Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Eur J Med Chem ; 271: 116416, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38657480

ABSTRACT

Targeting polo-box domain (PBD) small molecule for polo-like kinase 1 (PLK1) inhibition is a viable alternative to target kinase domain (KD), which could avoid pan-selectivity and dose-limiting toxicity of ATP-competitive inhibitors. However, their efficacy in these settings is still low and inaccessible to clinical requirement. Herein, we utilized a structure-based high-throughput virtual screen to find novel chemical scaffold capable of inhibiting PLK1 via targeting PBD and identified an initial hit molecule compound 1a. Based on the lead compound 1a, a structural optimization approach was carried out and several series of derivatives with naphthalimide structural motif were synthesized. Compound 4Bb was identified as a new potent PLK1 inhibitor with a KD value of 0.29 µM. 4Bb could target PLK1 PBD to inhibit PLK1 activity and subsequently suppress the interaction of PLK1 with protein regulator of cytokinesis 1 (PRC1), finally leading to mitotic catastrophe in drug-resistant lung cancer cells. Furthermore, 4Bb could undergo nucleophilic substitution with the thiol group of glutathione (GSH) to disturb the redox homeostasis through exhausting GSH. By regulating cell cycle machinery and increasing cellular oxidative stress, 4Bb exhibited potent cytotoxicity to multiple cancer cells and drug-resistant cancer cells. Subcutaneous and oral administration of 4Bb could effectively inhibit the growth of drug-resistant tumors in vivo, doubling the survival time of tumor bearing mice without side effects in normal tissues. Thus, our study offers an orally-available, structurally-novel PLK1 inhibitor for drug-resistant lung cancer therapy.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Cell Proliferation , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Lung Neoplasms , Naphthalimides , Polo-Like Kinase 1 , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Naphthalimides/chemistry , Naphthalimides/pharmacology , Naphthalimides/chemical synthesis , Humans , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Structure-Activity Relationship , Mice , Molecular Structure , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism
2.
J Biochem Mol Toxicol ; 38(1): e23590, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38037286

ABSTRACT

Polo-like kinase 1 (PLK1) inhibitor NMS-P937 is a targeted therapeutic agent with good preclinical efficacy in various human cancers, and its therapeutic effect on nasopharyngeal carcinoma (NPC) remains to be determined. Here, to explore biological activity of NMS-P937 in NPC, multiple types of NPC cells were utilized. We tested IC50 values, carried out flow cytometry, western blot analysis analysis, immunofluorescence, and constructed subcutaneous xenograft mouse models. We found that treatment with NMS-P937 increased the proportion of G2/M phase NPC cells, where CyclinB1 expression was upregulated and CyclinE1 expression was downregulated. Besides, NMS-P937 treatment-induced NPC cell apoptosis with increased cleavage of PARP and caspase-3. Mechanistically, NMS-P937 treatment led to aberrant mitosis, causing increased reactive oxygen species (ROS) levels. ROS scavenger N-acetylcysteine partially reversed ROS levels induced by NMS-P937. Furthermore, NMS-P937 administration restrained NPC xenografts growth in nude mice. Overall, NMS-P937 suppressed NPC cell proliferation and increased ROS levels, causing cell cycle abnormalities and apoptosis. NMS-P937 holds great promise as a therapeutic agent for treating nasopharyngeal carcinoma.


Subject(s)
Nasopharyngeal Neoplasms , Polo-Like Kinase 1 , Pyrazoles , Quinazolines , Humans , Mice , Animals , Nasopharyngeal Carcinoma/drug therapy , Reactive Oxygen Species/metabolism , Mice, Nude , Cell Line, Tumor , Cell Proliferation , Nasopharyngeal Neoplasms/metabolism , Apoptosis
3.
Eur J Pharmacol ; 957: 176004, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37625683

ABSTRACT

Small molecule drugs are of significant importance in the treatment of non-small cell lung cancer (NSCLC). Here, we explored biological effects of the PI3K/mTOR inhibitor VS-5584 on NSCLC. Our findings indicated that VS-5584 administration resulted in a dose-dependent inhibition of NSCLC cell proliferation, as well as the induction of apoptosis and cycle arrest. Additionally, we observed a significant increase in intracellular reactive oxygen species (ROS) levels following VS-5584 treatment. The use of the ROS inhibitor N-acetylcysteine (NAC) effectively reduced ROS levels and decreased the proportion of apoptotic cells. Treatment with VS-5584 led to an upregulation of genes associated with apoptosis and cell cycle, such as c-caspase 3 and P21. Conversely, a downregulation of cyclin-dependent kinase 1 (CDK1) expression was observed. Next, transcriptome analyses revealed that VS-5584 treatment altered the abundance of 1520 genes/transcripts in PC-9 cells, one of which was polo-like kinase 1 (PLK1). These differentially expressed genes were primarily enriched in biological processes such as cell cycle regulation and cell apoptosis, which are closely linked to the P53 and apoptosis pathways. Co-treatment with VS-5584 and PLK1 inhibitor NMS-P937 resulted in enhanced cancer cell death, exhibiting synergistic inhibitory activity. Notably, VS-5584 inhibited the growth of NSCLC in a patient-derived xenograft (PDX) mouse model without observable abnormalities in major organs. Overall, VS-5584 effectively suppressed the growth of NSCLC cells both in vitro and in vivo. VS-5584 combined with NMS-P937 exhibited a synergistic effect in inhibiting NSCLC cell growth. These findings suggest that VS-5584 has potential as a therapeutic strategy for treating NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species , Lung Neoplasms/drug therapy , TOR Serine-Threonine Kinases , Polo-Like Kinase 1
4.
Bioorg Chem ; 139: 106711, 2023 10.
Article in English | MEDLINE | ID: mdl-37473479

ABSTRACT

Polo-like kinase 1 (PLK1) is an attractive therapeutic target for the treatment of tumors, as it is an essential cell-cycle regulator frequently overexpressed in tumor tissues. PLK1 can promote tumor invasion and metastasis, and is often associated with poor prognosis in cancer patients. However, no PLK1 inhibitor has been granted marketing approval until now. Therefore, more potentially promising PLK1 inhibitors need to be investigated. In this study, a series of novel inhibitors targeting PLK1 was designed and optimized derived from a new scaffold. After synthesis and characterization, we obtained the structure-activity relationship and led to the discovery of the most promising compound 30e for PLK1. The antiproliferative activity against HCT116 cells (IC50 = 5 nM versus 45 nM for onvansertib) and the cellular permeability and efflux ratio were significantly improved (PappA→B = 2.03 versus 0.345 and efflux ratio = 1.65 versus 94.7 for 30e and onvansertib, respectively). Further in vivo studies indicated that 30e had favorable antitumor activity with 116.2% tumor growth inhibition (TGI) in comparison with TGI of 43.0% for onvansertib. Furthermore, 30e improved volume of tumor tissue distribution in mice as compared to onvansertib. This initial study on 30e holds promise for further development of an antitumor agent.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Animals , Mice , Protein Kinase Inhibitors/pharmacology , Cell Cycle Proteins , Protein Serine-Threonine Kinases , Cell Line, Tumor , Cell Proliferation , Polo-Like Kinase 1
5.
J Neurooncol ; 163(1): 143-158, 2023 May.
Article in English | MEDLINE | ID: mdl-37183219

ABSTRACT

PURPOSE: We and others have demonstrated that MYC-amplified medulloblastoma (MB) cells are susceptible to class I histone deacetylase inhibitor (HDACi) treatment. However, single drug treatment with HDACi has shown limited clinical efficacy. We hypothesized that addition of a second compound acting synergistically with HDACi may enhance efficacy. METHODS: We used a gene expression dataset to identify PLK1 as a second target in MB cells and validated the relevance of PLK1 in MB. We measured cell metabolic activity, viability, and cycle progression in MB cells after treatment with PLK1-specific inhibitors (PLK1i). Chou-Talalay synergy calculations were used to determine the nature of class I HDACi entinostat and PLK1i interaction which was validated. Finally, the clinical potential of the combination was assessed in the in vivo experiment. RESULTS: MYC-amplified tumor cells are highly sensitive towards treatment with ATP-competitive PLK1i as a monotherapy. Entinostat and PLK1i in combination act synergistically in MYC-driven MB cells, exerting cytotoxic effects at clinically relevant concentrations. The downstream effect is exerted via MYC-related pathways, pointing out the potential of MYC amplification as a clinically feasible predictive biomarker for patient selection. While entinostat significantly extended survival of mice implanted with orthotopic MYC-amplified MB PDX, there was no evidence of the improvement of survival when treating the animals with the combination. CONCLUSION: The combination of entinostat and PLK1i showed synergistic interaction in vitro, but not in vivo. Therefore, further screening of blood-brain barrier penetrating PLK1i is warranted to determine the true potential of the combination as no on-target activity was observed after PLK1i volasertib treatment in vivo.


Subject(s)
Antineoplastic Agents , Cerebellar Neoplasms , Medulloblastoma , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Antineoplastic Agents/therapeutic use , Cerebellar Neoplasms/drug therapy , Cell Line, Tumor
6.
Front Oncol ; 12: 960720, 2022.
Article in English | MEDLINE | ID: mdl-36505864

ABSTRACT

Background: Management of advanced chordomas remains delicate considering their insensitivity to chemotherapy. Homozygous deletion of the regulatory gene CDKN2A has been described as the most frequent genetic alteration in chordomas and may be considered as a potential theranostic marker. Here, we evaluated the tumor efficacy of the CDK4/6 inhibitor palbociclib, as well as the PLK1 inhibitor volasertib, in three chordoma patient-derived xenograft (PDX) models to validate and identify novel therapeutic approaches. Methods: From our chordoma xenograft panel, we selected three models, two of them harboring a homozygous deletion of CDKN2A/2B genes, and the last one a PBRM1 pathogenic variant (as control). For each model, we tested the palbociclib and volasertib drugs with pharmacodynamic studies together with RT-PCR and RNAseq analyses. Results: For palbociclib, we observed a significant tumor response for one of two models harboring the deletion of CDKN2A/2B (p = 0.02), and no significant tumor response in the PBRM1-mutated PDX; for volasertib, we did not observe any response in the three tested models. RT-PCR and RNAseq analyses showed a correlation between cell cycle markers and responses to palbociclib; finally, RNAseq analyses showed a natural enrichment of the oxidative phosphorylation genes (OxPhos) in the palbociclib-resistant PDX (p = 0.02). Conclusion: CDK4/6 inhibition appears as a promising strategy to manage advanced chordomas harboring a loss of CDKN2A/2B. However, further preclinical studies are strongly requested to confirm it and to understand acquired or de novo resistance to palbociclib, in the peculiar view of a targeting of the oxidative phosphorylation genes.

7.
Cancers (Basel) ; 13(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34680264

ABSTRACT

New strategies that improve median survivals of only ~15-20 months for glioblastoma (GBM) with the current standard of care (SOC) which is concurrent temozolomide (TMZ) and radiation (XRT) treatment are urgently needed. Inhibition of polo-like kinase 1 (PLK1), a multifunctional cell cycle regulator, overexpressed in GBM has shown therapeutic promise but has never been tested in the context of SOC. Therefore, we examined the mechanistic and therapeutic impact of PLK1 specific inhibitor (volasertib) alone and in combination with TMZ and/or XRT on GBM cells. We quantified the effects of volasertib alone and in combination with TMZ and/or XRT on GBM cell cytotoxicity/apoptosis, mitochondrial membrane potential (MtMP), reactive oxygen species (ROS), cell cycle, stemness, DNA damage, DNA repair genes, cellular signaling and in-vivo tumor growth. Volasertib alone and in combination with TMZ and/or XRT promoted apoptotic cell death, altered MtMP, increased ROS and G2/M cell cycle arrest. Combined volasertib and TMZ treatment reduced side population (SP) indicating activity against GBM stem-like cells. Volasertib combinatorial treatment also significantly increased DNA damage and reduced cell survival by inhibition of DNA repair gene expression and modulation of ERK/MAPK, AMPK and glucocorticoid receptor signaling. Finally, as observed in-vitro, combined volasertib and TMZ treatment resulted in synergistic inhibition of tumor growth in-vivo. Together these results identify new mechanisms of action for volasertib that provide a strong rationale for further investigation of PLK1 inhibition as an adjunct to current GBM SOC therapy.

8.
9.
Acta Biomater ; 124: 348-357, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33561562

ABSTRACT

Ovarian cancer (OC) is a high-mortality malignancy in women with a five-year survival rate of 30-40%. There is an urgent need to develop high-efficacy and low toxic treatments for OC. Herein, we report an appealing strategy that combines α3 integrin targeted polymersomes (A3-Ps) and targeted molecular drug, polo-like kinase 1 (PLK1) inhibitor volasertib (Vol) for dually targeted molecular therapy of OC in vivo. A3-Ps had good Vol loading of 7.7-8.0 wt.% and small size of 25-32 nm, depending on the density of α3 integrin binding peptide A3. Interestingly, cellular uptake studies using FITC-labeled Vol revealed that A3-Ps with 20% peptide gave 2.3 and 3.3-fold better internalization in SKOV-3 OC cells compared with non-targeted Ps and free Vol, respectively. Accordingly, Vol loaded in A3-Ps showed the best inhibitory activity to SKOV-3 cells with an IC50 of 49 nM, which was 3.5 times lower than free Vol. Importantly, the in vivo experiments demonstrated that A3-Ps-Vol proficiently repressed the growth of SKOV-3 tumors in mice while continuous tumor growth was observed for Ps-Vol and free Vol-treated mice. A3-Ps-Vol besides boosting anti-OC activity also reduced the systemic toxicity of Vol. This dually targeted molecular drug nanoformulation has appeared to be an especially potent and low toxic treatment modality for human ovarian cancers. STATEMENT OF SIGNIFICANCE: Volasertib provides a potential molecular therapy for PLK1-positive advanced OC patients. The initial clinical outcomes, nevertheless, showed a suboptimal efficacy, possibly resulting from its fast clearance, deficient tumor deposition and dose-limiting toxicities. Here, we show for the first time that dually targeted molecular therapy of OC using α3 integrin-binding peptide-modified polymersomes as a vehicle gives markedly improved potency, better toleration, and depleted adverse effects in SKOV-3 tumor models, greatly outperforming free volasertib. This dually targeted strategy has emerged as an appealing treatment for malignant PLK1-positive ovarian tumors.


Subject(s)
Integrin alpha3 , Ovarian Neoplasms , Animals , Cell Line, Tumor , Female , Humans , Mice , Molecular Targeted Therapy , Ovarian Neoplasms/drug therapy , Peptides/pharmacology , Pteridines
10.
Int J Mol Sci ; 23(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35008638

ABSTRACT

Rigosertib is multi-kinase inhibitor that could represent an interesting therapeutic option for non-resectable patients with cholangiocarcinoma, a very aggressive hepatic cancer with limited effective treatments. The Western blotting technique was used to evaluate alterations in the expression of proteins involved in the regulation of the cell cycle of cholangiocarcinoma EGI-1 cells. Our results show an increase in EMI1 and Cyclin B protein levels after Rigosertib treatment. Moreover, the phosphorylation of CDK1 is significantly reduced by Rigosertib, while PLK1 expression increased after 24 h of treatment and decreased after 48 h. Finally, we evaluated the role of p53. Its levels increase after Rig treatment, and, as shown in the cell viability experiment with the p53 inhibitor Pifithrin, its activity is necessary for the effects of Rigosertib against the cell viability of EGI-1 cells. In conclusion, we hypothesized the mechanism of the action of Rigosertib against cholangiocarcinoma EGI-1 cells, highlighting the importance of proteins involved in the regulation of cell cycles. The CDK1-Cyclin B complex and p53 play an important role, explaining the Block in the G2/M phase of the cell cycle and the effect on cell viability.


Subject(s)
Cell Division/drug effects , Cholangiocarcinoma/drug therapy , G2 Phase/drug effects , Glycine/analogs & derivatives , Sulfones/pharmacology , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cholangiocarcinoma/metabolism , Cyclin B/metabolism , Glycine/pharmacology , Humans , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism , Polo-Like Kinase 1
11.
Cancer Lett ; 495: 135-144, 2020 12 28.
Article in English | MEDLINE | ID: mdl-32979462

ABSTRACT

NRAS mutation is rarely observed in non-small cell lung cancer (NSCLC) patients, and there are no approved treatments for NRAS-mutant NSCLC. Here, we evaluated the effect of pan-RAF inhibitors on human NRAS-mutant NSCLC cell lines and performed high-throughput screening using human kinome small interfering (si)RNA or CRISPR/Cas9 libraries to identify new targets for combination NSCLC treatment. Our results indicate that human NRAS-mutant NSCLC cells are moderately sensitive to pan-RAF inhibitors. High-throughput kinome screenings further showed that G2/M arrest, particularly following knockdown of polo-like kinase 1 (PLK1), can inhibit the growth of human NRAS-mutant NSCLC cells and those treated with the type II pan-RAF inhibitor LXH254. In addition, treatment with volasertib plus LXH254, resulting in dual blockade of PLK1 and pan-RAF, was found to be more effective than LXH254 monotherapy for inhibiting long-term cell viability, suggesting that this combination therapeutic strategy may lead to promising results in the clinic.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , GTP Phosphohydrolases/genetics , Lung Neoplasms/genetics , Membrane Proteins/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Pteridines/pharmacology , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , High-Throughput Screening Assays , Humans , Lung Neoplasms/drug therapy , Male , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Polo-Like Kinase 1
12.
Eur J Med Chem ; 206: 112697, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32814244

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide and targeted therapeutics exhibit limited success. Polo-like kinase 1 (PLK1), a Ser/Thr kinase, plays a pivotal role in cell-cycle regulation and is considered a promising target in HCC. Here, via structural optimization using both biochemical kinase assays and cellular antiproliferation assays, we discovered a potent and selective PLK1 kinase inhibitor, compound 31. Compound 31 exhibited biochemical activity with IC50 of < 0.508 nM against PLK1 and a KINOMEscan selectivity score (S(1)) of 0.02 at a concentration of 1 µM. Furthermore, 31 showed broad antiproliferative activity against a variety of cancer cell lines, with the lowest antiproliferative IC50 (11.1 nM) in the HCC cell line HepG2. A detailed mechanistic study of 31 revealed that inhibition of PLK1 by 31 induces mitotic arrest at the G2/M phase checkpoint, thus leading to cancer cell apoptosis. Moreover, 31 exhibited profound antitumor efficacy in a xenograft mouse model. Collectively, these results establish compound 31 as a good starting point for the development of PLK1 targeted therapeutics for HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/antagonists & inhibitors , Drug Design , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Thiophenes/chemistry , Thiophenes/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Hep G2 Cells , Humans , M Phase Cell Cycle Checkpoints/drug effects , Mice , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
14.
Eur J Med Chem ; 184: 111769, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31629162

ABSTRACT

Polo-like kinase 1 (Plk1) is a validated target for the treatment of cancer. In this report, by analyzing amino acid residue differences among the ATP-binding pockets of Plk1, Plk2 and Plk3, novel selective Plk1 inhibitors were designed based on BI 2536 and BI 6727, two Plk1 inhibitors in clinical studies for cancer treatments. The Plk1 inhibitors reported herein have more potent inhibition against Plk1 and better isoform selectivity in the Plk family than these two lead compounds. In addition, by introducing a hydroxyl group, our compounds have significantly improved solubility and may target specific polar residues Arg57, Glu69 and Arg134 of Plk1. Moreover, most of our compounds exhibited antitumor activities in the nanomolar range against several cancer cell lines in the MTT assay. Through this structure-based design strategy and SAR study, a few promising selective Plk1 inhibitors having the tetrahydropteridin scaffold, for example, L34, were identified and could be for further anticancer research.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Drug Design , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/chemical synthesis , Pteridines/chemistry , Structure-Activity Relationship , Polo-Like Kinase 1
15.
Cancers (Basel) ; 11(6)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200459

ABSTRACT

Wee1 kinase is an inhibitor of cyclin-dependent kinase (cdk)s, crucial cell cycle progression drivers. By phosphorylating cdk1 at tyrosine 15, Wee1 inhibits activation of cyclin B-cdk1 (Cdk1), preventing cells from entering mitosis with incompletely replicated or damaged DNA. Thus, inhibiting Wee1, alone or in combination with DNA damaging agents, can kill cancer cells by mitotic catastrophe, a tumor suppressive response that follows mitosis onset in the presence of under-replicated or damaged DNA. AZD1775, an orally available Wee1 inhibitor, has entered clinical trials for cancer treatment following this strategy, with promising results. Recently, however, AZD1775 has been shown to inhibit also the polo-like kinase homolog Plk1 in vitro, casting doubts on its mechanism of action. Here we asked whether, in the clinically relevant concentration range, AZD1775 inhibited Wee1 or Plk1 in transformed and non-transformed human cells. We found that in the clinically relevant, nanomolar, concentration range AZD1775 inhibited Wee1 rather than Plk1. In addition, AZD1775 treatment accelerated mitosis onset overriding the DNA replication checkpoint and hastened Plk1-dependent phosphorylation. On the contrary selective Plk1 inhibition exerted opposite effects. Thus, at therapeutic concentrations, AZD1775 inhibited Wee1 rather than Plk1. This information will help to better interpret results obtained by using AZD1775 both in the clinical and experimental settings and provide a stronger rationale for combination therapies.

16.
EBioMedicine ; 41: 244-255, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30876762

ABSTRACT

BACKGROUND: Targeting PLK1 has recently been proven as a viable therapeutic strategy against oesophageal squamous cell carcinom (ESCC). Therefore, this study aimed to explore whether the PLK1 inhibitor BI2536 is able to sensitize ESCC cells to cisplatin (DDP) and determine the underlying mechanisms. METHODS: Viability, clonogenicity, cell cycle distribution and apoptosis were assessed in ESCC cells treated with BI2536 or DDP alone or in combination. Checkpoint activation was examined by immunoblotting and immunohistochemistry. Xenograft model was used to assess the efficacy of the co-treatment. The expression level of GSDME in tissue samples were examined by immunohistochemistry. FINDINGS: We found that the combination of BI2536 and DDP was synergistic in ESCC cells, which induced pyroptosis in ESCC cells at low doses. Mechanistic studies revealed that BI2536 significantly induced DNA damage and impaired the DNA damage repair pathway in DDP-treated cells both in vitro and in vivo. Interestingly, we found that co-treatment with BI2536 and DDP induced pyroptosis in ESCC cells depending on the caspase-3/GSDME pathway. Importantly, our study found that GSDME was more highly expressed in tumour tissue than that in normal adjacent tissues, and could serve as a prognostic factor. INTERPRETATION: BI2536 sensitizes ESCC cells to DDP by inhibiting the DNA damage repair pathway and inducing pyroptosis, which provides new information for understanding pyroptosis. Our study also reveals that the PLK1 inhibitor BI2536 may be an attractive candidate for ESCC targeted therapy, especially when combined with DDP for treating the GSDME overexpression subtype. FUND: National 973 Program and National Natural Science Fundation of China.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Cell Cycle Proteins/antagonists & inhibitors , Cisplatin/therapeutic use , Esophageal Neoplasms/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/therapeutic use , Pyroptosis/drug effects , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cisplatin/administration & dosage , Esophageal Neoplasms/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pteridines/administration & dosage , Pteridines/pharmacology , Polo-Like Kinase 1
17.
Oncotarget ; 8(45): 78452-78465, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-29108241

ABSTRACT

Volasertib, a selective PLK1 inhibitor, was effective for acute myeloid leukemia (AML) patients in clinical trials. However, its efficacy was limited in mono-therapy, and a higher incidence of fatal events was revealed in the combination with low-dose cytarabine. Thus, optimization of combination therapy with volasertib and other agents is necessary for its clinical development, and the predictive factors for response or resistance to volasertib remain largely unknown. In this study, we investigated the resistance mechanism in volasertib-resistant cell lines and the combination effects with other agents, such as azacitidine (AZA), on AML cells. We identified that mutations in the ATP-binding domain of PLK1 and expression of MDR1 conferred resistance to volasertib. In the combination therapy, the effects of AZA differed among cells, but were prominent in the cells with higher GI50 values of volasertib in mono-therapy. Furthermore, we identified that the cells in G2/M phase were more sensitive to volasertib, and the PI3K/AKT pathway was up-regulated upon administration of volasertib. Combination therapies with the agents that caused cell cycle accumulation in G2/M phase or with PI3K inhibitor were highly potent against AML cells. Our findings provide strategies for further clinical development of volasertib and PLK inhibitors for AML.

18.
Bioorg Med Chem Lett ; 27(5): 1311-1315, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28169164

ABSTRACT

Using structure-based drug design, we identified a novel series of 5,6-dihydroimidazolo[1,5-f]pteridine PLK1 inhibitors. Rational improvements to compounds of this class resulted in single-digit nanomolar enzyme and cellular activity against PLK1, and oral bioavailability. Compound 1 exhibits >7 fold induction of phosphorylated Histone H3 and is efficacious in an in vivo HT-29 tumor xenograft model.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Drug Design , Imidazoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/chemical synthesis , Animals , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , HT29 Cells , Heterografts , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Mice , Molecular Structure , Pteridines/chemistry , Pteridines/pharmacology , Structure-Activity Relationship , Polo-Like Kinase 1
19.
Chem Biol Drug Des ; 89(5): 732-740, 2017 05.
Article in English | MEDLINE | ID: mdl-27882722

ABSTRACT

Polo-like kinase 1 (Plk1), a member of polo-like kinase family, regulates multiple essential steps of the cell cycle progression. Plk1 is overexpressed in multiple cancer cell lines and considered to be a prime anticancer target. Plk1 accumulates in the nucleus during S and G2 phases by its bipartite nuclear localization signal (NLS) sequence, which is crucial for Plk1 regulation during normal cell cycle progression. Here, through combined computational and experimental studies, we identified compound D110, which inhibits Plk1 kinase activity with an IC50 of 85 nm and blocks the nuclear localization of Plk1 during S and G2 phases. D110-treated cancer cells were arrested at mitosis with monopolar spindle, indicating the inhibition of the Plk1 kinase activity in cell. As D110 interacts with both the ATP site and the NLS in Plk1, it demonstrates good selectivity toward Plk2 and Plk3. The strategy of simultaneously inhibiting kinase activity and its subcellular translocations offers a novel approach for selective kinase inhibitor design.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Schiff Bases/chemistry , Thiazolidines/chemistry , Apoptosis/drug effects , Binding Sites , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Drug Design , G2 Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Humans , Microscopy, Fluorescence , Mitosis/drug effects , Molecular Docking Simulation , Protein Domains , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Schiff Bases/metabolism , Schiff Bases/pharmacology , Signal Transduction/drug effects , Thiazolidines/metabolism , Thiazolidines/pharmacology , Polo-Like Kinase 1
20.
Ann Oncol ; 26(9): 1923-1929, 2015 09.
Article in English | MEDLINE | ID: mdl-26091808

ABSTRACT

BACKGROUND: Rigosertib (ON 01910.Na), a first-in-class Ras mimetic and small-molecule inhibitor of multiple signaling pathways including polo-like kinase 1 (PLK1) and phosphoinositide 3-kinase (PI3K), has shown efficacy in preclinical pancreatic cancer models. In this study, rigosertib was assessed in combination with gemcitabine in patients with treatment-naïve metastatic pancreatic adenocarcinoma. MATERIALS AND METHODS: Patients with metastatic pancreatic adenocarcinoma were randomized in a 2:1 fashion to gemcitabine 1000 mg/m(2) weekly for 3 weeks of a 4-week cycle plus rigosertib 1800 mg/m(2) via 2-h continuous IV infusions given twice weekly for 3 weeks of a 4-week cycle (RIG + GEM) versus gemcitabine 1000 mg/m(2) weekly for 3 weeks in a 4-week cycle (GEM). RESULTS: A total of 160 patients were enrolled globally and randomly assigned to RIG + GEM (106 patients) or GEM (54). The most common grade 3 or higher adverse events were neutropenia (8% in the RIG + GEM group versus 6% in the GEM group), hyponatremia (17% versus 4%), and anemia (8% versus 4%). The median overall survival was 6.1 months for RIG + GEM versus 6.4 months for GEM [hazard ratio (HR), 1.24; 95% confidence interval (CI) 0.85-1.81]. The median progression-free survival was 3.4 months for both groups (HR = 0.96; 95% CI 0.68-1.36). The partial response rate was 19% versus 13% for RIG + GEM versus GEM, respectively. Of 64 tumor samples sent for molecular analysis, 47 were adequate for multiplex genetic testing and 41 were positive for mutations. The majority of cases had KRAS gene mutations (40 cases). Other mutations detected included TP53 (13 cases) and PIK3CA (1 case). No correlation between mutational status and efficacy was detected. CONCLUSIONS: The combination of RIG + GEM failed to demonstrate an improvement in survival or response compared with GEM in patients with metastatic pancreatic adenocarcinoma. Rigosertib showed a similar safety profile to that seen in previous trials using the IV formulation.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Deoxycytidine/analogs & derivatives , Glycine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Sulfones/therapeutic use , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases , Deoxycytidine/adverse effects , Deoxycytidine/therapeutic use , Disease-Free Survival , Drug Administration Schedule , Female , Glycine/adverse effects , Glycine/therapeutic use , Humans , Male , Middle Aged , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Sulfones/adverse effects , Tumor Suppressor Protein p53/genetics , Gemcitabine , Polo-Like Kinase 1 , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL