Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915534

ABSTRACT

Inactivating mutations in the melanocortin 4 receptor (MC4R) gene cause monogenic obesity. Interestingly, female patients also display various degrees of reproductive disorders, in line with the subfertile phenotype of MC4RKO female mice. However, the cellular mechanisms by which MC4R regulates reproduction are unknown. Kiss1 neurons directly stimulate gonadotropin-releasing hormone (GnRH) release through two distinct populations; the Kiss1ARH neurons, controlling GnRH pulses, and the sexually dimorphic Kiss1AVPV/PeN neurons controlling the preovulatory LH surge. Here, we show that Mc4r expressed in Kiss1 neurons is required for fertility in females. In vivo, deletion of Mc4r from Kiss1 neurons in female mice replicates the reproductive impairments of MC4RKO mice without inducing obesity. Conversely, reinsertion of Mc4r in Kiss1 neurons of MC4R null mice restores estrous cyclicity and LH pulsatility without reducing their obese phenotype. In vitro, we dissect the specific action of MC4R on Kiss1ARH vs Kiss1AVPV/PeN neurons and show that MC4R activation excites Kiss1ARH neurons through direct synaptic actions. In contrast, Kiss1AVPV/PeN neurons are normally inhibited by MC4R activation except under elevated estradiol levels, thus facilitating the activation of Kiss1AVPV/PeN neurons to induce the LH surge driving ovulation in females. Our findings demonstrate that POMCARH neurons acting through MC4R, directly regulate reproductive function in females by stimulating the "pulse generator" activity of Kiss1ARH neurons and restricting the activation of Kiss1AVPV/PeN neurons to the time of the estradiol-dependent LH surge, and thus unveil a novel pathway of the metabolic regulation of fertility by the melanocortin system.

2.
J Neuroendocrinol ; : e13392, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631680

ABSTRACT

Recent molecular biological and electrophysiological studies have identified multiple transient receptor potential (TRP) channels in hypothalamic neurons as critical modulators of homeostatic functions. In particular, the canonical transient receptor potential channels (TRPCs) are expressed in hypothalamic neurons that are vital for the control of fertility and energy homeostasis. Classical neurotransmitters such as serotonin and glutamate and peptide neurotransmitters such as kisspeptin, neurokinin B and pituitary adenylyl cyclase-activating polypeptide signal through their cognate G protein-coupled receptors to activate TPRC 4, 5 channels, which are essentially ligand-gated calcium channels. In addition to neurotransmitters, circulating hormones like insulin and leptin signal through insulin receptor (InsR) and leptin receptor (LRb), respectively, to activate TRPC 5 channels in hypothalamic arcuate nucleus pro-opiomelanocortin (POMC) and kisspeptin (arcuate Kiss1 [Kiss1ARH]) neurons to have profound physiological (excitatory) effects. Besides its overt depolarizing effects, TRPC channels conduct calcium ions into the cytoplasm, which has a plethora of downstream effects. Moreover, not only the expression of Trpc5 mRNA but also the coupling of receptors to TRPC 5 channel opening are regulated in different physiological states. In particular, the mRNA expression of Trpc5 is highly regulated in kisspeptin neurons by circulating estrogens, which ultimately dictates the firing pattern of kisspeptin neurons. In obesity states, InsRs are "uncoupled" from opening TRPC 5 channels in POMC neurons, rendering them less excitable. Therefore, in this review, we will focus on the critical role of TRPC 5 channels in regulating the excitability of Kiss1ARH and POMC neurons in different physiological and pathological states.

3.
Mol Metab ; 82: 101904, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395148

ABSTRACT

OBJECTIVE: The prevalence of obesity has increased over the past three decades. Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) play a vital role in induction of satiety. Chronic consumption of high-fat diet is known to reduce hypothalamic neuronal sensitivity to hormones like leptin, thus contributing to the development and persistence of obesity. The functional and morphological effects of a high-calorie diet on POMC neurons and how these effects contribute to the development and maintenance of the obese phenotype are not fully understood. For this purpose, POMC-Cre transgenic mice model was exposed to high-fat diet (HFD) and at the end of a 3- and 6-month period, electrophysiological and morphological changes, and the role of POMC neurons in homeostatic nutrition and their response to leptin were thoroughly investigated. METHODS: Effects of HFD on POMC-satiety neurons in transgenic mice models exposed to chronic high-fat diet were investigated using electrophysiological (patch-clamp), chemogenetic and Cre recombinase advanced technological methods. Leptin, glucose and lipid profiles were determined and analyzed. RESULTS: In mice exposed to a high-fat diet for 6 months, no significant changes in POMC dendritic spine number or projection density from POMC neurons to the paraventricular hypothalamus (PVN), lateral hypothalamus (LH), and bed nucleus stria terminalis (BNST) were observed. It was revealed that leptin hormone did not change the electrophysiological activities of POMC neurons in mice fed with HFD for 6 months. In addition, chemogenetic stimulation of POMC neurons increased HFD consumption. In the 3-month HFD-fed group, POMC activation induced an orexigenic response in mice, whereas switching to a standard diet was found to abolish orexigenic behavior in POMC mice. CONCLUSIONS: Chronic high fat consumption disrupts the regulation of POMC neuron activation by leptin. Altered POMC neuron activation abolished the neuron's characteristic behavioral anorexigenic response. Change in nutritional content contributes to the reorganization of developing maladaptations.


Subject(s)
Diet, High-Fat , Leptin , Mice , Animals , Diet, High-Fat/adverse effects , Leptin/metabolism , Pro-Opiomelanocortin/metabolism , Hypothalamus/metabolism , Obesity , Neurons/metabolism , Mice, Transgenic
4.
J Environ Sci (China) ; 141: 304-313, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38408830

ABSTRACT

Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.


Subject(s)
Benzhydryl Compounds , Fluorocarbons , Maternal Exposure , Humans , Female , Mice , Animals , Male , Animals, Newborn , Benzhydryl Compounds/toxicity , Gene Expression Profiling , RNA
5.
Curr Opin Pharmacol ; 71: 102382, 2023 08.
Article in English | MEDLINE | ID: mdl-37307655

ABSTRACT

Gonadotropin-releasing hormone (GnRH) neurons are the final output pathway for the brain control of reproduction. The activity of this neuronal population, mainly located at the preoptic area of the hypothalamus, is controlled by a plethora of metabolic signals. However, it has been documented that most of these signal impact on GnRH neurons through indirect neuronal circuits, Kiss1, proopiomelanocortin, and neuropeptide Y/agouti-related peptide neurons being some of the most prominent mediators. In this context, compelling evidence has been gathered in recent years on the role of a large range of neuropeptides and energy sensors in the regulation of GnRH neuronal activity through both direct and indirect mechanisms. The present review summarizes some of the most prominent recent advances in our understanding of the peripheral factors and central mechanisms involved in the metabolic control of GnRH neurons.


Subject(s)
Gonadotropin-Releasing Hormone , Neuropeptides , Humans , Gonadotropin-Releasing Hormone/metabolism , Reproduction/physiology , Hypothalamus/metabolism , Neuropeptides/metabolism , Neurons/physiology
6.
Mol Neurobiol ; 60(3): 1164-1178, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36417103

ABSTRACT

Inflammation has been associated with numerous neurological disorders. Inflammatory environments trigger a series of cellular and physiological alterations in the brain. However, how inflammatory milieu affects neuronal physiology and how neuronal alterations progress in the inflammatory environments are not fully understood. In this study, we examined the effects of pro-inflammatory milieu on mitochondrial functions and neuronal activities in the hypothalamic POMC neurons. Treating mHypoA-POMC/GFP1 with the conditioned medium collected from LPS activated macrophage were employed to mimic the inflammatory milieu during hypothalamic inflammation. After a 24-h treatment, intracellular ROS/RNS levels were elevated, and the antioxidant enzymes were reduced. Mitochondrial respiration and mitochondrial functions, including basal respiratory rate, spared respiration capacity, and maximal respiration, were all significantly compromised by inflammatory milieu. Moreover, pro-inflammatory cytokines altered mitochondrial dynamics in a time-dependent manner, resulting in the elongation of mitochondria in POMC neurons after a 24-h treatment. Additionally, the increase of C-Fos and Pomc genes expression indicated that the neurons were activated upon the stimulation of inflammatory environment. This neuronal activation of were confirmed on the LPS-challenged mice. Collectively, a short-term to midterm exposure to inflammatory milieu stimulated metabolic switch and neuronal activation, whereas chronic exposure triggered the elevation of oxidative stress, the decrease of the mitochondrial respiration, and the alterations of mitochondrial dynamics.


Subject(s)
Lipopolysaccharides , Pro-Opiomelanocortin , Mice , Animals , Pro-Opiomelanocortin/metabolism , Lipopolysaccharides/pharmacology , Hypothalamus/metabolism , Neurons/metabolism , Inflammation/metabolism
7.
Diabetes Metab Syndr Obes ; 15: 2939-2950, 2022.
Article in English | MEDLINE | ID: mdl-36186941

ABSTRACT

The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, ß-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.

8.
Front Endocrinol (Lausanne) ; 13: 999928, 2022.
Article in English | MEDLINE | ID: mdl-36277690

ABSTRACT

Background: Bile acids are important signaling molecules that might activate hypothalamic neurons. This study aimed to investigate possible changes in hypothalamic pro-opiomelanocortin (POMC) neurons after biliary diversion in diabetic rats. Methods: Ten GK rats were randomly divided into the biliary diversion (BD) and sham groups. The glucose metabolism, hypothalamic POMC expression, serum bile acid profiles, and ileal bile acid-specific receptors of the two groups were analyzed. Results: Biliary diversion improved blood glucose (P = 0.001) and glucose tolerance (P = 0.001). RNA-Seq of the hypothalamus showed significantly upregulated expression of the POMC gene (log2-fold change = 4.1, P < 0.001), which also showed increased expression at the protein (P = 0.030) and mRNA (P = 0.004) levels. The POMC-derived neuropeptide α-melanocyte stimulating hormone (α-MSH) was also increased in the hypothalamus (2.21 ± 0.11 ng/g, P = 0.006). In addition, increased taurocholic acid (TCA) (108.05 ± 20.62 ng/mL, P = 0.003) and taurodeoxycholic acid (TDCA) (45.58 ± 2.74 ng/mL, P < 0.001) were found in the BD group and induced the enhanced secretion of fibroblast growth factor-15 (FGF15, 74.28 ± 3.44 pg/ml, P = 0.001) by activating farnesoid X receptor (FXR) that was over-expressed in the ileum. Conclusions: Hypothalamic POMC neurons were upregulated after BD, and the increased TCA, TDCA, and the downstream gut-derived hormone FGF15 might activate POMC neurons.


Subject(s)
Diabetes Mellitus, Experimental , Neuropeptides , Rats , Animals , Pro-Opiomelanocortin/genetics , alpha-MSH/genetics , alpha-MSH/metabolism , Up-Regulation , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Bile Acids and Salts , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , RNA, Messenger/metabolism , Taurodeoxycholic Acid/metabolism , Taurocholic Acid/metabolism
9.
Cell Biosci ; 12(1): 170, 2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36210455

ABSTRACT

BACKGROUND: Pro-opiomelanocortin (POMC) neurons play a sexually dimorphic role in body weight and glucose balance. However, the mechanisms for the sex differences in POMC neuron functions are not fully understood. RESULTS: We detected small conductance calcium-activated potassium (SK) current in POMC neurons. Secondary analysis of published single-cell RNA-Seq data showed that POMC neurons abundantly express SK3, one SK channel subunit. To test whether SK3 in POMC neurons regulates POMC neuron functions on energy and glucose homeostasis, we used a Cre-loxP strategy to delete SK3 specifically from mature POMC neurons. POMC-specific deletion of SK3 did not affect body weight in either male or female mice. Interestingly, male mutant mice showed not only decreased food intake but also decreased physical activity, resulting in unchanged body weight. Further, POMC-specific SK3 deficiency impaired glucose balance specifically in female mice but not in male mice. Finally, no sex differences were detected in the expression of SK3 and SK current in total POMC neurons. However, we found higher SK current but lower SK3 positive neuron population in male POMC neurons co-expressing estrogen receptor α (ERα) compared to that in females. CONCLUSION: These results revealed a sexually dimorphic role of SK3 in POMC neurons in both energy and glucose homeostasis independent of body weight control, which was associated with the sex difference of SK current in a subpopulation of POMC + ERα + neurons.

10.
Front Endocrinol (Lausanne) ; 13: 889122, 2022.
Article in English | MEDLINE | ID: mdl-36120438

ABSTRACT

Pro-opiomelanocortin (POMC) neurons are important for the regulation of body weight and glucose balance. The inhibitory tone to POMC neurons is mediated primarily by the GABA receptors. However, the detailed mechanisms and functions of GABA receptors are not well understood. The α5 subunit of GABAA receptor, Gabra5, is reported to regulate feeding, and we found that Gabra5 is highly expressed in POMC neurons. To explore the function of Gabra5 in POMC neurons, we knocked down Gabra5 specifically from mature hypothalamic POMC neurons using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 strategy. This POMC-specific knock-down of Gabra5 did not affect body weight or food intake in either male or female mice. Interestingly, the loss of Gabra5 caused significant increases in the firing frequency and resting membrane potential, and a decrease in the amplitude of the miniature inhibitory postsynaptic current (mIPSC) in male POMC neurons. However, the loss of Gabra5 only modestly decreased the frequency of mIPSC in female POMC neurons. Consistently, POMC-specific knock-down of Gabra5 significantly improved glucose tolerance in male mice but not in female mice. These results revealed a sexually dimorphic role of Gabra5 in POMC neuron activity and glucose balance, independent of body weight control.


Subject(s)
Glucose , Pro-Opiomelanocortin , Animals , Body Weight , Female , Male , Mice , Mice, Transgenic , Neurons/metabolism , Pro-Opiomelanocortin/genetics , Receptors, GABA-A
11.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742824

ABSTRACT

Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.


Subject(s)
Diet, High-Fat , Melanocortins , Animals , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Melanocortins/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Minocycline/pharmacology , Neurons/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism
12.
J Hazard Mater ; 435: 128942, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35468398

ABSTRACT

Metabolic disorders induced by arsenic exposure have attracted great public concern. However, it remains unclear whether hypothalamus-based central regulation mechanisms are involved in this process. Here, we exposed mice to 100 µg/L arsenic in drinking water and established a chronic arsenic exposure model. Our study revealed that chronic arsenic exposure caused metabolic disorders in mice including impaired glucose metabolism and decreased energy expenditure. Arsenic exposure also impaired glucose sensing and the activation of proopiomelanocortin (POMC) neurons in the hypothalamus. In particular, arsenic exposure damaged the plasticity of hypothalamic astrocytic process. Further research revealed that arsenic exposure inhibited the expression of sex-determining region Y-Box 2 (SOX2), which decreased the expression level of insulin receptors (INSRs) and the phosphorylation of AKT. The conditional deletion of astrocytic SOX2 exacerbated arsenic-induced effects on metabolic disorders, the impairment of hypothalamic astrocytic processes, and the inhibition of INSR/AKT signaling. Furthermore, the arsenic-induced impairment of astrocytic processes and inhibitory effects on INSR/AKT signaling were reversed by SOX2 overexpression in primary hypothalamic astrocytes. Together, we demonstrated here that chronic arsenic exposure caused metabolic disorders by impairing SOX2-modulated hypothalamic astrocytic process plasticity in mice. Our study provides evidence of novel central regulatory mechanisms underlying arsenic-induced metabolic disorders and emphasizes the crucial role of SOX2 in regulating the process plasticity of adult astrocytes.


Subject(s)
Arsenic , Metabolic Diseases , Animals , Arsenic/metabolism , Arsenic/toxicity , Hypothalamus/metabolism , Metabolic Diseases/metabolism , Mice , Pro-Opiomelanocortin/metabolism , Proto-Oncogene Proteins c-akt/metabolism
13.
Cell Metab ; 34(2): 269-284.e9, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108514

ABSTRACT

Obesity and type 2 diabetes are associated with cognitive dysfunction. Because the hypothalamus is implicated in energy balance control and memory disorders, we hypothesized that specific neurons in this brain region are at the interface of metabolism and cognition. Acute obesogenic diet administration in mice impaired recognition memory due to defective production of the neurosteroid precursor pregnenolone in the hypothalamus. Genetic interference with pregnenolone synthesis by Star deletion in hypothalamic POMC, but not AgRP neurons, deteriorated recognition memory independently of metabolic disturbances. Our data suggest that pregnenolone's effects on cognitive function were mediated via an autocrine mechanism on POMC neurons, influencing hippocampal long-term potentiation. The relevance of central pregnenolone on cognition was also confirmed in metabolically unhealthy patients with obesity. Our data reveal an unsuspected role for POMC neuron-derived neurosteroids in cognition. These results provide the basis for a framework to investigate new facets of POMC neuron biology with implications for cognitive disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Diseases , Animals , Diabetes Mellitus, Type 2/metabolism , Humans , Hypothalamus/metabolism , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Pregnenolone/metabolism , Pro-Opiomelanocortin/metabolism
14.
Genes Genomics ; 44(4): 467-475, 2022 04.
Article in English | MEDLINE | ID: mdl-35072921

ABSTRACT

BACKGROUND: Obesity is considered a major public health issue worldwide. Liver Kinase B1 (LKB1) is a serine/threonine kinase, peripheral LKB1 is involved in obesity by regulating adipogenesis, but the role of central LKB1 in the development of obesity remains unclear. OBJECTIVE: This study aims to explore the main role of LKB1 in POMC neurons on obesity, and reveal the underlying mechanism of central LKB1 affecting obesity through quantitative proteomics. METHODS: We constructed POMC neuron specific LKB1 knockout mice (PomcLkb1 KO) and exposed them to high fat diet intervention for three months. The effect of LKB1 knockout on obesity was evaluated by monitoring body weight, food intake and measuring fat content. The hypothalamus tissues were collected for proteomic analysis and validated by RT-PCR. RESULTS: The degree of obesity was aggravated in PomcLkb1 KO mice fed with high fat diet. Proteomic results showed that only Histone deacetylase 1 (HDAC1) was down-regulated in the hypothalamus of PomcLkb1 KO mice. Our research also found that LKB1 knockout on POMC neurons led to reduction of Peroxisome proliferator-activated receptor γ (PPARγ). Meanwhile, the software predicted that the transcription factor PPARγ binds to the HDAC1 promoter. Therefore, we speculated that central LKB1 may regulate diet-induced obesity development by influencing HDAC1/PPARγ expression. CONCLUSION: We firstly found that central LKB1 may affect the development of obesity by regulating the expression of HDAC1, which provides a new idea for the central regulatory mechanism of obesity.


Subject(s)
PPAR gamma , Pro-Opiomelanocortin , AMP-Activated Protein Kinases/metabolism , Animals , Diet, High-Fat/adverse effects , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Mice , Neurons/metabolism , Obesity/genetics , Obesity/metabolism , PPAR gamma/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Protein Serine-Threonine Kinases/genetics , Proteomics
15.
Cell Metab ; 33(9): 1820-1835.e9, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34343501

ABSTRACT

Appropriate cristae remodeling is a determinant of mitochondrial function and bioenergetics and thus represents a crucial process for cellular metabolic adaptations. Here, we show that mitochondrial cristae architecture and expression of the master cristae-remodeling protein OPA1 in proopiomelanocortin (POMC) neurons, which are key metabolic sensors implicated in energy balance control, is affected by fluctuations in nutrient availability. Genetic inactivation of OPA1 in POMC neurons causes dramatic alterations in cristae topology, mitochondrial Ca2+ handling, reduction in alpha-melanocyte stimulating hormone (α-MSH) in target areas, hyperphagia, and attenuated white adipose tissue (WAT) lipolysis resulting in obesity. Pharmacological blockade of mitochondrial Ca2+ influx restores α-MSH and the lipolytic program, while improving the metabolic defects of mutant mice. Chemogenetic manipulation of POMC neurons confirms a role in lipolysis control. Our results unveil a novel axis that connects OPA1 in POMC neurons with mitochondrial cristae, Ca2+ homeostasis, and WAT lipolysis in the regulation of energy balance.


Subject(s)
Lipolysis , Pro-Opiomelanocortin , Adipose Tissue/metabolism , Animals , GTP Phosphohydrolases , Homeostasis , Mice , Neurons/metabolism , Pro-Opiomelanocortin/metabolism
16.
FASEB J ; 35(3): e21408, 2021 03.
Article in English | MEDLINE | ID: mdl-33583107

ABSTRACT

Sirtuin 6 (Sirt6), a member of the Sirtuin family, has important roles in maintaining glucose and lipid metabolism. Our previous studies demonstrated that the deletion of Sirt6 in pro-opiomelanocortin (POMC)-expressing cells by the loxP-Cre system resulted in severe obesity and hepatic steatosis. However, whether overexpression of Sirt6 in hypothalamic POMC neurons could ameliorate diet-induced obesity is still unknown. Thus, we generated mice specifically overexpressing Sirt6 in hypothalamic POMC neurons (PSOE) by stereotaxic injection of Cre-dependent adeno-associated viruses into the arcuate nucleus of Pomc-Cre mice. PSOE mice showed increased adiposity and decreased energy expenditure. Furthermore, thermogenesis of BAT and lipolysis of WAT were both impaired, caused by reduced sympathetic nerve innervation and activity in adipose tissues. Mechanistically, Sirt6 overexpression decreasing STAT3 acetylation, thus lowering POMC expression in the hypothalamus underlined the observed phenotypes in PSOE mice. These results demonstrate that Sirt6 overexpression specifically in the hypothalamic POMC neurons exacerbates diet-induced obesity and metabolic disorders via the hypothalamus-adipose axis.


Subject(s)
Hypothalamus/metabolism , Neurons/metabolism , Obesity/etiology , Pro-Opiomelanocortin/metabolism , Sirtuins/metabolism , Adipose Tissue/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Energy Metabolism/physiology , Leptin/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Pro-Opiomelanocortin/genetics
17.
Mol Metab ; 44: 101135, 2021 02.
Article in English | MEDLINE | ID: mdl-33279727

ABSTRACT

OBJECTIVE: Amylin was found to regulate glucose and lipid metabolism by acting on the arcuate nucleus of the hypothalamus (ARC). Maternal high-fat diet (HFD) induces sex-specific metabolic diseases mediated by the ARC in offspring. This study was performed to explore 1) the effect of maternal HFD-induced alterations in amylin on the differentiation of hypothalamic neurons and metabolic disorders in male offspring and 2) the specific molecular mechanism underlying the regulation of amylin and its receptor in response to maternal HFD. METHODS: Maternal HFD and gestational hyper-amylin mice models were established to explore the role of hypothalamic amylin and receptor activity-modifying protein 3 (Ramp3) in regulating offspring metabolism. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and RNA decay assays were performed to investigate the mechanism underlying the influence of maternal HFD on Ramp3 deficiency in the fetal hypothalamus. RESULTS: Male offspring with maternal HFD grew heavier and developed metabolic disorders, whereas female offspring with maternal HFD showed a slight increase in body weight and did not develop metabolic disorders compared to those exposed to maternal normal chow diet (NCD). Male offspring exposed to a maternal HFD had hyperamylinemia from birth until adulthood, which was inconsistent with offspring exposed to maternal NCD. Hyperamylinemia in the maternal HFD-exposed male offspring might be attributed to amylin accumulation following Ramp3 deficiency in the fetal hypothalamus. After Ramp3 knockdown in hypothalamic neural stem cells (htNSCs), amylin was found to fail to promote the differentiation of anorexigenic alpha-melanocyte-stimulating hormone-proopiomelanocortin (α-MSH-POMC) neurons but not orexigenic agouti-related protein-neuropeptide Y (AgRP-Npy) neurons. An investigation of the mechanism involved showed that IGF2BP1 could specifically bind to Ramp3 in htNSCs and maintain its mRNA stability. Downregulation of IGF2BP1 in htNSCs in the HFD group could decrease Ramp3 expression and lead to an impairment of α-MSH-POMC neuron differentiation. CONCLUSIONS: These findings suggest that gestational exposure to HFD decreases the expression of IGF2BP1 in the hypothalami of male offspring and destabilizes Ramp3 mRNA, which leads to amylin resistance. The subsequent impairment of POMC neuron differentiation induces sex-specific metabolic disorders in adulthood.


Subject(s)
Cell Differentiation , Diet, High-Fat/adverse effects , Hypothalamus/metabolism , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Receptors, Islet Amyloid Polypeptide/metabolism , Agouti-Related Protein/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Body Weight , Female , HEK293 Cells , Humans , Islet Amyloid Polypeptide/metabolism , Male , Mice , Mice, Inbred C57BL , Neurogenesis , Neuropeptide Y/metabolism , Pregnancy , RNA-Binding Proteins/metabolism , Receptor Activity-Modifying Protein 3/genetics , Receptor Activity-Modifying Protein 3/metabolism , Stem Cells , alpha-MSH/metabolism
18.
Mol Metab ; 42: 101084, 2020 12.
Article in English | MEDLINE | ID: mdl-32971298

ABSTRACT

OBJECTIVE: Although the hypothalamus is crucial for peripheral metabolism control, the signals in specific neurons involved remain poorly understood. The aim of our current study was to explore the role of the hypothalamic gene mothers against decapentaplegic homolog 7 (Smad7) in peripheral glucose disorders. METHODS: We studied glucose metabolism in high-fat diet (HFD)-fed mice and middle-aged mice with Cre-mediated recombination causing 1) overexpression of Smad7 in hypothalamic proopiomelanocortin (POMC) neurons, 2) deletion of Smad7 in POMC neurons, and 3) overexpression of protein kinase B (AKT) in arcuate nucleus (ARC) in Smad7 overexpressed mice. Intracerebroventricular (ICV) cannulation of insulin was used to test the hypothalamic insulin sensitivity in the mice. Hypothalamic primary neurons were used to investigate the mechanism of Smad7 regulating hypothalamic insulin signaling. RESULTS: We found that Smad7 expression was increased in POMC neurons in the hypothalamic ARC of HFD-fed or middle-aged mice. Furthermore, overexpression of Smad7 in POMC neurons disrupted the glucose balance, and deletion of Smad7 in POMC neurons prevented diet- or age-induced glucose disorders, which was likely to be independent of changes in body weight or food intake. Moreover, the effect of Smad7 was reversed by overexpression of AKT in the ARC. Finally, Smad7 decreased AKT phosphorylation by activating protein phosphatase 1c in hypothalamic primary neurons. CONCLUSIONS: Our results demonstrated that an excess of central Smad7 in POMC neurons disrupts glucose balance by attenuating hypothalamic insulin signaling. In addition, we found that this regulation was mediated by the activity of protein phosphatase 1c.


Subject(s)
Glucose/metabolism , Pro-Opiomelanocortin/metabolism , Smad7 Protein/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Diet, High-Fat , Energy Metabolism , Gene Expression/genetics , Gene Expression Regulation/genetics , Hypothalamus/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Smad7 Protein/genetics
19.
Life Sci ; 258: 118204, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32763296

ABSTRACT

AIMS: Liver kinase B1 (LKB1) is a serine/threonine kinase. Although many biological functions of LKB1 have been identified, the role of hypothalamic LKB1 in the regulation of central energy metabolism and susceptibility to obesity is unknown. Therefore, we constructed POMC neuron-specific LKB1 knockout mice (PomcLkb1 KO) and studied it at the physiological, morphological, and molecular biology levels. MAIN METHODS: Eight-week-old male PomcLkb1 KO mice and their littermates were fed a standard chow fat diet (CFD) or a high-fat diet (HFD) for 3 months. Body weight and food intake were monitored. Dual-energy X-ray absorptiometry was used to measure the fat mass and lean mass. Glucose and insulin tolerance tests and serum biochemical markers were evaluated in the experimental mice. In addition, the levels of peripheral lipogenesis genes and central energy metabolism were measured. KEY FINDINGS: PomcLkb1 KO mice did not exhibit impairments under normal physiological conditions. After HFD intervention, the metabolic phenotype of the PomcLkb1 KO mice changed, manifesting as increased food intake and an enhanced obesity phenotype. More seriously, PomcLkb1 KO mice showed increased leptin resistance, worsened hypothalamic inflammation and reduced POMC neuronal expression. SIGNIFICANCE: We provide evidence that LKB1 in POMC neurons plays a significant role in regulating energy homeostasis. LKB1 in POMC neurons emerges as a target for therapeutic intervention against HFD-induced obesity and metabolic diseases.


Subject(s)
Gene Deletion , Neurons/enzymology , Obesity/enzymology , Pro-Opiomelanocortin/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases , Adipose Tissue/pathology , Animals , Diet, High-Fat , Epididymis/pathology , Feeding Behavior , Gene Expression Regulation , Glucose/metabolism , Hypothalamus/pathology , Inflammation/pathology , Leptin/metabolism , Liver/enzymology , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Obesity/blood , Obesity/pathology , Pro-Opiomelanocortin/genetics , Weight Gain
20.
Mol Metab ; 37: 100994, 2020 07.
Article in English | MEDLINE | ID: mdl-32278654

ABSTRACT

OBJECTIVE: Sirt6 is an essential regulator of energy metabolism in multiple peripheral tissues. However, the direct role of Sirt6 in the hypothalamus, specifically pro-opiomelanocortin (POMC) neurons, controlling energy balance has not been established. Here, we aimed to determine the role of Sirt6 in hypothalamic POMC neurons in the regulation of energy balance and the underlying mechanisms. METHODS: For overexpression studies, the hypothalamic arcuate nucleus (ARC) of diet-induced obese mice was targeted bilaterally and adenovirus was delivered by using stereotaxic apparatus. For knockout studies, the POMC neuron-specific Sirt6 knockout mice (PKO mice) were generated. Mice were fed with chow diet or high-fat diet, and body weight and food intake were monitored. Whole-body energy expenditure was determined by metabolic cages. Parameters of body composition and glucose/lipid metabolism were evaluated. RESULTS: Sirt6 overexpression in the ARC ameliorated diet-induced obesity. Conversely, selective Sirt6 ablation in POMC neurons predisposed mice to obesity and metabolic disturbances. PKO mice showed an increased fat mass and food intake, while the energy expenditure was decreased. Mechanistically, Sirt6 could modulate leptin signaling in hypothalamic POMC neurons, with Sirt6 deficiency impairing leptin-induced phosphorylation of signal transducer and activator of transcription 3. The effects of leptin on reducing food intake and body weight and leptin-stimulated lipolysis were also impaired. Moreover, Sirt6 inhibition diminished the leptin-induced depolarization of POMC neurons. CONCLUSIONS: Our results reveal a key role of Sirt6 in POMC neurons against energy imbalance, suggesting that Sirt6 is an important molecular regulator for POMC neurons to promote negative energy balance.


Subject(s)
Leptin/metabolism , Neurons/metabolism , Sirtuins/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Body Composition , Body Weight , Brain/metabolism , Diet, High-Fat , Energy Metabolism/physiology , Hypothalamus/metabolism , Leptin/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Signal Transduction/physiology , Sirtuins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL