Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
Macromol Biosci ; : e2400095, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052386

ABSTRACT

Peritoneal adhesion typically occurs in applications such as abdominal, pelvic, and vascular surgery. It is necessary to develop a mechanical barrier to prevent adhesion. In this study, a novel biomaterial as a mechanical barrier is developed by combining polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC), doped with polyhedral oligomeric silsesquioxane (POSS) to prevent peritoneal adhesion. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods reveal that POSS nanoparticles in the PVA matrix disrupted the intramolecular hydroxyl groups and structure of the crystal region. Electron microscopy (EM) images reveal that high concentrations of POSS (2 wt.%) cause irregular clustering in the composite matrix. As the concentration of POSS increases in the matrix, the degradation of the membranes increases, and protein adhesion decreases. In vitro cytotoxicity tests show a toxic effect on cells for PVA/CMC composite membranes, while on the other hand, the addition of POSS increases cell viability. According to the MMT test the POSS decreases cell adhesion of membranes. When comparing the POSS doped membrane to the undoped PVA/CMC membrane, an increase in the total antioxidant level and a decrease in the total oxidant level is observed.

2.
Int J Biol Macromol ; 277(Pt 1): 134064, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39048012

ABSTRACT

The clinical utility of small-diameter vascular grafts (SDVGs) is limited due to the possibility of thrombosis and intimal hyperplasia. These features can delay the development of a functional endothelial cell (EC) monolayer on the luminal surface of grafts. Therefore, the development and fabrication of vascular grafts (VGs) with comparable extracellular matrix (ECM) functions are mandatory to elicit hemocompatible confluent EC monolayers, and angiogenesis behavior inside the body. To promote the interactions between ECs and the surface of electrospun polyacrylic acid-grafted polyhedral oligomeric silsesquioxane-poly(carbonate-urea)-urethane (PAAc-POSS-PCUU), in this research, the surface of nanofibers was modified by covalently immobilizing extracted soluble proteins from aorta (ESPA) using EDC/NHS chemistry. The ATR-FTIR spectroscopy, WCA, and SEM microscopy confirmed the binding of acrylic acid and soluble vascular proteins on the surface of electrospun fibers. The PAAc-POSS-PCUU nanofibers and engineered biomimetic Pro-PAAc-POSS-PCUU nanofibers exhibited excellent biocompatibility indicated by increased survival rate (p < 0.05). Western blotting revealed the increase of VE-cadherin, Tie-2, vWF, and VEGFR-2 in HUVECs after being plated on PAAc-POSS-PCUU and Pro-PAAc-POSS-PCUU scaffolds, indicating appropriate angiogenesis behavior (p < 0.05). Besides, the antioxidant capacity was induced by the increase of SOD and GPx activity (p < 0.05). Additionally, blood compatibility tests revealed that Pro-PAAc-POSS-PCUU nanofibers accelerate the formation of a single EC layer without hemolysis and platelet adhesion. Taken together, Pro-PAAc-POSS-PCUU nanofibers exhibited excellent blood compatibility, and angiogenesis behavior, making them a promising candidate for clinical applications.

3.
Polymers (Basel) ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932037

ABSTRACT

Polyimide (PI) is widely used in aerospace applications due to its excellent properties. However, the high concentration of atomic oxygen (AO) in low-earth orbit (LEO) significantly degrades its performance. This study employs reactive molecular dynamics (MD) simulations to analyze the AO erosion resistance of fluorinated polyimide (FPI) and polyhedral oligomeric silsesquioxane (POSS) composite polyimide models. The 35 ps simulation results indicate that the PI/POSS composite exhibits the best protective performance. The protection mechanism involves the formation of an SiO2 carbonized layer that prevents the transmission of AO and heat to the polyimide matrix, resulting in a normalized mass of 84.1% after erosion. The FPI model shows the second-best protective effect, where the introduction of -CF3 groups enhances the thermal stability of the polyimide matrix, resulting in a normalized mass of 80.7% after erosion. This study explores the protective effects and mechanisms of different polyimide protection methods at the molecular level, providing new insights for the design of AO erosion protection systems.

4.
ACS Appl Mater Interfaces ; 16(15): 19625-19641, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588400

ABSTRACT

Herein, the development of new nanocomposite systems is reported based on one-part polyurea (PU) and aminopropyl isobutyl polyhedral oligomeric silsesquioxane (POSS)-functionalized graphene nanoplatelets (GNP-POSS) as compatible nanoreinforcements with the PU resin. GNP-POSS was effectively synthesized via a two-step synthesis protocol, including ultrasonication-assisted reaction and precipitation, and carefully characterized with respect to its chemical and crystalline structure, morphology, and thermal stability. FTIR and XPS spectroscopy analyses revealed that POSS interacts with the residual oxygen moieties of the GNPs through both covalent and noncovalent bonding. The X-ray diffraction pattern of GNP-POSS further revealed that the crystallinity of the GNPs was not altered after their functionalization with POSS. GNP-POSS was successfully incorporated in PU at contents of 1, 3, 5, and 10 wt % to yield PU/GNP-POSS nanocomposite films. An ATR-FTIR analysis of these films confirmed the presence of strong interfacial interactions between the urea groups of PU and the GNP-POSS functionalities. Moreover, the PU/GNP-POSS nanocomposite films exhibited enhanced thermal stability and mechanical properties compared to those of the neat PU film. The quasi-static tensile testing of the PU/GNP-POSS samples revealed remarkable enhancements in the tensile strength (from 7.9 for the neat PU to 25.1 MPa for PU/GNP-POSS) and Young's modulus (238-617 MPa), while elongation at break and toughness also showed 14 and 125% improvements, respectively. Finally, the effects of GNP-POSS content on the morphological, quasistatic tensile, and high-strain-rate dynamic behavior of the PU/GNP-POSS nanocomposite films were also investigated. Overall, the tests performed using a split-Hopkinson pressure bar setup revealed a large increase in the film strength (from 147.6 for the neat PU film to 199 MPa for the PU/GNP-POSS film) and a marginal increase in the energy density of the film (38.1-40.8 kJ/m3). These findings support the suitability of the PU/GNP-POSS nanocomposite films for force protection applications.

5.
Gels ; 10(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667698

ABSTRACT

The use of environmentally friendly and non-toxic biomass-based interfacial solar water evaporators has been widely reported as a method for water purification in recent years. However, the poor stability of the water transport layer made from biomass materials and its susceptibility to deformation when exposed to harsh environments limit its practical application. To address this issue, water-driven recovery aerogel (PCS) was prepared by cross-linking epoxy-based polyhedral oligomeric silsesquioxane (EP-POSS) epoxy groups with chitosan (CS) amino groups. The results demonstrate that PCS exhibits excellent water-driven recovery performance, regaining its original volume within a very short time (1.9 s) after strong compression (ε > 80%). Moreover, PCS has a water absorption rate of 2.67 mm s-1 and exhibits an excellent water absorption capacity of 22.09 g g-1 even after ten cycles of absorption-removal. Furthermore, a photothermal evaporator (PCH) was prepared by loading the top layer with hydrothermally reacted tannins (HAs) and Zn2+ complexes. The results indicate that PCH achieves an impressive evaporation rate of 1.89 kg m-2 h-1 under one sun illumination. Additionally, due to the antimicrobial properties of Zn2+, PCH shows inhibitory effects against Staphylococcus aureus and Escherichia coli, thereby extending the application of solar water evaporators to include antimicrobial purification in natural waters.

6.
Materials (Basel) ; 17(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612138

ABSTRACT

Superhydrophobic coatings can be a suitable solution for protecting vulnerable electrical infrastructures in regions with severe meteorological conditions. Regenerative superhydrophobicity, the ability to regain superhydrophobicity after being compromised or degraded, could address the issue of the low durability of these coatings. In this study, we fabricated a superhydrophobic coating comprising hydrophobic aerogel microparticles and polydimethylsiloxane (PDMS)-modified silica nanoparticles within a PDMS matrix containing trifluoropropyl POSS (F-POSS) and XIAMETER PMX-series silicone oil as superhydrophobicity-regenerating agents. The fabricated coating exhibited a static contact angle of 169.5° and a contact angle hysteresis of 6°. This coating was capable of regaining its superhydrophobicity after various pH immersion and plasma deterioration tests. The developed coating demonstrated ice adhesion as low as 71.2 kPa, which remained relatively unchanged even after several icing/de-icing cycles. Furthermore, the coating exhibited a higher flashover voltage than the reference samples and maintained a minimal drop in flashover voltage after consecutive testing cycles. Given this performance, this developed coating can be an ideal choice for enhancing the lifespan of electrical insulators.

7.
Polymers (Basel) ; 16(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611241

ABSTRACT

A novel functional polycarbonate (PAGC), characterized by the presence of double bonds within its side chain, was successfully synthesized through a ternary copolymerization of propylene oxide (PO), allyl glycidyl ether (AGE), and carbon dioxide (CO2). Polyhedral oligomeric silsesquioxanes octamercaptopropyl (POSS-SH) was employed as a crosslinking agent, contributing to the formation of organic-inorganic hybrid materials. This incorporation was facilitated through thiol-ene click reactions, enabling effective interactions between the POSS molecules and the double bonds in the side chains of the polycarbonate. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) confirmed a homogeneous distribution of silicon (Si) and sulfur (S) in the polycarbonate matrix. The thiol-ene click reaction between POSS-SH and the polycarbonate led to a micro-crosslinked structure. This enhancement significantly increased the tensile strength of the polycarbonate to 42 MPa, a notable improvement over traditional poly (propylene carbonate) (PPC). Moreover, the cross-linked structure exhibited enhanced solvent resistance, expanding the potential applications of these polycarbonates in various plastic materials.

8.
Polymers (Basel) ; 16(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543451

ABSTRACT

This paper offers a comprehensive overview of the polyhedral oligomeric silsesquioxane (POSS) and POSS-based composites within the realm of photoresist resin. The study involves a systematic exploration and discussion of the contributions made by POSS across various lithographic systems, with specific emphasis on critical parameters such as film formation, sensitivity, resolution, solubility, and edge roughness. These lithographic systems encompass X-ray lithography (XRL), deep ultraviolet nanoimprint lithography (DUV-NIL), extreme ultraviolet lithography (EUV), and guided self-assembled lithography (DSA). The principal objective of this paper is to furnish valuable insights into the development and utilization of POSS-based photoresist materials in diverse lithographic contexts.

9.
Materials (Basel) ; 17(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541475

ABSTRACT

This study analyzed the dentin shear bond strength (SBS) of an etch-and-rinse (ER) or a self-etch (SE) adhesive incorporated with multifunctional polyhedral oligomeric silsesquioxanes (MA-POSS-8). An ER adhesive (Solobond Plus, VOCO GmbH, Cuxhaven, Germany) and a universal adhesive applied in SE mode (Scotchbond Universal, 3M, St. Paul, MN, USA) were infiltrated with MA-POSS-8 (Hybrid Plastics Inc., Hattiesburg, MS, USA) at 5 wt.% or 10 wt.%. Pure adhesives served as controls. Bovine dentin specimens were conditioned with one of the adhesives prior to the application of a nano-hybrid composite (Venus Diamond A3, Kulzer, Hanau, Germany). SBS and failure modes were determined after water storage for 24 h, 6 months, 12 months, or 24 months (each subgroup n = 20). Statistical analysis was performed using ANOVAs, Weibull statistics, and χ2 tests (p < 0.05). SBSs for the control groups after 24 h were 17.4 ± 4.9 MPa for the ER adhesive and 19.1 ± 5.2 MPa for the universal adhesive. After 24 months, the SBS of the ER adhesive was significantly higher for 5 wt.% MA-POSS-8 (17.9 ± 5.1 MPa) than for the control group (14.6 ± 3.6 MPa) and 10 wt.% MA-POSS-8 (12.8 ± 4.1 MPa), and more cohesive failures were observed. The SBS of the universal adhesive increased during aging, irrespective of the MA-POSS-8 concentration. 5 wt.% MA-POSS-8 improves the SBS of the ER adhesive and does not impair the SBS of the SE adhesive.

10.
ACS Appl Mater Interfaces ; 16(10): 13282-13290, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38438276

ABSTRACT

Nonaqueous foams in low-surface tension solvents (<25 mN·m-1) are highly desired for applications in fire extinguishers and detoxification gels. However, their formation is a Holy Grail of the chemical industry due to the need for stabilizers with low surface energy and high recyclability. Herein, we disclose a new strategy to generate abundant foams in ethanol and a variety of low-surface tension solvents relying on the interfacial coadsorption of two different particles. The particles consist of surface-active fluorinated silica particles, used as a stabilizer, and a novel amphiphilic polyhedral oligomeric silsesquioxane (POSS) decorated with isobutyl cage substituents, used as a frother. The interaction between POSS and fluorinated particles at the ethanol-air interface was thoroughly investigated by combining physicochemical methods (contact angle, dynamic surface tension, and dynamic light scattering methods) and catalytic tests using the model aerobic oxidation reaction of benzyl alcohol. Both particles could be conveniently recycled for at least 5 consecutive runs with high foamability and catalytic activity.

11.
Polymers (Basel) ; 16(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399840

ABSTRACT

Water-based chloroprene latex is a solvent-free, environmentally friendly adhesive. Currently, its market demand is growing rapidly. However, there are problems such as a lack of heat resistance and poor mechanical properties, which limit its application. The introduction of vinyl-POSS (OVS) into the resin structure can effectively improve the thermal stability of chloroprene adhesives. In this paper, modified waterborne chloroprene latex was prepared by copolymerization of methyl methacrylate and OVS with chloroprene latex. The results showed that vinyl-POSS was successfully grafted onto the main chain of the waterborne chloroprene latex, and the modified waterborne chloroprene latex had good storage stability. With the increase in vinyl-POSS, the tensile strength of the chloroprene latex firstly increased and then decreased, the tensile property (peel strength of 20.2 kgf) was maintained well at a high temperature (100 °C), and the thermal stability of the chloroprene latex was improved. When the addition amount was 4%, the comprehensive mechanical properties were their best. This study provides a new idea for the construction of a new and efficient waterborne chloroprene latex system and provides more fields for the practical application of waterborne chloroprene latex. This newly developed vinyl-POSS modified chloroprene latex has great application potential for use in home furniture, bags, and seat cushions.

12.
Mikrochim Acta ; 191(3): 153, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38393379

ABSTRACT

This study introduces aptamer-functionalized polyhedral oligomeric silsesquioxane (POSS) nanoparticles for adenosine triphosphate (ATP) detection where the POSS nanoparticles were synthesized in a one-step, continuous flow microfluidic reactor utilizing thermal polymerization. A microemulsion containing POSS monomers was generated in the microfluidic reactor which was designed to prevent clogging by using a continuous oil flow around the emulsion during thermal polymerization. Surfaces of POSS nanoparticles were biomimetically modified by polydopamine. The aptamer sequence for ATP was successfully attached to POSS nanoparticles. The aptamer-modified POSS nanoparticles were tested for affinity-based biosensor applications using ATP as a model molecule. The nanoparticles were able to capture ATP molecules successfully with an affinity constant of 46.5 [Formula: see text]M. Based on this result, it was shown, for the first time, that microfluidic synthesis of POSS nanoparticles can be utilized in designing aptamer-functionalized nanosystems for biosensor applications. The integration of POSS in biosensing technologies not only exemplifies the versatility and efficacy of these nanoparticles but also marks a significant contribution to the field of biorecognition and sample preparation.


Subject(s)
Biosensing Techniques , Nanoparticles , Organosilicon Compounds , Adenosine Triphosphate , Microfluidics , Oligonucleotides
13.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256086

ABSTRACT

Chemo-mild photothermal synergistic therapy can effectively inhibit tumor growth under mild hyperthermia, minimizing damage to nearby healthy tissues and skin while ensuring therapeutic efficacy. In this paper, we develop a multifunctional study based on polyhedral oligomeric sesquisiloxane (POSS) that exhibits a synergistic therapeutic effect through mild photothermal and chemotherapy treatments (POSS-SQ-DOX). The nanoplatform utilizes SQ-N as a photothermal agent (PTA) for mild photothermal, while doxorubicin (DOX) serves as the chemotherapeutic drug for chemotherapy. By incorporating POSS into the nanoplatform, we successfully prevent the aggregation of SQ-N in aqueous solutions, thus maintaining its excellent photothermal properties both in vitro and in vivo. Furthermore, the introduction of polyethylene glycol (PEG) significantly enhances cell permeability, which contributes to the remarkable therapeutic effect of POSS-SQ-DOX NPs. Our studies on the photothermal properties of POSS-SQ-DOX NPs demonstrate their high photothermal conversion efficiency (62.3%) and stability, confirming their suitability for use in mild photothermal therapy. A combination index value (CI = 0.72) verified the presence of a synergistic effect between these two treatments, indicating that POSS-SQ-DOX NPs exhibited significantly higher cell mortality (74.7%) and tumor inhibition rate (72.7%) compared to single chemotherapy and mild photothermal therapy. This observation highlights the synergistic therapeutic potential of POSS-SQ-DOX NPs. Furthermore, in vitro and in vivo toxicity tests suggest that the absence of cytotoxicity and excellent biocompatibility of POSS-SQ-DOX NPs provide a guarantee for clinical applications. Therefore, utilizing near-infrared light-triggering POSS-SQ-DOX NPs can serve as chemo-mild photothermal PTA, while functionalized POSS-SQ-DOX NPs hold great promise as a novel nanoplatform that may drive significant advancements in the field of chemo-mild photothermal therapy.


Subject(s)
Neoplasms , Photothermal Therapy , Humans , Biological Assay , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Health Status
14.
Macromol Rapid Commun ; 45(5): e2300601, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232689

ABSTRACT

This study provides a comprehensive overview of the preparation methods for polyhedral oligomeric silsesquioxane (POSS) monomers and polymer/POSS nanocomposites. It focuses on the latest advancements in using POSS to design polymer nanocomposites with reduced dielectric constants. The study emphasizes exploring the potential of POSS, either alone or in combination with other materials, to decrease the dielectric constant and dielectric loss of various polymers, including polyimides, bismaleimide resins, poly(aryl ether)s, polybenzoxazines, benzocyclobutene resins, polyolefins, cyanate ester resins, and epoxy resins. In addition, the research investigates the impact of incorporating POSS on improving the thermal properties, mechanical properties, surface properties, and other aspects of these polymers. The entire study is divided into two parts, discussing systematically the role of POSS in reducing dielectric constants during the preparation of POSS composites using both physical blending and chemical synthesis methods. The goal of this research is to provide valuable strategies for designing a new generation of low dielectric constant materials suitable for large-scale integrated circuits in the semiconductor materials domain.


Subject(s)
Nanocomposites , Polymers , Polymers/chemistry , Nanocomposites/chemistry
15.
Talanta ; 271: 125653, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38218057

ABSTRACT

In analysis of complex samples, the stability and sensitivity of surface-enhanced Raman scattering (SERS) substrates may be compromised by matrix interference. To address this issue, a membrane substrate was prepared for fast enrichment, separation, and detection of chrysoidine all-in-one. The silver nanoparticles modified sulfur-containing POSS polymer (AgNPs/POSS-P-S) SERS membrane substrate was fabricated using polyhedral oligomeric silsesquioxane (POSS) as support materials. Through in-situ growth, AgNPs were uniformly modified on POSS-P-S to ensure the stability and SERS activity of the membrane substrate. The enhancement factor of the malachite green was up to 5.3 × 105. By loading the AgNPs/POSS-P-S on membrane, on the other hand, the SERS membrane substrate can also serve as an adsorption medium for separating chrysoidine from sample matrix. Furthermore, the specific sensing mechanism of AgNPs/POSS-P-S for chrysoidine was investigated and a fast, sensitive, and selective method for its quantification was established, with a linear range of 0.010-2.0 mg/L and the limits of detection at 3.7 µg/L. In addition, the SERS method was successfully applied for the analysis of chrysoidine in beverages and chili products with the recoveries in the range of 83.5%-113.4 % and the relative standard deviations in 3.2%-9.0 %. The proposed AgNPs/POSS-P-S membrane based SRES method has great potential for rapid chrysoidine analysis in food samples.


Subject(s)
Metal Nanoparticles , Silver , p-Aminoazobenzene/analogs & derivatives , Spectrum Analysis, Raman/methods , Adsorption , Sulfur
16.
Int J Biol Macromol ; 255: 127921, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944741

ABSTRACT

To reduce the white pollution, the eco-friendly biodegradable poly (butylene adipate-co-terephthalate) (PBAT)-based films had attracted increasing interests worldwide. However, the high-cost of the PBAT had limited the large-scale development and application. In this work, 10 wt% low-cost lignin was introduced into the PBAT to prepare composite films by melt blending and blow molding, and the POSS(epoxy)8 was selected as the compatibilizer to improve the compatibility of PBAT and lignin. The maximum tensile strength and the nominal strain at break subsequently increased by 48.2 % and 21.4 % respectively, while the water vapor permeability enhanced by 9.9 %. Furthermore, the UV aging resistance of PBAT/lignin films were significantly improved, with only 1 wt% POSS(epoxy)8 content. This work provides an efficient strategy to foster the end-user confidence in the low-cost and eco-friendly biodegradable polymer materials with efficient performance.


Subject(s)
Lignin , Polyesters , Epoxy Resins , Adipates
17.
Int J Biol Macromol ; 257(Pt 2): 128705, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081486

ABSTRACT

Starch is one of the most frequently preferred natural polymers in hydrogel synthesis. Herein, we combined two strategies of associating brittle and ductile networks in a structure and incorporating inorganic particles into the polymeric gel to design mechanically enhanced nanocomposite double network (DN) starch gels. For the first time in the literature, nanocomposite starch gels (s-NC) were designed by cross-linking starch chains with 8-armed glycidyl-polyhedral oligomeric silsesquioxane (g-POSS) units. Fourier Transform Infrared Spectroscopy and Energy Dispersive X-Ray Spectroscopy analyses have proven that g-POSS is included in the gel structure and is homogeneously distributed throughout the network. More stable d-NC-DMA and d-NC-VP gels were obtained by incorporating N,N-dimethylacrylamide (DMA), or 1-vinyl-2-pyrrolidinone (VP) units, respectively, into g-POSS-linked starch gels, and the reaction kinetics were followed in situ. In SEM images, it was observed that d-NC-DMA had smaller pores and thicker pore walls compared to s-NC and d-NC-VP starch gels, and its mechanical strength was shown to be much superior by rheological tests, compression, and tensile analyses. In addition to increasing the mechanical strength of the gels, the potential of starch in protein release applications using amylase sensitivity has been demonstrated in vitro experiments using the model protein BSA.


Subject(s)
Nanocomposites , Nanocomposites/chemistry , Polymers , Hydrogels/chemistry , Spectroscopy, Fourier Transform Infrared , Tensile Strength
18.
Chempluschem ; 89(5): e202300628, 2024 May.
Article in English | MEDLINE | ID: mdl-38153180

ABSTRACT

A new amphiphilic azo-functionalized polyhedral oligomeric silsesquioxane (POSS) derivative was synthesized by functionalizing octa(3-aminopropyl)silsesquioxane (OAS-POSS) with 4-((4-(dodecyloxy)phenyl)diazenyl)benzoic acid, affording a hydrophilic amino POSS head and hydrophobic dodecyl tail with a diphenyl-azo connector. Prepared amphiphilic azo-functionalized POSS (azo-POSS) exhibited high ability for encapsulation and transferring cationic dyes into the organic phase by vigorously mixing with aqueous solutions of each dye. The photo-controlled encapsulating properties of the synthesized phase transfer reagent was studied using cationic dyes, such as methylene blue (MB), crystal violet (CV) and thymol blue in acidic conditions. Results showed more than 95 % encapsulation of MB. However, no considerable encapsulation was shown in the case of anionic dyes such as eriochrome black T (EBT) and thymol blue in alkaline solutions. By trans/cis isomerization of the azo moiety of the phase transfer reagent by UV irradiation (365 nm), the amount of dye encapsulation was decreased, which could be attributed to the formation of cis isomer that led to the folding of the dodecyl alkyl tail on the POSS moiety, and therefore prevent to lay the 3-aminopropyl moieties of POSS head to the water/DCM interface to adsorb and encapsulate MB molecules.

19.
ACS Appl Mater Interfaces ; 16(1): 985-997, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38153210

ABSTRACT

Cost-effective methods of synthesizing bright colloidal silicon quantum dots (SiQDs) for use as heavy-metal-free QDs, which have applications as light sources in biomedicine and displays, are required. We report simple protocols for synthesizing ultrabright colloidal SiQDs and fabricating SiQD LEDs based on hydrogen silsesquioxane (HSQ) polymer synthesis. Red photoluminescence with a quantum yield (PLQY) of 60-80% and LEDs with an external quantum efficiency (EQE) of >10% were obtained at 1/3600th of the cost of existing methods. This was achieved by using HSiCl3 and a low-polarity solvent to prepare the HSQ polymer and by optimizing the LED hole-injection layer thickness. A stochastic analysis of 31 SiQD syntheses revealed that SiQDs with the highest PLQYs were obtained from a hard, low-carbon HSQ polymer precursor containing many Si-H groups and cage structures. Notably, simple FTIR measurements predicted whether a HSQ polymer would yield high-PLQY SiQDs and high-EQE LEDs. These straightforward, cost-effective protocols should lead to advances in SiQD synthesis and LED fabrication methods.

20.
Materials (Basel) ; 16(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38068220

ABSTRACT

A series of fibrous meshes based on liquid crystalline polyurethane/POSS composites were prepared. Two types of polyhedral oligomeric silsesquioxanes (POSSs) of different structures were chosen to show their influence on electrospun fibers: aromatic-substituted Trisilanolphenyl POSS (TSP-POSS) and isobutyl-substituted Trisilanolisobutyl POSS (TSI-POSS) in amounts of 2 and 6 wt%. The process parameters were selected so that the obtained materials showed the highest possible fiber integrity. Moreover, 20 wt% solutions of LCPU/POSS composites in hexafluoroisopropanol (HFIP) were found to give the best processability. The morphology of the obtained meshes showed significant dependencies between the type and amount of silsesquioxane nanoparticles and fiber morphology, as well as thermal and mechanical properties. In total, 2 wt%. POSS was found to enhance the mechanical properties of produced mesh without disrupting the fiber morphology. Higher concentrations of silsesquioxanes significantly increased the fibers' diameters and their inhomogeneity, resulting in a lower mechanical response. A calorimetric study confirmed the existence of liquid crystalline phase formation.

SELECTION OF CITATIONS
SEARCH DETAIL