of individual PFASs from root to leaves negatively correlated with their chain lengths. The leaf uptake of PFOA in pak choi and radish mainly depended on cuticle sorption, with the evidence of a slight decrease in the concentrations of PFOA in exposed leaves after stomatal closure induced by abscisic acid. The leaf bioaccumulation of C4-C8 PFCAs in pak choi exhibited an inverted U-shaped trend as their carbon chain lengths increased. PFASs in exposed leaves can be translocated to the root and then re-transferred to unexposed leaves in vegetables. The longer-chain PFASs showed higher translocation potentials from exposed leaves to root. PFOS demonstrated a higher bioaccumulation than PFOA in crop roots and leaves, mainly due to the greater hydrophobicity of PFOS. Planting root vegetables lacking Casparian strips is inadvisable in PFAS-contaminated environments, in view of their higher PFAS bioaccumulation and considerable human intake.

4.
Se Pu ; 42(8): 740-748, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086242

ABSTRACT

Perfluorinated and polyfluoroalkyl substances (PFASs) are compounds characterized by at least one perfluorinated carbon atom in an alkyl chain linked to side-chain groups. Owing to their unique chemical properties, these compounds are widely used in industrial production and daily life. However, owing to anthropogenic activities, sewage discharge, surface runoff, and atmospheric deposition, PFASs have gradually infiltrated the environment and aquatic resources. With their gradual accumulation in environmental waters, PFASs have been detected in fishes and several fish-feeding species, suggesting that they are bioconcentrated and even amplified in aquatic organisms. PFASs exhibit high intestinal absorption efficiencies, and they bioaccumulate at higher trophic levels in the food chain. They can be bioconcentrated in the human body via food (e. g., fish) and thus threaten human health. Therefore, establishing an efficient analytical technique for use in analyzing PFASs in typical fish samples and providing technical support for the safety regulation and risk assessment of fish products is necessary. In this study, by combining solvent extraction and magnetic dispersion-solid phase extraction (d-SPE), an improved QuEChERS method with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 13 PFASs in fish samples. Fe3O4-TiO2 can be used as an ideal adsorbent in the removal of sample matrix interference and a separation medium for the rapid encapsulation of other solids to be isolated from the solution. Based on the matrix characteristics of the fish products and structural properties of the target PFASs, Fe3O4-TiO2 and N-propyl ethylenediamine (PSA) were employed as adsorbents in dispersive purification. The internal standard method was used in the quantitative analyses of the PFASs. To optimize the sample pretreatment conditions of analyzing PFASs, the selection of the extraction solvent and amounts of Fe3O4-TiO2 and PSA were optimized. Several PFASs contain acidic groups that are non-dissociated in acidic environments, thus favoring their entry into the organic phase. In addition, acidified acetonitrile can denature and precipitate the proteins within the sample matrix, facilitating their removal. Finally, 2% formic acid acetonitrile was used as the extraction solvent, and 20 mg Fe3O4-TiO2, 20 mg PSA and 120 mg anhydrous MgSO4 were used as purification adsorbents. Under the optimized conditions, the developed method exhibited an excellent linearity (R≥0.9973) in the range of 0.01-50 µg/L, and the limits of detection (LODs) and quantification (LOQs) ranged from 0.001-0.023 and 0.003-0.078 µg/L, respectively. The recoveries of the 13 PFASs at low, medium, and high spiked levels (0.5, 10, and 100 µg/kg) were 78.1%-118%, with the intra- and inter-day precisions of 0.2%-11.1% and 0.8%-8.7%, respectively. This method was applied in analyzing real samples, and PFASs including perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, and perfluorotridecanoic acid, were detected in all 11 samples evaluated. This method is simple, sensitive, and suitable for use in analyzing PFASs in fish samples.


Subject(s)
Fishes , Fluorocarbons , Food Contamination , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Fluorocarbons/analysis , Animals , Chromatography, High Pressure Liquid , Food Contamination/analysis , Caprylates/analysis , Alkanesulfonic Acids/analysis
5.
Se Pu ; 42(8): 731-739, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086241

ABSTRACT

Edible plant oils are a key component of the daily human diet, and the quality and safety of plant oils are related to human health. Perfluorinated and polyfluoroalkyl substances (PFASs) are pollutants that can contaminate plant oil through the processing of raw materials or exposure to materials containing these substances. Thus, establishing a sensitive and accurate analytical method for the determination of PFASs is critical for ensuring the safety of plant oils. In this study, a method based on acetonitrile extraction and solid phase extraction purification combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) was developed for the simultaneous determination of 21 PFASs, including perfluorocarboxylic acids, perfluoroalkyl sulfonic acids, and fluorotelomer sulfonic acids, in edible plant oils. The chromatographic conditions and MS parameters were optimized, and the influences of the extraction solvents and purification method were systematically studied. Plant oil samples were directly extracted with acetonitrile and purified using a weak anion-exchange (WAX) column. The 21 target PFASs were separated on a reversed-phase C18 chromatographic column and detected using a triple quadrupole mass spectrometer with an electrospray ionization source. The mass spectrometer was operated in negative-ion mode. The target compounds were analyzed in multiple reaction monitoring (MRM) mode and quantified using an internal standard method. The results demonstrated that the severe interference observed during the detection of PFASs in the co-extracted substances was completely eliminated after the extraction mixture was purified using a WAX column. The 21 target PFASs showed good linearity in their corresponding ranges, with correlation coefficients greater than 0.995. The limits of detection (LODs) and limits of quantification (LOQs) of the method were in the range of 0.004-0.015 and 0.015-0.050 µg/kg, respectively. The recoveries ranged from 95.6% to 115.8%, with relative standard deviations (RSDs) in the range of 0.3%-10.9% (n=9). The established method is characterized by simple sample pretreatment, good sensitivity, high immunity to interferences, and good stability, rendering it suitable for the rapid analysis and accurate determination of typical PFASs in edible plant oils.


Subject(s)
Fluorocarbons , Food Contamination , Plant Oils , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Fluorocarbons/analysis , Tandem Mass Spectrometry/methods , Food Contamination/analysis , Plant Oils/chemistry , Plant Oils/analysis
6.
J Hazard Mater ; 477: 135219, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053068

ABSTRACT

The relationship between perfluoroalkyl substances (PFASs) and the risk of breast cancer has been controversial. Here, we used the National Health and Nutrition Examination Survey (NHANES) database and a meta-analysis to examine the association between PFASs and breast cancer incidence. From the NHANES database, we obtained data on PFASs and breast cancer from 2003 to 2014. We searched PubMed, Web of Science, Scopus and PsycINFO from the establishment of the databases to August 24, 2023, for research on PFASs related to breast cancer. A meta-analysis was performed using Stata 12.0. A total of 1430 subjects aged 20 years or older were selected from the NHANES. The logistic regression results indicated that there was no correlation between breast cancer and PFASs (P > 0.05). The meta-analysis, included nine studies with a total of 2399 breast cancer patients, included in the meta-analysis, revealed no statistically significant association between PFASs and the risk of breast cancer (odds ratio = 1.04; 95 % confidence interval, 0.88-1.21; P > 0.05). The results show that PFASs are not associated with breast cancer risk.

7.
J Hazard Mater ; 477: 135246, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39032177

ABSTRACT

The Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is the only freshwater cetacean found in China. However, per- and polyfluoroalkyl substances (PFASs) risks in YFPs remain unclear. In this study, legacy PFASs, their precursors and alternatives, were determined in YFP muscles (n = 32), liver (n = 29), kidney (n = 24), skin (n = 5), and blubbers (n = 25) collected from Poyang Lake (PL) and Yangtze River (YR) between 2017 and 2023. Perfluorooctane sulfonic acid (PFOS) was the predominant PFAS in all YFP tissues, with a median hepatic concentration of 1700 ng/g wet weight, which is higher than that in other finless porpoises worldwide. PFOS, chlorinated polyfluorinated ether sulfonates (Cl-PFESAs), and perfluoroalkane sulfonamides concentrations in YFP livers from PL were significantly higher than those from YR (p < 0.05); however, the opposite was observed for hexafluoropropylene oxide acids. Biomagnification and trophic magnification factors (BMF and TMF, respectively) of most PFASs in the YFP food web were > 1. Perfluoroheptane sulfonic acid had the highest BMF value (99), followed by 6:2 Cl-PFESA (94) and PFOS (81). The TMFmuscle and TMFliver values of the total PFASs were 3.4 and 6.6, respectively, and were significantly positively correlated with the fluorinated carbon chain length (p < 0.01). In addition, up to 62 % of the hazard quotients for 6:2 Cl-PFESA were > 1, which was higher than that of PFOS (48 %), suggesting a high hepatotoxicity of 6:2 Cl-PFESA to YFPs. Bioaccumulation and biotoxicity of legacy and emerging alternatives in aquatic organisms continue to be a concern, especially for underscoring the vulnerability of the long-lived and endangered species.

8.
J Vet Res ; 68(2): 241-248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947157

ABSTRACT

Introduction: This study focuses on perfluoroalkyl substance (PFAS) content in chickens' eggs and the livers of farm animals. Material and Methods: Chickens' eggs (n = 25) and the livers of cows (n = 10), chickens (n = 7) and horses (n = 3) were collected from various regions of Poland. Samples were analysed using the isotope dilution technique with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Results: The mean lower bound (LB) sum of four PFAS (∑4 PFAS) concentrations (perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexanesulfonic acid (PFHxS)) were the highest in cows' livers (0.52 µg/kg) and much lower in chickens' (0.17 µg/kg) and horses' livers (0.13 µg/kg) and chickens' eggs (0.096 µg/kg). The ratio of ∑4 PFASs to the limits set by Commission Regulation (EU) 2023/915 was <7% for liver and <6% for eggs. Linear PFOS was the compound with the highest detection frequency (8% in eggs and 48% in all livers). In cows' livers it was detected in 80% of samples. The estimated exposure to LB ∑4 PFASs via consumption of liver tissue from farm animals (assuming 50 g and 100 g portions) was <52% of the tolerable weekly intake (TWI) for children and <17% of the TWI for adults. Dietary intake via the average portion of three eggs led to low exposure of <15% for children and <5% for adults. Conclusion: Neither eggs nor the livers of chickens or horses as analysed in this study are significant sources of PFASs, while cows' livers might contribute significantly to a child's overall dietary intake. Further investigation of PFOS in farm animal livers should be conducted.

9.
Toxicol Appl Pharmacol ; 490: 117044, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39074624

ABSTRACT

BACKGROUND: Many studies have reported that prenatal exposure to Per- and Polyfluoroalkyl Substances (PFASs) can disrupt immune function. However, little is known about the effects of PFASs on immune molecules. The study analyzed the association between prenatal exposure to mixed and single PFASs and plasma immune molecules in three-year-old children. METHODS: Ten PFASs were measured in umbilical cord serum, while peripheral blood samples were collected at age three to measure immune molecules. Associations between exposure to individual and combined PFASs and immune molecules were analyzed using Generalized Linear Models and Weighted Quantile Sum (WQS) regression. RESULTS: (1) Interleukin-4 (IL-4) increased by 23.85% (95% CI:2.99,48.94) with each doubling of Perfluorooctanoic Acid (PFOA), and Interleukin-6 (IL-6) increased by 39.07% (95%CI:4.06,85.86) with Perfluorotridecanoic Acid (PFTrDA). Elevated PFOA and Perfluorononanoic Acid (PFNA) were correlated with increases of 34.06% (95% CI: 6.41, 70.28) and 24.41% (95% CI: 0.99, 53.27) in Eotaxin-3, respectively. Additionally, the doubling of Perfluorohexane Sulfonic Acid (PFHxS) was associated with a 9.51% decrease in Periostin (95% CI: -17.84, -0.33). (2) The WQS analysis revealed that mixed PFASs were associated with increased IL-6 (ß = 0.37, 95%CI:0.04,0.69), mainly driven by PFTrDA, PFNA, and 8:2 Chlorinated Perfluoroethyl Sulfonamide (8:2 Cl-PFESA). Moreover, mixed PFASs were linked to an increase in Eotaxin-3 (ß = 0.32, 95% CI: 0.09,0.55), primarily influenced by PFOA, PFTrDA, and Perfluorododecanoic Acid (PFDoDA). CONCLUSIONS: Prenatal PFASs exposure significantly alters the levels of immune molecules in three-year-old children, highlighting the importance of understanding environmental impacts on early immune development.

10.
Sci Total Environ ; : 175091, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39079643

ABSTRACT

Due to the wastewater irrigation or biosolid application, per- and polyfluoroalkyl substances (PFASs) have been widely detected in agriculture soil and hence crops or vegetables. Consumption of contaminated crops and vegetables is considered as an important route of human exposure to PFASs. Machine learning (ML) models have been developed to predict PFAS uptake by plants with majority focus on roots. However, ML models for predicting accumulation of PFASs in above ground edible tissues have yet to be investigated. In this study, 811 data points covering 22 PFASs represented by molecular fingerprints and 5 plant categories (namely the root class, leaf class, cereals, legumes, and fruits) were used for model development. The Extreme Gradient Boosting (XGB) model demonstrated the most favorable performance to predict the bioaccumulation factors (BAFs) in all the 4 plant tissues (namely root, leaf, stem, and fruit) achieving coefficients of determination R2 as 0.82-0.93. Feature importance analysis showed that the top influential factors for BAFs varied among different plant tissues, indicating that model developed for root concentration prediction may not be feasible for above ground parts. The XGB model's performance was further demonstrated by comparing with data from pot experiments measuring BAFs of 12 PFASs in lettuce. The correlation between predicted and measured results was favorable for BAFs in both lettuce roots and leaves with R2 values of 0.76 and 0.81. This study developed a robust approach to comprehensively understand the uptake of PFASs in both plant roots and above ground parts, offering key insights into PFAS risk assessment and food safety.

11.
Chemosphere ; 363: 142934, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053781

ABSTRACT

Microplastics (MPLs) are contaminants of emerging concern (CECs) ubiquitous in aquatic environments, which can be bioaccumulated along the food chain. In this study, the accumulation of polyethylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) microplastics (MPLs) of sizes below 63 µm was assessed in Mediterranean mussels (Mytilus galloprovincialis spp). Moreover, the potential of mussels to uptake and bioaccumulate other organic contaminants, such as triclosan (TCS) and per- and polyfluoroalkyl substances (PFASs), was evaluated with and without the presence of MPLs. Then, the modulation of MPLs in the human bioaccessibility of co-contaminants was assessed by in vitro assays that simulated the human digestion process. Exposure experiments were carried out in 15 L marine microcosms. The bioaccumulation and bioaccessibility of PE, PS, PET, and co-contaminants were assessed by means of liquid chromatography -size exclusion chromatography-coupled to high-resolution mass spectrometry (LC(SEC)-HRMS). Our outcomes confirm that MPL bioaccumulation in filter-feeding organisms is a function of MPL chemical composition and particle sizes. Finally, despite the lower accumulation and bioaccumulation of PFASs in the presence of MPLs, the bioaccessibility assays revealed that PFASs bioaccessibility was favoured in the presence of MPLs. Since part of the bioaccumulated PFASs are adsorbed onto MPL surfaces by hydrophobic and electrostatic interactions, these interactions easily change with the pH during digestion, and the PFASs bioaccessibility increases.

12.
BMC Plant Biol ; 24(1): 556, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877484

ABSTRACT

BACKGROUND: Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS: After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION: Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.


Subject(s)
Caprylates , Fluorocarbons , Ocimum basilicum , Photosynthesis , Plant Leaves , Ocimum basilicum/metabolism , Ocimum basilicum/growth & development , Ocimum basilicum/drug effects , Caprylates/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Photosynthesis/drug effects , Fluorocarbons/metabolism , Oxidative Stress , Lipid Peroxidation/drug effects
13.
Environ Pollut ; 356: 124351, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878812

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) have been widely detected in various food, which has attracted worldwide concern. However, the factors influencing the transfer and bio-accumulation of PFASs from soils to wheat in normal farmland, is still ambiguous. We investigated the PFASs accumulation in agricultural soils and grains from 10 cites, China, and evaluated the health risks of PFASs via wheat consumption. Our results show that ∑PFASs in soils range from 0.34 µg/kg to 1.59 µg/kg with PFOA and PFOS dominating, whilst ∑PFASs in wheats range from 2.74 to 6.01 µg/kg with PFOA, PFBA and PFHxS dominating. The lower pH conditions and high total organic carbon (TOC) could result in the higher accumulation of PFASs in soils and subsequently in wheat grains, whilst the bioaccumulation factors of PFASs increase with increasing pH conditions but not with TOC. The estimated daily intake (EDI) values of PFBA, PFOA, and PFHxS are relatively high, but data supports that ingesting wheat grains does not result in any potential risk to the human beings. Our studies provided more information about PFASs accumulation in wheat grains, and help us understand the current potential risks of PFASs in food.

14.
J Hazard Mater ; 474: 134790, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850938

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC)/pancreatic cancer, is a highly aggressive malignancy with poor prognosis. Gemcitabine-based chemotherapy remains the cornerstone of PDAC treatment. Nonetheless, the development of resistance to gemcitabine among patients is a major factor contributing to unfavorable prognostic outcomes. The resistance exhibited by tumors is modulated by a constellation of factors such as genetic mutations, tumor microenvironment transforms, environmental contaminants exposure. Currently, comprehension of the relationship between environmental pollutants and tumor drug resistance remains inadequate. Our study found that PFOS/6:2 Cl-PFESA exposure increases resistance to gemcitabine in PDAC. Subsequent in vivo trials confirmed that exposure to PFOS/6:2 Cl-PFESA reduces gemcitabine's efficacy in suppressing PDAC, with the inhibition rate decreasing from 79.5 % to 56.7 %/38.7 %, respectively. Integrative multi-omics sequencing and molecular biology analyses have identified the upregulation of ribonucleotide reductase catalytic subunit M1 (RRM1) as a critical factor in gemcitabine resistance. Subsequent research has demonstrated that exposure to PFOS and 6:2 Cl-PFESA results in the upregulation of the RRM1 pathway, consequently enhancing chemotherapy resistance. Remarkably, the influence exerted by 6:2 Cl-PFESA exceeds that of PFOS. Despite 6:2 Cl-PFESA being regarded as a safer substitute for PFOS, its pronounced effect on chemotherapeutic resistance in PDAC necessitates a thorough evaluation of its potential risks related to gastrointestinal toxicity.


Subject(s)
Alkanesulfonic Acids , Carcinoma, Pancreatic Ductal , Deoxycytidine , Drug Resistance, Neoplasm , Fluorocarbons , Gemcitabine , Pancreatic Neoplasms , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Pancreatic Neoplasms/drug therapy , Humans , Fluorocarbons/toxicity , Alkanesulfonic Acids/toxicity , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Ribonucleoside Diphosphate Reductase , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Antimetabolites, Antineoplastic/therapeutic use , Female , Mice , Male , Mice, Nude
15.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38859757

ABSTRACT

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Subject(s)
Iron , Iron/chemistry , Water Pollutants, Chemical/chemistry , Halogenation , Groundwater/chemistry
16.
Environ Sci Technol ; 58(24): 10806-10816, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38829301

ABSTRACT

Temporal and spatial variability of per- and polyfluoroalkyl substances (PFASs) in herring, cod, eelpout, and guillemot covering four decades and more than 1000 km in the Baltic Sea was investigated to evaluate the effect of PFAS regulations and residence times of PFASs. Overall, PFAS concentrations responded rapidly to recent regulations but with some notable basin- and homologue-specific variability. The well-ventilated Kattegat and Bothnian Bay showed a faster log-linear decrease for most PFASs than the Baltic Proper, which lacks a significant loss mechanism. PFOS and FOSA, for example, have decreased with 0-7% y-1 in the Baltic Proper and 6-16% y-1 in other basins. PFNA and partly PFOA are exceptions and continue to show stagnant or increasing concentrations. Further, we found that Bothnian Bay herring contained the highest concentrations of >C12 perfluoroalkyl carboxylic acids (PFCAs), likely from rivers with high loads of dissolved organic carbon. In the Kattegat, low PFAS concentrations, but a high FOSA fraction, could be due to influence from the North Sea inflow below the halocline and possibly a local source of FOSA and/or isomer-specific biotransformation. This study represents the most comprehensive spatial and temporal investigation of PFASs in Baltic wildlife while providing new insights into cycling of PFASs within the Baltic Sea ecosystem.


Subject(s)
Environmental Monitoring , Fluorocarbons , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Oceans and Seas , Animals
17.
Environ Sci Technol ; 58(27): 12101-12112, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38935436

ABSTRACT

Cosmetics make up one of the consumer product categories most widely known to contain perfluoroalkyl and polyfluoroalkyl substances (PFASs), including precursors to perfluorooctanoic acid (PFOA) and other perfluoroalkyl acids (PFAAs). Because of the way cosmetics are used, most of the PFASs present in these products are likely to reach wastewater treatment plants (WWTPs), which suggests that cosmetics may contribute significantly to the load of PFOA and other PFASs at WWTPs. However, the majority of PFASs present as intentional ingredients in cosmetics cannot be quantified with the available analytical methods. To address this issue, we developed a methodology to estimate the total PFAS mass in cosmetics as well as the corresponding mass of total organic fluorine and of fluorinated side chains associated with PFAA precursors, using various ingredient databases and ingredient concentrations reported by manufacturers. Our results indicate that the cosmetics sold in California during a one-year period cumulatively contain 650-56 000 kg of total PFASs, 370-37 000 kg of organic fluorine, and 330-20 000 kg of fluorinated side chains associated with PFAA precursors. Among the 16 product subcategories considered, >90% of the PFAS mass came from shaving creams and gels, hair care products, facial cleansers, sun care products, and lotions and moisturizers, while the sum of all nine makeup subcategories accounted for <3%. Comparing our estimates to available WWTP influent data from the San Francisco Bay Area suggests that cosmetics may account for at least 4% of the precursor-derived PFAAs measured in wastewater. As the first study ever to estimate the total mass of PFASs contained in cosmetics sold in California, our results shed light on the significance of certain cosmetics as a source of PFASs to WWTPs and can inform effective source reduction efforts.


Subject(s)
Cosmetics , Fluorocarbons , Cosmetics/analysis , Fluorocarbons/analysis , California , Water Pollutants, Chemical/analysis , Wastewater/chemistry
18.
Sci Total Environ ; 946: 174201, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38936709

ABSTRACT

Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.


Subject(s)
Environmental Pollutants , Fluorocarbons , Machine Learning , Quantitative Structure-Activity Relationship , Fluorocarbons/toxicity , Environmental Pollutants/toxicity , Toxicity Tests , Humans , Ecotoxicology
19.
J Hazard Mater ; 473: 134645, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762989

ABSTRACT

While seafood is recognized for its beneficial effects on glycemic control, concerns over elevated levels of per- and polyfluoroalkyl substances (PFASs) may deter individuals from its consumption. This study aims to elucidate the relationship between seafood intake, PFASs exposure, and the odds of diabetes. Drawing from the China National Human Biomonitoring data (2017-2018), we assessed the impact of PFASs on the prevalence of prediabetes and diabetes across 10851 adults, including 5253 individuals (48.1%) reporting seafood consumption. Notably, seafood consumers exhibited PFASs levels nearly double those of non-consumers. Multinomial logistic regression identified significant positive associations between serum PFASs concentrations and prediabetes (T3 vs. T1: ORPFOA: 1.64 [1.08-2.49], ORPFNA: 1.59 [1.19-2.13], ORPFDA: 1.56 [1.13-2.17], ORPFHxS: 1.58 [1.18-2.12], ORPFHpS: 1.73 [1.24-2.43], ORPFOS: 1.51 [1.15-1.96], OR6:2 Cl-PFESA: 1.58 [1.21-2.07]). Significant positive association were also found between PFHpS, PFOS, and diabetes. RCS curves indicated significant non-linear relationships between log-transformed PFOA, PFUnDA, PFOS, 6:2 Cl-PFESA, and FBG levels. Subgroup analyses revealed that seafood consumption significantly mitigated the associations between PFASs burdens and prediabetes/diabetes. These findings suggest a protective role of dietary seafood against the adverse effects of PFASs exposure on glycemic disorders, offering insights for dietary interventions aimed at mitigating diabetes risks associated with PFASs.


Subject(s)
Diabetes Mellitus , Fluorocarbons , Prediabetic State , Seafood , Humans , Seafood/analysis , Prediabetic State/epidemiology , Prediabetic State/blood , Male , Cross-Sectional Studies , Middle Aged , Female , Adult , China/epidemiology , Fluorocarbons/blood , Diabetes Mellitus/epidemiology , Food Contamination/analysis , Aged , Diet , Young Adult
20.
J Biomed Res ; : 1-12, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38807427

ABSTRACT

Epidemiological data is scarce regarding the association between exposure to mixtures of per- and polyfluoroalkyl substances (PFASs) and liver injury in the general populace. The current research used data from the National Health and Nutrition Examination Survey (2009-2018). The PFAS exposure levels were defined by the serum concentrations of PFASs with > 70% detection in samples, namely perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDeA), and perfluorooctane sulfonic acid (PFOS). Liver injury was assessed from two aspects: first, the degree of liver inflammation was determined based on serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyltransferase (GGT), and total bilirubin (TBIL) levels; second, the degree of liver fibrosis was determined based on fibrosis-4 (FIB-4) index. We assessed the associations between individual or total PFAS exposure and these outcomes using multivariable linear regression models and logistic regression models, restricted cubic splines, and weighted quantile sum regression. Among the samples of 7484 American adults, the median concentration of PFOS was the highest, followed by PFOA and PFHxS. Using multivariable linear regression, a positive correlation was observed between all PFASs and liver enzymes such as ALT, AST, and TBIL. Additionally, the weighted quantile sum model indicated an overall positive association between the five PFASs and liver injury indicators. For liver function biomarkers and liver fibrosis, PFNA and PFOS were the most heavily weighting chemicals, respectively. Our findings provide new epidemiological evidence indicating a potential association between PFAS exposure and adverse effects on liver injury biomarkers, highlighting the potentially harmful effects of PFAS exposure on liver health.

SELECTION OF CITATIONS
SEARCH DETAIL