Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Biol Rep ; 51(1): 492, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578368

ABSTRACT

BACKGROUND: Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis. METHODS AND RESULTS: Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein-protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay. Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662. CONCLUSION: This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.


Subject(s)
Acute Lung Injury , Lactoferrin , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Anti-Inflammatory Agents/pharmacology , Apoptosis , Lactoferrin/pharmacology , Lipopolysaccharides , Peroxisome Proliferator-Activated Receptors/metabolism , Reactive Oxygen Species/metabolism
2.
Brain Res Bull ; 209: 110918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432497

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of high mortality and disability worldwide. Overactivation of astrocytes and overexpression of inflammatory responses in the injured brain are characteristic pathological features of TBI. Rosiglitazone (ROS) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist known for its anti-inflammatory activity. However, the relationship between the inflammatory response involved in ROS treatment and astrocyte A1 polarization remains unclear. OBJECTIVE: This study aimed to investigate whether ROS treatment improves dysfunction and astrocyte A1 polarization induced after TBI and to elucidate the underlying mechanisms of these functions. METHODS: SD rats were randomly divided into sham operation group, TBI group, TBI+ROS group, and TBI+ PPAR-γ antagonist group (GW9662 + TBI). The rat TBI injury model was prepared by the CCI method; brain water content test and wire grip test scores suggested the prognosis; FJB staining showed the changes of ROS on the morphology and number of neurons in the peripheral area of cortical injury; ELISA, immunofluorescence staining, and western blotting analysis revealed the effects of ROS on inflammatory response and astrocyte activation with the degree of A1 polarization after TBI. RESULTS: Brain water content, inflammatory factor expression, and astrocyte activation in the TBI group were higher than those in the sham-operated group (P < 0.05); compared with the TBI group, the expression of the above indexes in the ROS group was significantly lower (P < 0.05). Compared with the TBI group, PPAR-γ content was significantly higher and C3 content was considerably lower in the ROS group (P < 0.05); compared with the TBI group, PPAR-γ content was significantly lower and C3 content was substantially higher in the inhibitor group (P < 0.05). CONCLUSION: ROS can exert neuroprotective effects by inhibiting astrocyte A1 polarization through the PPAR-γ pathway based on the reduction of inflammatory factors and astrocyte activation in the brain after TBI.


Subject(s)
Astrocytes , Brain Injuries, Traumatic , Hypoglycemic Agents , Neuroinflammatory Diseases , Rosiglitazone , Animals , Rats , Astrocytes/drug effects , Astrocytes/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Neuroinflammatory Diseases/drug therapy , PPAR gamma/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male
3.
Autoimmunity ; 56(1): 2250101, 2023 12.
Article in English | MEDLINE | ID: mdl-37615088

ABSTRACT

Liver fibrosis is the pathological process of chronic liver diseases induced by hepatic stellate cells. Proanthocyanidin A2 (PA2) has multiple pharmacological activities. In this study, we aimed to explore the effects of PA2 on hepatic stellate cell (HSC) activation in liver fibrosis. LX-2 cells were treated with TGF-ß1 to establish a fibrosis cell model. Cell viability was evaluated using cell counting kit-8. The levels of fibrosis-related factors (collagen I, fibronectin, and α-SMA) were examined using quantitative real-time polymerase chain reaction, western blot, and immunofluorescence assay. The molecular mechanisms of PA2 were evaluated by RNA-seq, bioinformatic analysis, and western blot. The results showed that PA2 suppressed cell viability, and downregulated fibrosis-related factors induced by TGF-ß1, suggesting PA2 suppressed the activation of HSCs. PA2 treatment-induced differentially expressed mRNAs are predicted to be associated with the PPAR-γ pathway. PA2 reversed the downregulation of PPAR-γ and the upregulation of phosphorylated (p)-Smad2 and Smad3. A rescue experiment illustrated that the inactivation of the PPAR-γ pathway reversed the effects of PA2 on cell viability and HSC activation. In conclusion, PA2 inhibited TGF-ß1-induced activation of HSCs by activating the PPAR-γ/Smad pathway. The findings suggested that PA2 may be an effective treatment for liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Peroxisome Proliferator-Activated Receptors , Humans , Transforming Growth Factor beta1 , Liver Cirrhosis/drug therapy
4.
J Ethnopharmacol ; 317: 116773, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37308028

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with limited therapy. Renshen Pingfei Formula (RPFF), a classic Chinese medicine derivative formula, has been shown to exert therapeutic effects on IPF. AIM OF THE STUDY: The study aimed to explore the anti-pulmonary fibrosis mechanism of RPFF through network pharmacology, clinical plasma metabolomics, and in vitro experiment. METHODS: Network pharmacology was used to study the holistic pharmacological mechanism of RPFF in the treatment of IPF. The differential plasma metabolites for RPFF in the treatment of IPF were identified by untargeted metabolomics analysis. By integrated analysis of metabolomics and network pharmacology, the therapeutic target of RPFF for IPF and the corresponding herbal ingredients were identified. In addition, the effects of the main components of the formula, kaempferol and luteolin, which regulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ (PPAR-γ) pathway were observed in vitro according to the orthogonal design. RESULTS: A total of 92 potential targets for RPFF in the treatment of IPF were obtained. The Drug-Ingredients-Disease Target network showed that PTGS2, ESR1, SCN5A, PPAR-γ, and PRSS1 were associated with more herbal ingredients. The protein-protein interaction (PPI) network identified the key targets of RPFF in IPF treatment, including IL6, VEGFA, PTGS2, PPAR-γ, and STAT3. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis acquired the main enriched pathways, and PPAR-γ involved in multiple signaling pathways, including the AMPK signaling pathway. Untargeted clinical metabolomics analysis revealed plasma metabolite variations in patients with IPF versus controls and before versus after RPFF treatment for patients with IPF. Six differential metabolites were explored as differential plasma metabolites for RPFF in IPF treatment. Combined with network pharmacology, a therapeutic target PPAR-γ of RPFF in IPF treatment and the corresponding herbal components were identified. Based on the orthogonal experimental design, the experiments showed that kaempferol and luteolin can decrease the mRNA and protein expression of α-smooth muscle actin (α-SMA), and the combination of lower dose can inhibit α-SMA mRNA and protein expression by promoting the AMPK/PPAR-γ pathway in transforming growth factor beta 1 (TGF-ß1)-treated MRC-5 cells. CONCLUSIONS: This study revealed that the therapeutic effects of RPFF are due to multiple ingredients and have multiple targets and pathways, and PPAR-γ is one of therapeutic targets for RPPF in IPF and involved in the AMPK signaling pathway. Two ingredients of RPFF, kaempferol and luteolin, can inhibit fibroblast proliferation and the myofibroblast differentiation of TGF-ß1, and exert a synergistic effect through AMPK/PPAR-γ pathway activation.


Subject(s)
Drugs, Chinese Herbal , Idiopathic Pulmonary Fibrosis , Humans , PPAR gamma , AMP-Activated Protein Kinases , Kaempferols/pharmacology , Kaempferols/therapeutic use , Transforming Growth Factor beta1 , Network Pharmacology , Cyclooxygenase 2 , Luteolin , Metabolomics , Idiopathic Pulmonary Fibrosis/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation
5.
Toxicol Lett ; 382: 33-40, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37245849

ABSTRACT

Benzene is a known hematotoxic and leukemogenic chemical. Exposure to benzene cause inhibition of hematopoietic cells. However, the mechanism of how the hematopoietic cells inhibited by benzene undergo malignant proliferation is unknown. The cells carrying leukemia-associated fusion genes are present in healthy individuals and predispose the carriers to the development of leukemia. To identify the effects of benzene on hematopoietic cells, preleukemic bone marrow (PBM) cells derived from transgenic mice carrying the Mll-Af9 fusion gene were treated with benzene metabolite hydroquinone in serial replating of colony-forming unit (CFU) assay. RNA sequencing was further employed to identify the potential key genes that contributed to benzene-initiated self-renewal and proliferation. We found that hydroquinone induced a significant increase in colony formation in PBM cells. Peroxisome proliferator-activated receptor gamma (Ppar-γ) pathway, which plays a critical role in carcinogenesis in multiple tumors, was significantly activated after hydroquinone treatment. Notably, the increased numbers of the CFUs and total PBM cells induced by hydroquinone were significantly reduced by a specific Ppar-γ inhibitor (GW9662). These findings indicated that hydroquinone can enhance self-renewal and proliferation of preleukemic cells by activating the Ppar-γ pathway. Our results provide insight into the missing link between premalignant status and development of benzene-induced leukemia, which can be intervened and prevented.


Subject(s)
Benzene , Hydroquinones , Leukemia , Animals , Mice , Benzene/toxicity , Cell Proliferation , Hydroquinones/toxicity , Leukemia/chemically induced , PPAR gamma/genetics
6.
Braz. J. Pharm. Sci. (Online) ; 59: e21639, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439506

ABSTRACT

ABSTRACT Herein, we examined the protective effect of metoprolol combined with atractylenolide I (Atr I) in acute myocardial infarction (AMI) by regulating the SIRT3 (silent information regulator 3)/ß-catenin/peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. Briefly, 50 rats were randomly divided into the sham operation, model, metoprolol, Atr I, and combination metoprolol with Atr I groups (combined treatment group). The AMI model was established by ligating the left anterior descending coronary artery. After treatment, infarct size, histopathological changes, and cell apoptosis were examined using 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, and the TUNEL assay. The left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), and left ventricular mass index (LVMI) were detected by echocardiography. Endothelin-1 (ET-1), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels were detected using enzyme-linked immunosorbent assays. Furthermore, we measured lactate dehydrogenase (LDH), creatine kinase (CK) isoenzyme (CK-MB), and CK levels. Western blotting was performed to determine the expression of SIRT3, ß-catenin, and PPAR-γ. Herein, the combined treatment group exhibited increased levels of LVEF, LVFS, and NO, whereas LVMI, ET-1, TNF-α, IL-6, LDH, CK-MB, and CK levels were decreased. Importantly, the underlying mechanism may afford protection against AMI by increasing the expression levels of SIRT3, ß-catenin, and PPAR-γ


Subject(s)
Animals , Male , Female , Rats , Sirtuin 3/pharmacology , Metoprolol/agonists , Myocardial Infarction/chemically induced , Echocardiography/instrumentation , Creatine Kinase/classification , Catenins/adverse effects
7.
Vascular ; 30(6): 1224-1231, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34670463

ABSTRACT

OBJECTIVE: The purpose of this study was to explore the role of ligustrazine in vascular calcification. METHODS: After ß-GP stimulation, vascular smooth muscle cells (VSMCs) were detected by Alizarin Red Staing staining. Calcium content and alkaline phosphatase (ALP) activity were detected by intracellular calcium assay kit and ALP assay kit, respectively. The expression of peroxisome proliferation-activated receptor (PPAR-γ) pathway-related proteins was detected by Western blot. PPAR-γ, MSX2, osteopontin (OPN), sclerostin, and BGP were detected by RT-PCR. RESULTS: ß-GP induced the decreased activity and expression of PPAR-γ and ALP in VSMCs, while ligustrazine activated the expression of PPAR-γ. Through activation of PPAR-γ, ligustrazine decreased ß-GP-induced VSMC calcification, decreased the expression of markers of osteogenesis and chondrogenic differentiation, and increased the expression of VSMC markers. CONCLUSION: Ligustrazine activates the PPAR-γ pathway and plays a protective role in vascular calcification.


Subject(s)
Muscle, Smooth, Vascular , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Calcium/metabolism , Vascular Calcification/genetics , Vascular Calcification/prevention & control , Vascular Calcification/metabolism , Myocytes, Smooth Muscle/metabolism
8.
BMC Cardiovasc Disord ; 20(1): 337, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32664860

ABSTRACT

BACKGROUND: High blood glucose impairs voltage-gated K+ (Kv) channel-mediated vasodilation in rat coronary artery smooth muscle cells (CSMCs) via oxidative stress. Advanced glycation end product (AGE) and receptor for AGE (RAGE) axis has been found to impair coronary dilation by reducing Kv channel activity in diabetic rat small coronary arteries (RSCAs). However, its underlying mechanism remain unclear. Here, we used isolated arteries and primary CSMCs to investigate the effect of AGE incubation on Kv channel-mediated coronary dilation and the possible involvement of peroxisome proliferators-activated receptor (PPAR) -γ pathway. METHODS: The RSCAs and primary CSMCs were isolated, cultured, and treated with bovine serum albumin (BSA), AGE-BSA, alagrebrium (ALA, AGE cross-linking breaker), pioglitazone (PIO, PPAR-γ activator) and/or GW9662 (PPAR-γ inhibitor). The groups were accordingly divided as control, BSA, AGE, AGE + ALA, AGE + PIO, or AGE + PIO + GW9662. Kv channel-mediated dilation was analyzed using wire myograph. Histology and immunohistochemistry of RSCAs were performed. Western blot was used to detect the protein expression of RAGE, major Kv channel subunits expressed in CSMCs (Kv1.2 and Kv1.5), PPAR-γ, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX-2). RESULTS: AGE markedly reduced Forskolin-induced Kv channel-mediated dilation of RSCAs by engaging with RAGE, and ALA or PIO significantly reversed the functional loss of Kv channel. In both RSCAs and CSMCs, AGE reduced Kv1.2/1.5 expression, increased RAGE and NOX-2 expression, and inhibited PPAR-γ expression, while ALA or PIO treatment partially reversed the inhibiting effects of AGE on Kv1.2/1.5 expression, accompanied by the downregulation of RAGE and decreased oxidative stress. Meanwhile, silencing of RAGE with siRNA remarkably alleviated the AGE-induced downregulation of Kv1.2/1.5 expression in CSMCs. CONCLUSION: AGE reduces the Kv channel expression in CSMCs and further impairs the Kv channel-mediated dilation in RSCAs. The AGE/RAGE axis may enhance oxidative stress by inhibiting the downstream PPAR-γ pathway, thus playing a critical role in the dysfunction of Kv channels.


Subject(s)
Glycation End Products, Advanced/pharmacology , Kv1.2 Potassium Channel/metabolism , Kv1.5 Potassium Channel/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , PPAR gamma/metabolism , Serum Albumin, Bovine/pharmacology , Vasodilation/drug effects , Anilides/pharmacology , Animals , Cells, Cultured , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Kv1.2 Potassium Channel/genetics , Kv1.5 Potassium Channel/genetics , Male , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidative Stress/drug effects , PPAR gamma/drug effects , Pioglitazone/pharmacology , Rats, Sprague-Dawley , Signal Transduction
9.
Molecules ; 25(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455850

ABSTRACT

Ginsenoside Rh2, an intermediate metabolite of ginseng, but not naturally occurring, has recently drawn attention because of its anticancer effect. However, it is not clear if and how Rh2 inhibits preadipocytes differentiation. In the present study, we hypothesized that ginsenoside Rh2 attenuates adipogenesis through regulating the peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway both in cells and obese mice. Different concentrations of Rh2 were applied both in 3T3-L1 cells and human primary preadipocytes to determine if Rh2 inhibits cell differentiation. Dietary Rh2 was administered to obese mice to determine if Rh2 prevents obesity in vivo. The mRNA and protein expression of PPAR-γ pathway molecules in cells and tissues were measured by real-time polymerase chain reaction (RT-PCR) and Western blot, respectively. Our results show that Rh2 dose-dependently (30-60 µM) inhibited cell differentiation in 3T3-L1 cells (44.5% ± 7.8% of control at 60 µM). This inhibitory effect is accompanied by the attenuation of the protein and/or mRNA expression of adipogenic markers including PPAR-γ and CCAAT/enhancer binding protein alpha, fatty acid synthase, fatty acid binding protein 4, and perilipin significantly (p < 0.05). Moreover, Rh2 significantly (p < 0.05) inhibited differentiation in human primary preadipocytes at much lower concentrations (5-15 µM). Furthermore, dietary intake of Rh2 (0.1 g Rh2/kg diet, w/w for eight weeks) significantly (p < 0.05) reduced protein PPAR-γ expression in liver and hepatic glutathione reductase and lowered fasting blood glucose. These results suggest that ginsenoside Rh2 dose-dependently inhibits adipogenesis through down-regulating the PPAR-γ pathway, and Rh2 may be a potential agent in preventing obesity in vivo.


Subject(s)
Ginsenosides/pharmacology , Glutathione Reductase/genetics , Obesity/drug therapy , PPAR gamma/genetics , 3T3-L1 Cells , Adipocytes/drug effects , Adipogenesis/drug effects , Animals , Cell Differentiation/drug effects , Diet, High-Fat , Gene Expression Regulation, Developmental/drug effects , Humans , Mice , Mice, Obese , Obesity/genetics , Obesity/pathology , Primary Cell Culture
10.
Aging (Albany NY) ; 12(6): 5384-5398, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32203054

ABSTRACT

Macrophages control the initiation and resolution of cardiac fibrosis in post-infarction cardiac remodeling. The aim of the present study was to investigate whether N-propargyl caffeate amide (PACA) could suppress myocardial fibrosis via regulating macrophage polarization. By using rat model of isoproterenol-induced myocardial fibrosis, we discovered that PACA could reduce cardiac fibrosis in a dose-dependent manner. To elucidate the anti-fibrotic mechanisms, we examined whether PACA affected pro-inflammatory M1 and pro-resolving macrophage biomarkers in macrophage polarization. As result, PACA reduced the expression of pro-inflammatory M1 biomarkers (e.g., iNOS, TNF-α, CXCL10, IL-6, CCL2 and CD80) while increased the expression of pro-resolving M2a biomarkers (e.g., IL-10, arginase-1, FZZ1, YM-1 and CD163) in LPS-stimulated RAW264.7 macrophages. PACA also suppressed the elevation of M1 biomarker ED1 in the early phase but up-regulated the expression of pro-resolving biomarker ED2 in the later phase. Moreover, PACA reduced the expression of pro-fibrotic TGF-ß1 and PDGF-α while maintained or even increased the production of pro-apoptotic MMP-13, MMP-9 and TRAIL. Importantly, mechanistic studies revealed that PACA might promote the switch of macrophage polarization towards a pro-resolving macrophage phenotype via activating PPAR-γ pathway. Taken together, this study suggested that PACA might be a drug candidate for preventing cardiac fibrosis in myocardial infarction.


Subject(s)
Caffeic Acids/pharmacology , Macrophages/metabolism , Myocardial Infarction/metabolism , Myocardium/pathology , Animals , Fibrosis , Interleukin-10/metabolism , Macrophage Activation , Pharmaceutical Preparations/metabolism , Rats , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Chem Biol Interact ; 260: 102-109, 2016 Dec 25.
Article in English | MEDLINE | ID: mdl-27818126

ABSTRACT

This study investigated the involvement of nuclear factor erythroid 2 (Nrf2) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) pathways in the protection afforded by two polyphenols abundant in diet, cyanidin-3-glucoside and resveratrol, against cytokine-induced inflammation and oxidative insult in HT-29 intestinal cells, in comparison with the drug 5-aminosalicylic acid (5-ASA). Our data show for the first time that in cytokine-challenged cells, cyanidin-3-glucoside and resveratrol induced Nrf2 activation, increased hemoxygenase-1 and glutamate cysteine ligase mRNA expression, enhanced reduced glutathione to oxidized glutathione ratio and inhibited reactive species production, at much lower concentrations than 5-ASA. Unlike cyanidin-3-glucoside, resveratrol and 5-ASA also increased nuclear levels of PPAR-γ in cytokine-stimulated cells. In conclusion, both polyphenols might be interesting as nutraceuticals, giving complementary benefits to conventional drugs against intestinal inflammation, typically present in patients with inflammatory bowel disease.


Subject(s)
Anthocyanins/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytoprotection/drug effects , Glucosides/pharmacology , Intestines/cytology , Mesalamine/pharmacology , NF-E2-Related Factor 2/metabolism , PPAR gamma/metabolism , Stilbenes/pharmacology , Anthocyanins/chemistry , Anti-Inflammatory Agents/chemistry , Catalysis/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytokines/pharmacology , Gene Expression Regulation/drug effects , Glucosides/chemistry , Glutathione Disulfide/metabolism , HT29 Cells , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Intracellular Space/metabolism , Mesalamine/chemistry , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Resveratrol , Stilbenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL