Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Am J Clin Pathol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250713

ABSTRACT

OBJECTIVES: Ossifying fibromyxoid tumor (OFMT) is a rare soft tissue neoplasm of uncertain histogenesis. Most OFMTs have benign behavior, and many harbor gene fusions involving the PHD finger protein 1 (PHF1), such as EP400::PHF1, MEAF6::PHF1, EPC1::PHF1, and PHF1::TFE3. The PHF1::TFE3 fusion is unique because PHF1 is at 5' instead of residing at 3' in the other fusions. In this study, we describe 2 cases of OFMT harboring PHF1::TFE3 fusions and review 13 published cases. METHODS: Two cases of PHF1::TFE3-positive OFMT were investigated using RNA Next-Generation Sequencing and immunohistochemistry. RESULTS: Most (12/15) of the PHF1::TFE3 OFMTs we studied were located at proximal and distal extremities, with a multinodular growth pattern. Only 1 case (1/10) had a shell of bone at the periphery. Areas morphologically similar to sclerosing epithelioid fibrosarcoma or low-grade fibromyxoid sarcoma were found in 8 of 12 (66.7%) cases. Eleven cases (11/15 [73.3%]) were regarded as malignant based on more than 2/50 high-power field mitotic figures, increased cellularity, or the presence of necrosis. Among the 9 cases with follow-up data, 2 patients died of disease (with metastases), 1 patient is alive with metastases, and 1 patient had multiple local recurrences. CONCLUSIONS: Because PHF1 is located at 3' in all the PHF1 fusions in OFMTs except PHF1::TFE3, the different driver molecular alterations suggest that OFMTs with 3'-PHF1 fusions and OFMTs with PHF1::TFE3 are different tumors. Immunohistochemistry confirmed TFE3 expression in all PHF1::TFE3 OFMTs. Because PHF1::TFE3-positive OFMTs have increased mitotic figures and tumor cellularity, with a high rate of metastasis, using the name PHF1::TFE3 positive fibromyxoid sarcoma may be appropriate.

2.
Genes Chromosomes Cancer ; 63(1): e23206, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37819540

ABSTRACT

We present two cases of malignant ossifying fibromyxoid tumor (OFMT) which eluded diagnosis due to compelling clinicopathologic mimicry, compounded by similarly elusive underlying molecular drivers. The first is of a clavicle mass in a 69 year-old female, which histologically showed an infiltrative nested and trabeculated proliferation of monomorphic cells giving rise to scattered spicules of immature woven bone. Excepting SATB2 positivity, the lesion showed an inconclusive immunoprofile which along with negative PHF1 FISH led to an initial diagnosis of high-grade osteosarcoma. Next generation sequencing (NGS) revealed a particularly rare CREBBP::BCORL1 fusion. The second illustrates the peculiar presentation of a dural-based mass in a 52 year-old female who presented with neurologic dyscrasias. Sections showed a sheeted monotonous proliferation of ovoid to spindle cells, but in contrast to Case #1, the tumor contained an exuberance of reticular osteoid and woven bone deposition mimicking malignant osteogenic differentiation. NGS showed a novel CREBZF::PHF1 fusion. Both tumors recurred locally less than 1 year post-operatively. As such we reiterate that careful morphologic examination is axiomatic to any diagnosis in our discipline, but this paradigm must shift to recognize that molecular diagnostics can provide closure where traditional tools have notable limitations.


Subject(s)
Bone Neoplasms , Fibroma, Ossifying , Fibroma , Osteosarcoma , Sarcoma , Soft Tissue Neoplasms , Female , Humans , Aged , Middle Aged , DNA-Binding Proteins , Fibroma, Ossifying/diagnosis , Fibroma, Ossifying/genetics , Fibroma, Ossifying/pathology , Osteogenesis , Polycomb-Group Proteins , Neoplasm Recurrence, Local , Fibroma/pathology , Osteosarcoma/diagnosis , Osteosarcoma/genetics , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Soft Tissue Neoplasms/pathology , Basic-Leucine Zipper Transcription Factors
3.
Genes (Basel) ; 14(10)2023 09 27.
Article in English | MEDLINE | ID: mdl-37895228

ABSTRACT

The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.


Subject(s)
Drosophila Proteins , Histones , Animals , Humans , Chromatin , Drosophila Proteins/genetics , Epigenesis, Genetic , Histones/genetics , Histones/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Protein Binding
4.
Biochem J ; 480(22): 1833-1844, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37888776

ABSTRACT

Polycomb repressive complex 2 (PRC2) is central to polycomb repression as it trimethylates lysine 27 on histone H3 (H3K27me3). How PRC2 is recruited to its targets to deposit H3K27me3 remains an open question. Polycomb-like (PCL) proteins, a group of conserved PRC2 accessory proteins, can direct PRC2 to its targets. In this report, we demonstrate that a PCL protein named PHF1 forms phase-separated condensates at H3K27me3 loci that recruit PRC2. Combining cellular observation and biochemical reconstitution, we show that the N-terminal domains of PHF1 cooperatively mediate target recognition, the chromo-like domain recruits PRC2, and the intrinsically disordered region (IDR) drives phase separation. Moreover, we reveal that the condensates compartmentalize PRC2, DNA, and nucleosome arrays by phase separation. Luciferase reporter assays confirm that PHF1 phase separation promotes transcription repression, further supporting a role of the condensates in polycomb repression. Based on our findings, we propose that these condensates create favorable microenvironments at the target loci for PRC2 to function.


Subject(s)
Histones , Polycomb Repressive Complex 2 , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , Histones/genetics , Histones/metabolism , DNA-Binding Proteins/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Nucleosomes
5.
Genes (Basel) ; 14(4)2023 04 18.
Article in English | MEDLINE | ID: mdl-37107696

ABSTRACT

Polycomb-like proteins (PCLs) are a crucial group of proteins associated with the Polycomb repressive complex 2 (PRC2) and are responsible for setting up the PRC2.1 subcomplex. In the vertebrate system, three homologous PCLs exist: PHF1 (PCL1), MTF2 (PCL2), and PHF19 (PCL3). Although the PCLs share a similar domain composition, they differ significantly in their primary sequence. PCLs play a critical role in targeting PRC2.1 to its genomic targets and regulating the functionality of PRC2. However, they also have PRC2-independent functions. In addition to their physiological roles, their dysregulation has been associated with various human cancers. In this review, we summarize the current understanding of the molecular mechanisms of the PCLs and how alterations in their functionality contribute to cancer development. We particularly highlight the nonoverlapping and partially opposing roles of the three PCLs in human cancer. Our review provides important insights into the biological significance of the PCLs and their potential as therapeutic targets for cancer treatment.


Subject(s)
Drosophila Proteins , Neoplasms , Humans , Histones/genetics , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Polycomb Repressive Complex 2/genetics , Cell Nucleus/metabolism , Polycomb Repressive Complex 1/metabolism , Drosophila Proteins/metabolism , Neoplasms/genetics
6.
Histopathology ; 82(6): 946-952, 2023 May.
Article in English | MEDLINE | ID: mdl-36648026

ABSTRACT

AIMS: Ossifying fibromyxoid tumor (OFMT) is a rare enigmatic tumor of uncertain differentiation that can be classified as typical, atypical, and malignant subtypes based on cellularity, nuclear grade, and mitotic activity. The majority of OFMTs, regardless of the risk of malignancy, harbor genetic translocations. We report two malignant OFMTs, including one with evidence of dedifferentiation, with novel genefusions. METHODS AND RESULTS: Case 1 was a 63-year-old male with a dedifferentiated OFMT arising in the right wrist, while case 2 was a 41-year-old male with a malignant OFMT presenting as a posterior mediastinal mass. Case 2 showed multifocal expression with EMA and synaptophysin, while desmin and S100 were absent in both tumors. NGS sequencing studies detected PHF1::FOXR1 and PHF1::FOXR2 gene fusions in cases 1 and 2, respectively. Despite aggressive regimens, both progressed with wide spread metastases resulting in death within six years of diagnosis. CONCLUSIONS: We expand the genetic spectrum of OFMTs with two novel gene fusions, PHF1::FOXR1 and PHF1::FOXR2. These cases confirm the previously reported tendencies for OFMTs with rare variant fusions to demonstrate malignant behavior, unusual morphology, and non-specific immunophenotype.


Subject(s)
Fibroma, Ossifying , Fibroma , Soft Tissue Neoplasms , Male , Humans , Middle Aged , Adult , Fibroma, Ossifying/pathology , Soft Tissue Neoplasms/pathology , Fibroma/pathology , Gene Fusion , DNA-Binding Proteins/genetics , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Forkhead Transcription Factors/genetics
7.
Genes Chromosomes Cancer ; 62(3): 152-160, 2023 03.
Article in English | MEDLINE | ID: mdl-36445224

ABSTRACT

Endometrial stromal sarcomas (ESS) are morphologically and molecularly heterogeneous. We report novel gene fusions (EPC1::EED, EPC1::EZH2, ING3::PHF1) identified by targeted RNA sequencing in five cases. The ING3::PHF1-fusion positive ESS presented in a 58-year-old female as extrauterine mesocolonic, ovarian masses, and displayed large, monomorphic ovoid-to-epithelioid cells arranged in solid sheets. The patient remained alive with disease 13 months after surgery. The three ESS with EPC1::EED occurred in the uterine corpus in patients with a median age of 58 years (range 27-62 years). One tumor showed a uniform epithelioid nested morphology, while the other two were composed of monomorphic spindle cells in fascicles with elevated mitotic figures, focal tumor cell necrosis, and lymphovascular invasion. At a median follow-up of 20 months, two patients developed local recurrence, including one with concomitant distant metastasis, while one patient remained free of disease. All three patients were alive at the last follow-up. The EPC1::EZH2-fusion positive ESS presented in a 52-year-old female in the uterus, and displayed uniform spindled cells arranged in short fascicles, with focally elevated mitotic activity but without necrosis. The patient remained free of disease 3 months after surgery. All cases were diffusely positive for CD10; four diffusely express estrogen and progesterone receptors. Our study expands the molecular spectrum of EPC1 and PHF1-related gene fusions in ESS to include additional novel subunits of the PRC2 and/or NuA4/TIP60 complexes. These cases displayed a monomorphic epithelioid or spindled phenotype, spanning low-grade and high-grade cytomorphology, all expressing CD10 and commonly ER and PR, and are prone to local and/or distant spread.


Subject(s)
Endometrial Neoplasms , Sarcoma, Endometrial Stromal , Female , Humans , Sarcoma, Endometrial Stromal/genetics , Sarcoma, Endometrial Stromal/surgery , Sarcoma, Endometrial Stromal/pathology , Chromatin Assembly and Disassembly , Endometrial Neoplasms/genetics , Endometrial Neoplasms/surgery , Endometrial Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Fusion , Homeodomain Proteins/genetics , Tumor Suppressor Proteins/genetics
8.
Genes Dev ; 36(11-12): 664-683, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35710139

ABSTRACT

Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.


Subject(s)
Endometrial Neoplasms , Sarcoma, Endometrial Stromal , Sarcoma , Chromatin , DNA-Binding Proteins/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Female , Histones/metabolism , Humans , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Sarcoma/genetics , Sarcoma, Endometrial Stromal/genetics , Sarcoma, Endometrial Stromal/metabolism , Sarcoma, Endometrial Stromal/pathology , Translocation, Genetic/genetics
9.
Neural Regen Res ; 17(8): 1645-1651, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35017410

ABSTRACT

During normal aging, there is a decline in all physiological functions in the organism. One of the most affected organs is the brain, where neurons lose their proper synaptic function leading to cognitive impairment. Aging is one of the main risk factors for the development of neurodegenerative diseases, such as Alzheimer's disease. One of the main responsible factors for synaptic dysfunction in aging and neurodegenerative diseases is the accumulation of abnormal proteins forming aggregates. The most studied brain aggregates are the senile plaques, formed by Aß peptide; however, the aggregates formed by phosphorylated tau protein have gained relevance in the last years by their toxicity. It is reported that neurons undergo severe mitochondrial dysfunction with age, with a decrease in adenosine 5'-triphosphate production, loss of the mitochondrial membrane potential, redox imbalance, impaired mitophagy, and loss of calcium buffer capacity. Interestingly, abnormal tau protein interacts with several mitochondrial proteins, suggesting that it could induce mitochondrial dysfunction. Nevertheless, whether tau-mediated mitochondrial dysfunction occurs indirectly or directly is still unknown. A recent study of our laboratory shows that phosphorylated tau at Ser396/404 (known as PHF-1), an epitope commonly related to pathology, accumulates inside mitochondria during normal aging. This accumulation occurs preferentially in synaptic mitochondria, which suggests that it may contribute to the synaptic failure and cognitive impairment seen in aged individuals. Here, we review the main tau modifications promoting mitochondrial dysfunction, and the possible mechanism involved. Also, we discuss the evidence that supports the possibility that phosphorylated tau accumulation in synaptic mitochondria promotes synaptic and cognitive impairment in aging. Finally, we show evidence and argue about the presence of phosphorylated tau PHF-1 inside mitochondria in Alzheimer's disease, which could be considered as an early event in the neurodegenerative process. Thus, phosphorylated tau PHF-1 inside the mitochondria could be considered such a potential therapeutic target to prevent or attenuate age-related cognitive impairment.

10.
Genes Chromosomes Cancer ; 61(2): 63-70, 2022 02.
Article in English | MEDLINE | ID: mdl-34651371

ABSTRACT

Low-grade endometrial stromal sarcoma (ESS) is a hormone-responsive low-grade sarcoma typically occurring in the uterine corpus in women. Their genetic hallmarks are recurrent gene fusions involving JAZF1, partnering with either SUZ12 gene or less commonly with PHF1. Low-grade ESS-like sarcoma, or endometrioid stromal sarcoma, is exceptionally rare in males and has been reported to date only in two cases, one in the paratesticular area and the other of prostatic stromal origin. We report herein two new cases of low-grade ESS-like sarcoma in male patients, one presenting as a periprostatic/peri-rectal mass with a JAZF1-GLI3 fusion, while the other as a paratesticular mass with a JAZF1-PHF1 fusion. As the GLI3 fusion appeared novel, we searched the transcriptional signature of 35 low-grade ESS from our archives and found a similar JAZF1-GLI3 fusion in a low-grade ESS arising from the uterine corpus, supporting a common pathogenesis. Histopathologically, both cases demonstrate cellular, monotonous proliferation of ovoid to fusiform cells with a background of arteriolar vascular network. Immunohistochemically, the neoplastic cells express ER, PR, and CD10, similar to ESS. One case also expresses diffuse and strong AR. On follow-up, the patient with the periprostatic mass recurred 2 years after initial surgery with peritoneal "sarcomatosis." We describe the salient diagnostic morphologic, immunohistochemical, and molecular features and discuss the differential diagnosis and possible pathogenesis of this unusual entity.


Subject(s)
Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , Genital Neoplasms, Male , Oncogene Proteins, Fusion/genetics , Pelvic Neoplasms , Sarcoma , Humans , Male , Middle Aged
11.
Exp Mol Pathol ; 123: 104686, 2021 12.
Article in English | MEDLINE | ID: mdl-34560087

ABSTRACT

Ossifying fibromyxoid tumor (OFMT) is a rare mesenchymal neoplasm of uncertain line of differentiation that can be subdivided into typical, atypical, and malignant tumors. Cytogenetically, OFMT is characterized by recurrent gene rearrangement involving PHF1 in up to 85% of cases. The most common PHF1 fusion partner is EP400, present in approximately half of cases. Most recently, a novel fusion of PHF1-TFE3 was identified in about 10% of PHF1-rearranged OFMTs. Herein, we report a unique case of PHF1-TFE3 fusion atypical OFMT with prominent collagenous rosettes. A 50-year-old male patient presented with a slowly growing, painless mass in the right foot for 4 years. Gross examination showed a 3.5-cm, subcutaneous well-circumscribed, lobulated mass. Microscopic examination revealed a well-demarcated but un-encapsulated tumor without a peripheral bony shell. The neoplasm was composed of mildly atypical spindle to ovoid cells with increased mitosis (2 mitoses per 10 high-power fields) arranged in a multinodular manner within a fibromyxoid stroma, which contained numerous small, irregular collagenous rosettes surrounded by radiating growth of tumor cells. The neoplastic cells were diffusely positive for TFE3 and CD10. RNA sequencing revealed an in-frame fusion between PHF1 exon 12 and TFE3 exon 7. Subsequent Fluorescence in-situ hybridization analyses demonstrated positive for rearrangements of both the PHF1 and TFE3 loci. The patient was free of disease at 63 months' follow-up. Our case exhibits atypical features and prominent collagenous rosettes, expanding the morphological spectrum of OFMT with PHF1-TFE3 fusion.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , DNA-Binding Proteins/genetics , Fibroma, Ossifying/genetics , Fibroma/genetics , Polycomb-Group Proteins/genetics , Fibroma/diagnosis , Fibroma/pathology , Fibroma, Ossifying/diagnosis , Fibroma, Ossifying/pathology , Gene Rearrangement/genetics , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Oncogene Proteins, Fusion/genetics
12.
Pathol Res Pract ; 225: 153578, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34391181

ABSTRACT

Myoepithelial tumors arising in soft tissue are uncommon and mostly manifest a benign clinical course, although a malignant form does exist. An EWSR1 gene rearrangement is a common event in these tumors. Ossifying fibromyxoid tumor, a rare soft tissue neoplasm of uncertain differentiation, may have overlapping histologic and immunophenotypic features with myoepithelial tumors, but frequently harbors a PHF1 gene rearrangement. Interestingly, a PHF1-TFE3 fusion has been recently reported in both entities. Here we report a case of a malignant soft tissue tumor demonstrating myoepithelial differentiation and harboring a PHF1-TFE3 fusion. Despite being slow-growing and lacking significant cytologic atypia at initial presentation, the patient deteriorated rapidly with local recurrence and distant metastases. A discussion of the potential clinicopathologic implications of a PHF1-TFE3 fusion in these entities is also developed.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , DNA-Binding Proteins/genetics , Fibroma, Ossifying/genetics , Myoepithelioma/genetics , Oncogene Fusion , Polycomb-Group Proteins/genetics , Soft Tissue Neoplasms/genetics , Female , Fibroma, Ossifying/pathology , Gene Rearrangement , Humans , Middle Aged , Myoepithelioma/pathology , Soft Tissue Neoplasms/pathology
13.
Cancer Genet ; 256-257: 81-85, 2021 08.
Article in English | MEDLINE | ID: mdl-33975123

ABSTRACT

Low-grade endometrial stromal sarcoma and ossifying fibromyxoid tumors are two types of mesenchymal tumors that share no similarities in terms of site, sex, and morphological characteristics. They are rare, low grade tumors of uncertain lineage, with no definite immunological markers. Interestingly, a common PHF1 gene- related rearrangement was observed in these two tumors. Here, we report a case of endometrial stromal sarcoma with distinct ossification. Microscopically, the tumor is composed of bland-looking ovoid cells with low cellularity in the fibromyxoid stroma. Foci of metaplastic bone formation were noted. Using a combination of FISH, transcriptome sequencing, and molecular techniques, we identified a new PHF1-BRD8 fusion transcript, which was previously described, but in its reciprocal fusion form. This case expands the current understanding of low-grade endometrial stromal sarcoma and emphasizes the importance of molecular characterization of unique fusion, which may be related to its distinct morphological features and the possibly chemosensitive target.


Subject(s)
Endometrial Neoplasms/pathology , Oncogene Proteins, Fusion/metabolism , Osteogenesis , Sarcoma/pathology , Base Sequence , Endometrial Neoplasms/genetics , Female , Humans , Middle Aged , Neoplasm Grading , Proto-Oncogene Proteins c-mdm2/genetics , Sarcoma/genetics , Staining and Labeling , Stromal Cells/pathology , Transcriptome/genetics
14.
Neurobiol Stress ; 13: 100241, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33344697

ABSTRACT

Sex and exposure to chronic stress have been identified as risk factors for developing Alzheimer's disease (AD). Although AD has been demonstrated to be more prevalent in females, sex is often overlooked in research studies, likely due to the complexity of the hormonal status. In female rats, the reproductive status can modulate the well-known increase in tau phosphorylation (pTau) caused by the exposure to acute physical and psychological stressors. To test the hypothesis that reproductive status can impact hippocampal pTau induced by chronic stress, cohorts of virgin, lactating (4-5 days pp), and post-maternal (1-month post-weaned) rats were subjected to a daily 30-min episode of restraint stress for 14 days and were sacrificed either 20 min or 24 h after their last stress/handling episode. Western blot analysis of two well-characterized AD-relevant pTau epitopes (AT8 and PHF-1) and upstream pTau mechanisms (e.g. GSK3ß) analysis, showed that stressed post-maternal rats have increased pTau in comparison to stressed lactating rats 20 min after their last stress episode. Furthermore, an increase in pTau was also seen 24 h after the last stress episode in stressed post-maternal rats in comparison to their non-stressed controls in the detergent-soluble fraction. GSK3 analysis showed an increase in total levels of GSK3ß in virgin rats and an increase of inactive levels of GSK3ß in post-maternal rats, which suggests a different stress response in pTau after the rat has gone through the maternal experience. Interestingly, post-maternal rats also presented the more variability in their estrous cycles in response to stress. Besides no differences in pTau, non-stressed lactating rats showed an increase in inactive GSK3ß 24 h after the last handling episode. Immunohistochemical detection of the PHF-1 epitope revealed increased pTau in the CA4/hilar subfield of the hippocampus of virgin and post-maternal rats exposed to chronic stress shortly after their last stress episode. Overall, lactating rats remained unresponsive to chronic restraint stress. These results suggest increased sensitivity of the virgin and post-maternal rats to hippocampal stress-induced pTau with chronic restraint stress compared to lactating rats. Because no differences were detected in response to stress by lactating rats and an exaggerated response was observed in post-maternal rats, current results support the hypothesis that lactation affects tau processing in the brain of the female.

15.
Pathologica ; 112(4): 184-190, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33179613

ABSTRACT

OBJECTIVE: To report the exceptional occurrence of ossifying fibromyxoid tumour (OFMT) as a primary bone lesion. OFMT is a rare soft tissue tumour of uncertain differentiation and variable malignant potential, that occurs in adults with a slight male predominance. It is typically located in the subcutis or in the skeletal muscles of the extremities, followed by trunk or head and neck. METHODS: Two cases of OFMT proven to arise from bone are presented. The first is a 65-year old female with a history of rib "osteosarcoma", presenting with an inferior lobe left lung mass. The second is a man with a lytic lesion of the 5th cervical vertebra that recurred shortly after resection. Following H&E and immunohistochemical examination, tumour samples were analysed by NGS and by break-apart FISH to detect rearrangement of the PHF1 and TFE3 genes. RESULTS: PHF1 gene-rearrangement was identified by FISH on both the primary and the metastatic lesion of first patient. NGS identified a PHF1(intron1) and EPC1 (exon 10) fusion transcript later confirmed by positive PHF1 rearrangement on FISH in the second case. CONCLUSIONS: The demonstration of PHF1 gene rearrangements represents a fundamental ancillary diagnostic test when presented with challenging examples of OFMT.


Subject(s)
Bone Neoplasms , DNA-Binding Proteins/genetics , Fibroma, Ossifying , Polycomb-Group Proteins/genetics , Adult , Aged , Biomarkers, Tumor/analysis , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , DNA, Neoplasm/analysis , Female , Fibroma, Ossifying/diagnosis , Fibroma, Ossifying/genetics , Fibroma, Ossifying/pathology , Gene Rearrangement , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Neoplasm Recurrence, Local/pathology , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Transcription Factors/genetics
16.
Elife ; 92020 09 01.
Article in English | MEDLINE | ID: mdl-32869745

ABSTRACT

The Polycomb repressive complex 2 (PRC2) is a multicomponent histone H3K27 methyltransferase complex, best known for silencing the Hox genes during embryonic development. The Polycomb-like proteins PHF1, MTF2, and PHF19 are critical components of PRC2 by stimulating its catalytic activity in embryonic stem cells. The Tudor domains of PHF1/19 have been previously shown to be readers of H3K36me3 in vitro. However, some other studies suggest that PHF1 and PHF19 co-localize with the H3K27me3 mark but not H3K36me3 in cells. Here, we provide further evidence that PHF1 co-localizes with H3t in testis and its Tudor domain preferentially binds to H3tK27me3 over canonical H3K27me3 in vitro. Our complex structures of the Tudor domains of PHF1 and PHF19 with H3tK27me3 shed light on the molecular basis for preferential recognition of H3tK27me3 by PHF1 and PHF19 over canonical H3K27me3, implicating that H3tK27me3 might be a physiological ligand of PHF1/19.


Subject(s)
DNA-Binding Proteins/chemistry , Histones/chemistry , Polycomb-Group Proteins/chemistry , Transcription Factors/chemistry , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Histones/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Protein Binding , Testis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tudor Domain
17.
Article in English | MEDLINE | ID: mdl-32820570

ABSTRACT

Endometrial stromal nodule (ESN) and low-grade endometrial stromal sarcoma (LG-ESS) are rare uterine tumors known as endometrial stromal tumors (ESTs). In addition to their similarity in morphological features, recent studies have shown that these two tumors share common genetic alterations. In particular, JAZF1-SUZ12 fusion is found with high frequency in both ESN and LG-ESS. In LG-ESS, some minor fusions have also been described, which include rearrangements involving PHF1 and its partner genes, such as JAZF1, EPC1, MEAF6, BRD8, EPC2, and MBTD1. Because of the rarity of ESN, genetic alterations other than JAZF1 fusion have not been investigated in detail. In this study, we performed a next-generation sequencing-based analysis in a case of ESN with peripheral metaplastic bone formation and detected MEAF6-PHF1 fusion, which has been reported in a small subset of uterine LG-ESSs and soft tissue ossifying fibromyxoid tumors. The finding that MEAF6-PHF1 fusion is a background genetic abnormality detected both in ESN and LG-ESS, along with JAZF1-SUZ12, provides further support for the similarity and continuum between these two types of ESTs. Furthermore, the association between metaplastic bone formation and MEAF6-PHF1 fusion may not be limited to soft tissue tumors.

18.
J Cutan Pathol ; 47(10): 934-945, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32352579

ABSTRACT

Ossifying fibromyxoid tumor (OFMT) is a rare soft tissue neoplasm of uncertain differentiation and intermediate biologic potential. Up to 85% of OFMTs, including benign, atypical, and malignant forms, harbor fusion genes. Most commonly, the PHF1 gene localized to 6p21 is fused with EP400, but other fusion partners, such as MEAF6, EPC1, and JAZF1 have also been described. Herein, we present two rare cases of superficial OFMTs with ZC3H7B-BCOR and the very recently described PHF1-TFE3 fusions. The latter also exhibited moderate to strong diffuse immunoreactivity for TFE3. Reciprocally, this finding expands the entities with TFE3 rearrangements. Accumulation of additional data is necessary to determine if OFMTs harboring these rare fusions feature any reproducible clinicopathologic findings or carry prognostic and/or predictive implications.


Subject(s)
Fibroma, Ossifying/pathology , Fibroma/genetics , Fibroma/pathology , Proto-Oncogene Proteins/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Soft Tissue Neoplasms/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , DNA-Binding Proteins/genetics , Female , Fibroma/diagnosis , Fibroma/surgery , Gene Fusion/genetics , Humans , Male , Middle Aged , Neoplasms/pathology , Polycomb-Group Proteins/genetics , Soft Tissue Neoplasms/surgery , Transcription Factors/metabolism , Treatment Outcome
19.
Genes Chromosomes Cancer ; 59(7): 428-432, 2020 07.
Article in English | MEDLINE | ID: mdl-32237188

ABSTRACT

The classification of endometrial stromal sarcoma (ESS) has been refined and aided by the discovery of various recurrent gene translocations. Low-grade ESS (LG-ESS) is most commonly characterized by JAZF1-SUZ12 fusions followed by rearrangements involving PHD finger protein-1 (PHF1) and multiple fusion partners, including JAZF1, EPC1, EPC2, and MEAF6. In the present study, integrating anchored polymerase chain reaction and paired-end next-generation ribonucleic acid sequencing, we identified the presence of a novel malignant brain tumor domain-containing 1 (MBTD1)-PHF1 gene fusion in a case of LG-ESS. MBTD1 belongs to the Polycomb gene group, and its fusion with PHF1 is predicted to mediate tumorigenesis through aberrant transcriptional repression. Histology and immunohistochemical studies demonstrated conventional morphology for LG-ESS and clinical follow-up showed no progression of disease after 6 months. These findings help expand the current knowledge on the spectrum of gene rearrangements in the diagnosis of ESS.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Endometrial Neoplasms/genetics , Gene Fusion , Polycomb-Group Proteins/genetics , Sarcoma, Endometrial Stromal/genetics , Carcinogenesis/genetics , Endometrial Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Sarcoma, Endometrial Stromal/pathology
20.
J Comp Neurol ; 528(1): 108-113, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31273784

ABSTRACT

Domestic cats (Felis catus) are known to develop cognitive impairment, and several small series have demonstrated both ß-amyloid and tau aggregation, including neurofibrillary tangles, with age, making them a promising physiologic model of Alzheimer disease (AD). We therefore report the largest feline autopsy cohort to date of 32 cats ranging from 1.5 to 22.1 years of age, with systematic neuropathologic assessment according to NIA-Alzheimer's Association Criteria. Formalin-fixed paraffin-embedded tissue sections of brain were obtained retrospectively from cats autopsied at the Iowa State College of Veterinary Medicine. We found ß-amyloid staining, predominantly in Cortical Layers IV and VI in 27 of the 32 cats used in the study, with four of these animals showing tau-positive tangles and neuropil threads. In 75% of these cases (3/4), tau deposition was limited to entorhinal cortex, while one case showed diffuse positive staining throughout the hippocampal formation and neocortex. This last case showed positive staining for all phospho-tau-specific antibodies tested, similar to the pattern seen in human AD. Interestingly, we saw a higher ratio of pretangles to tangles than that in human AD, and none of the cases showed neuritic plaques on any of the stains used. Our findings indicate that aging domestic cats spontaneously develop both ß-amyloid and tau pathology similar, but not identical to that seen in human AD. This suggests that the domestic cat may serve as a potential model for mechanistic and therapeutic AD studies, but that additional research is needed to identify differences between the neuropathology of aging in humans and felines.


Subject(s)
Aging/pathology , Amyloid beta-Peptides/analysis , Brain Chemistry , Brain/pathology , tau Proteins/analysis , Animals , Cats
SELECTION OF CITATIONS
SEARCH DETAIL