Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 237, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164746

ABSTRACT

BACKGROUND: Activator protein-1 (AP-1) represents a transcription factor family that has garnered growing attention for its extensive involvement in tumor biology. However, the roles of the AP-1 family in the evolution of lung cancer remain poorly characterized. FBJ Murine Osteosarcoma Viral Oncogene Homolog B (FOSB), a classic AP-1 family member, was previously reported to play bewilderingly two-polarized roles in non-small cell lung cancer (NSCLC) as an enigmatic double-edged sword, for which the reasons and significance warrant further elucidation. METHODS AND RESULTS: Based on the bioinformatics analysis of a large NSCLC cohort from the TCGA database, our current work found the well-known tumor suppressor gene TP53 served as a key code to decipher the two sides of FOSB - its expression indicated a positive prognosis in NSCLC patients harboring wild-type TP53 while a negative one in those harboring mutant TP53. By constructing a panel of syngeneically derived NSCLC cells expressing p53 in different statuses, the radically opposite prognostic effects of FOSB expression in NSCLC population were validated, with the TP53-R248Q mutation site emerging as particularly meaningful. Transcriptome sequencing showed that FOSB overexpression elicited diversifying transcriptomic landscapes across NSCLC cells with varying genetic backgrounds of TP53 and, combined with the validation by RT-qPCR, PREX1 (TP53-Null), IGFBP5 (TP53-WT), AKR1C3, and ALDH3A1 (TP53-R248Q) were respectively identified as p53-dependent transcriptional targets of FOSB. Subsequently, the heterogenous impacts of FOSB on the tumor biology in NSCLC cells via the above selective transcriptional targets were confirmed in vitro and in vivo. Mechanistic investigations revealed that wild-type or mutant p53 might guide FOSB to recognize and bind to distinct promoter sequences via protein-protein interactions to transcriptionally activate specific target genes, thereby creating disparate influences on the progression and prognosis in NSCLC. CONCLUSIONS: FOSB expression holds promise as a novel prognostic biomarker for NSCLC in combination with a given genetic background of TP53, and the unique interactions between FOSB and p53 may serve as underlying intervention targets for NSCLC.


Subject(s)
Disease Progression , Lung Neoplasms , Proto-Oncogene Proteins c-fos , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Prognosis , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Male , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
2.
Int J Med Sci ; 21(8): 1559-1574, 2024.
Article in English | MEDLINE | ID: mdl-38903921

ABSTRACT

Background: PtdIns (3,4,5) P3-dependent Rac exchanger 1 (PREX1), also known as PREX1, a member of the Rac guanine nucleotide exchange factors (Rac-GEF) family. Studies have suggested that PREX1 plays a role in mediating oncogenic pathway activation and controlling various biological mechanisms in different types of cancer, including liver hepatocellular carcinoma (LIHC). However, the function of PREX1 in the pathogenesis of LIHC and its potential role on immunological regulation is not clearly elucidated. Methods: The expression level and the clinical role of PREX1 in LIHC was analyzed based on database from the Cancer Genome Atlas (TCGA), TNM plotter and University of Alabama Cancer Database (UALCAN). We investigated the relationship between PREX1 and immunity in LIHC by TISIDB, CIBERSORT and single cell analysis. Immunotherapy responses were assessed by the immunophenoscores (IPS). Moreover, biological functional assays were performed to further investigate the roles of PREX1 in liver cancer cell lines. Results: Higher expression of PREX1 in LIHC tissues than in normal liver tissues was found based on public datasets. Further analysis revealed that PREX1 was associated with worse clinical characteristics and dismal prognosis. Pathway enrichment analysis indicated that PREX1 participated in immune-related pathways. Through CIBERSORT and single cell analysis, we found a remarkable correlation between the expression of PREX1 and various immune cells, especially macrophages. In addition, high PREX1 expression was found to be associated with a stronger response to immunotherapy. Furthermore, in vitro assays indicated that depletion of PREX1 can suppress invasion and proliferation of LIHC cells. Conclusion: Elevated expression of PREX1 indicates poor prognosis, influences immune modulation and predicts sensitivity of immunosuppression therapy in LIHC. Our results suggested that PREX1 may be a prognostic biomarker and therapeutic target, offering new treatment options for LIHC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Single-Cell Analysis , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Profiling , Cell Line, Tumor , Guanine Nucleotide Exchange Factors/genetics , Male , Transcriptome/immunology , Transcriptome/genetics , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Female
3.
Mol Biol Rep ; 51(1): 255, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302782

ABSTRACT

BACKGROUND: Mounting evidence suggests that lung adenocarcinoma (LAC) and lung squamous cell carcinoma (LSC) have different biological behaviors and therapeutic regimens in clinical practice. However, limited improvements in molecular differential diagnosis of the two entities have been achieved in recent decades. We aimed to find novel markers that could define non-small cell lung cancer (NSCLC) subtypes. METHODS: We first explored publically available databases to search for DNA methylation signatures that enable a precise discrimination of LAC and LSC. Next-generation sequencing (NGS) was then used to analyze the methylation status and sites of candidate genes in LAC/LSC tissue samples, and a quantitative methylation-sensitive PCR (qMS-PCR) assay was conducted to test the performance of the selected maker in tissue samples and bronchoalveolar lavage fluid (BALF) specimens. RESULTS: We screened 19 top-ranked methylation loci that are differentially methylated between LAC and LSC. Among these hits, 6 methylation sites are enriched within the PREX1 gene promoter, thus becoming our focus. NGS analysis confirmed markedly higher PREX1 methylation levels in LAC than in LSC and revealed the right sites for detection of PREX1 methylation. Furthermore, PREX1 methylation analysis in lung cancer tissue samples defined 9 of 11 pathologically proven LACs, as well as 12 of 14 LSCs. In addition, ~ 80% LAC BALF samples showed methylated PREX1 compared to substantially lower test positivity (0-9%) of it in LSC and other lung conditions (P < 0.01). CONCLUSION: Our pilot study identified a unique epigenetic signature that could effectively distinguish LAC from LSC in various lung samples. It may enhance our in-depth understanding of the biology of lung cancer and pave the way for better accurate diagnosis and treatment stratification in the future.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Pilot Projects , Adenocarcinoma/pathology , DNA Methylation/genetics , Adenocarcinoma of Lung/genetics , Carcinoma, Squamous Cell/genetics , Epigenesis, Genetic/genetics , Biomarkers, Tumor/genetics
4.
Front Immunol ; 14: 1223653, 2023.
Article in English | MEDLINE | ID: mdl-38077328

ABSTRACT

Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating ß2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and ß2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.


Subject(s)
Integrins , Neutrophils , Humans , Neutrophils/metabolism , Integrins/metabolism , rac GTP-Binding Proteins/metabolism , 14-3-3 Proteins/metabolism , CD18 Antigens/metabolism
5.
J Orthop Surg Res ; 18(1): 766, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817257

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic and degenerative bone and joint disease, and paeoniflorin shows anti-arthritis role in OA. This study planned to investigate the mechanism related to chondroprotective role of paeoniflorin in OA. METHODS: Real-time quantitative PCR and western blotting were performed to measure expression levels of circ-PREX1, microRNA (miR)-140-3p, Wingless-type MMTV integration site family, member 5B (WNT5B), B cell lymphoma (Bcl)-2, and Bcl-2 Associated X Protein (Bax). MTT assay, EdU assay, flow cytometry and enzyme-linked immunosorbent assay evaluated cell viability, proliferation, apoptosis and inflammatory response, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation assay identified the relationship among circ-PREX1, miR-140-3p, and WNT5B. RESULTS: IL-1ß highly induced apoptosis rate, Bax expression and TNF-α product, accompanied with decreased cell viability, cell proliferation and IL-10 secretion, whereas these effects were partially reversed after paeoniflorin pretreatment. Expression of circ-PREX1 was upregulated and miR-140-3p was downregulated in cartilage tissues of patients with knee OA (KOA) and IL-1ß-induced human chondrocytes (C28/I2). Circ-PREX1 overexpression and miR-140-3p silencing attenuated the suppressive effect of paeoniflorin in IL-1ß-induced C28/I2 cells. Furthermore, miR-140-3p was negatively regulated by circ-PREX1. WNT5B was a downstream target of miR-140-3p and could be modulated by the circ-PREX1/miR-140-3p pathway in IL-1ß-induced C28/I2 cells. CONCLUSION: Paeoniflorin might protect human chondrocytes from IL-1ß-induced inflammatory injury via circ-PREX1-miR-140-3p-WNT5B pathway, suggesting a potential preventative agent and a novel target for the treatment of KOA.


Subject(s)
MicroRNAs , Osteoarthritis , Humans , bcl-2-Associated X Protein , Interleukin-1beta , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Apoptosis/genetics , Chondrocytes , MicroRNAs/genetics , Wnt Proteins , Guanine Nucleotide Exchange Factors
6.
Small GTPases ; 13(1): 307-326, 2022 01.
Article in English | MEDLINE | ID: mdl-36342857

ABSTRACT

P-Rex1 and P-Rex2 are guanine-nucleotide exchange factors (GEFs) that activate Rac small GTPases in response to the stimulation of G protein-coupled receptors and phosphoinositide 3-kinase. P-Rex Rac-GEFs regulate the morphology, adhesion and migration of various cell types, as well as reactive oxygen species production and cell cycle progression. P-Rex Rac-GEFs also have pathogenic roles in the initiation, progression or metastasis of several types of cancer. With one exception, all P-Rex functions are known or assumed to be mediated through their catalytic Rac-GEF activity. Thus, inhibitors of P-Rex Rac-GEF activity would be valuable research tools. We have generated a panel of small-molecule P-Rex inhibitors that target the interface between the catalytic DH domain of P-Rex Rac-GEFs and Rac. Our best-characterized compound, P-Rex inhibitor 1 (PREX-in1), blocks the Rac-GEF activity of full-length P-Rex1 and P-Rex2, and of their isolated catalytic domains, in vitro at low-micromolar concentration, without affecting the activities of several other Rho-GEFs. PREX-in1 blocks the P-Rex1 dependent spreading of PDGF-stimulated endothelial cells and the production of reactive oxygen species in fMLP-stimulated mouse neutrophils. Structure-function analysis revealed critical structural elements of PREX-in1, allowing us to develop derivatives with increased efficacy, the best with an IC50 of 2 µM. In summary, we have developed PREX-in1 and derivative small-molecule compounds that will be useful laboratory research tools for the study of P-Rex function. These compounds may also be a good starting point for the future development of more sophisticated drug-like inhibitors aimed at targeting P-Rex Rac-GEFs in cancer.


Subject(s)
Guanine Nucleotide Exchange Factors , Neoplasms , Animals , Mice , Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species
7.
Toxicol Appl Pharmacol ; 448: 116074, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35605788

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases worldwide. Oxidative stress has been considered a key factor in the pathogenesis of NAFLD. Phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 (PREX1), a guanine nucleotide exchange factor for Rac, has been associated with inflammation and oxidative stress. This study aimed to investigate the biological function of PREX1 in the progression of NAFLD. Male C57BL/6 mice were fed a high-fat diet for 12 weeks to induce NAFLD in vivo. Adeno-associated virus type 8-mediated liver-specific PREX1 depletion was employed to investigate the role of PREX1 in the progression of high-fat diet-induced NAFLD. Murine hepatocyte cell line AML-12 was stimulated with palmitic acid for 24 h to induce steatosis in vitro. PREX1 depletion was carried out by transfection with PREX1 small interfering RNA. Results showed that PREX1 depletion exerted protective effects against lipid accumulation, oxidative stress and inflammation and inhibited activation of the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. Subsequently, NF-κB inhibitor BAY11-7082 was applied to investigate the role of the NF-κB signaling pathway in the protective effect of PREX1 inhibition against NAFLD. We confirmed that PREX1 inhibition mitigated palmitic acid-induced hepatocellular inflammation mainly via the NF-κB signaling pathway and lipid accumulation and oxidative stress at least partly via the NF-κB signaling pathway. This study highlights the biological function of PREX1 in the pathogenesis of NAFLD.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/pathology , Diet, High-Fat , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/pharmacology , Inflammation/metabolism , Liver , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Palmitic Acid/toxicity , Signal Transduction
8.
Bioengineered ; 12(2): 11169-11187, 2021 12.
Article in English | MEDLINE | ID: mdl-34783629

ABSTRACT

Conventionally, Rho guanine nucleotide exchange factors (GEFs) are known activators of Rho guanosine triphosphatases (GTPases) that promote tumorigenesis. However, the role of Rho GEFs in non-small cell lung cancer (NSCLC) remains largely unknown. Through the screening of 81 Rho GEFs for their expression profiles and correlations with survival, four of them were identified with strong significance for predicting the prognosis of NSCLC patients. The four Rho GEFs, namely ABR, PREX1, DOCK2 and DOCK4, were downregulated in NSCLC tissues compared to normal tissues. The downregulation of ABR, PREX1, DOCK2 and DOCK4, which can be attributfed to promoter methylation, is correlated with poor prognosis. The underexpression of the four key Rho GEFs might be related to the upregulation of MYC signaling and DNA repair pathways, leading to carcinogenesis and poor prognosis. Moreover, overexpression of ABR was shown to have a tumor-suppressive effect in PC9 and H1703 cells. In conclusion, the data reveal the unprecedented role of ABR as tumor suppressor in NSCLC. The previously unnoticed functions of Rho GEFs in NSCLC will inspire researchers to investigate the distinct roles of Rho GEFs in cancers, in order to provide critical strategies in clinical practice.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DNA Methylation/genetics , Disease Progression , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Prognosis , Promoter Regions, Genetic/genetics , Protein Domains , Rho Guanine Nucleotide Exchange Factors/chemistry , Rho Guanine Nucleotide Exchange Factors/genetics
9.
J Biol Chem ; 297(5): 101172, 2021 11.
Article in English | MEDLINE | ID: mdl-34624316

ABSTRACT

The protein Lgl1 is a key regulator of cell polarity. We previously showed that Lgl1 is inactivated by hyperphosphorylation in glioblastoma as a consequence of PTEN tumour suppressor loss and aberrant activation of the PI 3-kinase pathway; this contributes to glioblastoma pathogenesis both by promoting invasion and repressing glioblastoma cell differentiation. Lgl1 is phosphorylated by atypical protein kinase C that has been activated by binding to a complex of the scaffolding protein Par6 and active, GTP-bound Rac. The specific Rac guanine nucleotide exchange factors that generate active Rac to promote Lgl1 hyperphosphorylation in glioblastoma are unknown. We used CRISPR/Cas9 to knockout PREX1, a PI 3-kinase pathway-responsive Rac guanine nucleotide exchange factor, in patient-derived glioblastoma cells. Knockout cells had reduced Lgl1 phosphorylation, which was reversed by re-expressing PREX1. They also had reduced motility and an altered phenotype suggestive of partial neuronal differentiation; consistent with this, RNA-seq analyses identified sets of PREX1-regulated genes associated with cell motility and neuronal differentiation. PREX1 knockout in glioblastoma cells from a second patient did not affect Lgl1 phosphorylation. This was due to overexpression of a short isoform of the Rac guanine nucleotide exchange factor TIAM1; knockdown of TIAM1 in these PREX1 knockout cells reduced Lgl1 phosphorylation. These data show that PREX1 links aberrant PI 3-kinase signaling to Lgl1 phosphorylation in glioblastoma, but that TIAM1 is also to fill this role in a subset of patients. This redundancy between PREX1 and TIAM1 is only partial, as motility was impaired in PREX1 knockout cells from both patients.


Subject(s)
Glioblastoma/metabolism , Glycoproteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , Cell Line, Tumor , Gene Knockout Techniques , Glioblastoma/genetics , Glycoproteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Humans , Neoplasm Proteins/genetics , Phosphorylation/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
10.
Small GTPases ; 12(2): 81-95, 2021 03.
Article in English | MEDLINE | ID: mdl-31032735

ABSTRACT

Glioblastoma is an aggressive and incurable form of brain cancer. Both mutation analysis in human glioblastoma and mouse modelling studies have shown that aberrant activation of the PI 3-kinase pathway is a central driver of glioblastoma malignancy. The small GTPase Rac is activated downstream of this pathway, mediating a subset of the effects of aberrant PI 3-kinase pathway activation. Here I discuss the current state of our knowledge on Rac activation mechanisms in glioblastoma. Current knowledge on roles for specific PI 3-kinase pathway responsive Rac guanine nucleotide exchange factors in glioblastoma is reviewed. Rac is best known for its role in promoting cell motility and invasion, but there is also evidence for roles in multiple other cellular processes with cancer relevance, including proliferation, differentiation, apoptosis, DNA damage responses, metabolism, angiogenesis and immunosuppression. I review what is known about the role of Rac in these processes in glioblastoma. Finally, I assess possible strategies to inhibit this pathway in glioblastoma through either direct inhibition of Rac or inhibition of upstream activators or downstream mediators of Rac signalling.


Subject(s)
Glioblastoma
11.
Biochem Soc Trans ; 45(4): 963-77, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28710285

ABSTRACT

Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger (P-Rex) proteins are RacGEFs that are synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and Gßγ subunits of G-protein-coupled receptors. P-Rex1 and P-Rex2 share similar amino acid sequence homology, domain structure, and catalytic function. Recent evidence suggests that both P-Rex proteins may play oncogenic roles in human cancers. P-Rex1 and P-Rex2 are altered predominantly via overexpression and mutation, respectively, in various cancer types, including breast cancer, prostate cancer, and melanoma. This review compares the similarities and differences between P-Rex1 and P-Rex2 functions in human cancers in terms of cellular effects and signalling mechanisms. Emerging clinical data predict that changes in expression or mutation of P-Rex1 and P-Rex2 may lead to changes in tumour outcome, particularly in breast cancer and melanoma.


Subject(s)
Carcinogenesis , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/metabolism , Models, Molecular , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Animals , Guanine Nucleotide Exchange Factors/agonists , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Humans , Mutation , Neoplasm Proteins/agonists , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasms/genetics , Phosphatidylinositol Phosphates/metabolism , Protein Interaction Domains and Motifs , Protein Subunits/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
12.
Small GTPases ; 8(2): 90-99, 2017 04 03.
Article in English | MEDLINE | ID: mdl-27314616

ABSTRACT

GEFs play a critical role in regulating Rac1 signaling. They serve as signaling nodes converting upstream signals into downstream Rac1-driven cellular responses. Through associating with membrane-bound Rac1, GEFs facilitate the exchange of GDP for GTP, thereby activating Rac1. As a result, Rac1 undergoes conformational changes that mediate its interaction with downstream effectors, linking Rac1 to a multitude of physiological and pathological processes. Interestingly, there are at least 20 GEFs involved in Rac1 activation, suggesting a more complex role of GEFs in regulating Rac1 signaling apart from promoting the exchange of GDP for GTP. Indeed, accumulating evidence implicates GEFs in directing the specificity of Rac1-driven signaling cascades, although the underlying mechanisms were poorly defined. Recently, through conducting a comparative study, we highlighted the role of 2 Rac-specific GEFs, Tiam1 and P-Rex1, in dictating the biological outcome downstream of Rac1. Importantly, further proteomic analysis uncovered a GEF activity-independent function for both GEFs in modulating the Rac1 interactome, which results in the stimulation of GEF-specific signaling cascades. Here, we provide an overview of our recent findings and discuss the role of GEFs as master regulators of Rac1 signaling with a particular focus on GEF-mediated modulation of cell migration following Rac1 activation.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism , Animals , Cell Movement , Humans
13.
J Biol Chem ; 291(38): 20042-54, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27481946

ABSTRACT

Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gßγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Receptor, Insulin/metabolism , Signal Transduction , p21-Activated Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Dinoprostone/pharmacology , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Insulin/pharmacology , Insulin-Like Growth Factor I/pharmacology , Isoproterenol/pharmacology , MCF-7 Cells , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism , Phosphorylation/drug effects , Receptor, Insulin/genetics , p21-Activated Kinases/genetics , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
14.
J Biol Chem ; 291(12): 6359-75, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26792863

ABSTRACT

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gßγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the pleckstrin homology domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gßγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pulldown assays demonstrated that Norbin promotes the P-Rex1-mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation, and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Nerve Tissue Proteins/physiology , Animals , Brain , COS Cells , Cell Shape , Cell Surface Extensions/metabolism , Chlorocebus aethiops , Enzyme Activation , HEK293 Cells , Humans , Mice, Knockout , Organ Specificity , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport
15.
J Biol Chem ; 290(34): 20827-20840, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26112412

ABSTRACT

The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gßγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gßγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gßγ releases inhibitory C-terminal domains to expose the Rac1 binding site.


Subject(s)
Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/chemistry , Phosphatidylinositol Phosphates/chemistry , Recombinant Fusion Proteins/chemistry , rac1 GTP-Binding Protein/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Female , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , MCF-7 Cells , Models, Molecular , Molecular Sequence Data , Mutation , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sf9 Cells , Signal Transduction , Spodoptera , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
16.
Small GTPases ; 6(2): 49-70, 2015.
Article in English | MEDLINE | ID: mdl-25961466

ABSTRACT

The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gßγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumor growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.


Subject(s)
Diabetes Mellitus/metabolism , Neoplasms/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , rac GTP-Binding Proteins/metabolism , Animals , Humans , Protein Binding , Rho Guanine Nucleotide Exchange Factors/chemistry , Rho Guanine Nucleotide Exchange Factors/genetics , Second Messenger Systems , rac GTP-Binding Proteins/chemistry , rac GTP-Binding Proteins/genetics
17.
J Thromb Haemost ; 12(2): 273-81, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24283667

ABSTRACT

BACKGROUND: Weibel-Palade bodies (WPBs) function as storage vesicles for von Willebrand factor (VWF) and a number of other bioactive compounds, including angiopoietin-2 and insulin-like growth factor-binding protein 7. WPBs release their content following stimulation with agonists that increase the level of intracellular Ca²âº, such as thrombin, or agonists that increase intracellular levels of cAMP, such as epinephrine. OBJECTIVE: Previously, we have shown that the exchange protein activated by cAMP, exchange protein activated by cAMP, and the small GTPase Rap1 are involved in cAMP-mediated release of WPBs. In this study, we explored potential downstream effectors of Rap1 in cAMP-mediated WPB release. METHODS: Studies were performed in primary human umbilical vein endothelial cells. Activation of the small GTP-binding protein Rac1 was monitored by its ability to bind to the CRIB domain of the serine/threonine kinase P21-activated kinase (PAK)1. Downstream effectors of Rap1 were identified with a proteomic screen using a glutathione-S-transferase fusion of the Ras-binding domain of RalGDS. Functional involvement of candidate proteins in WPB release was determined by RNA interference (RNAi)-mediated knockdown of gene expression. RESULTS: Depletion of Rac1 by RNAi prevented epinephrine-induced VWF secretion. Also, the Rac1 inhibitor EHT1864 reduced epinephrine-induced WPB release. We identified the phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 1 (PREX1) and the regulatory ß-subunit of phosphatidylinositol 3-kinase (PI3K) as downstream targets of Rap1. The PI3K inhibitor LY294002 reduced epinephrine-induced release of VWF. RNAi-mediated downregulation of PREX1 abolished epinephrine-induced but not thrombin-induced release of WPBs. CONCLUSION: Our findings show that PREX1 regulates epinephrine-induced release of WPBs.


Subject(s)
Epinephrine/pharmacology , Exocytosis/drug effects , Phosphatidylinositol Phosphates/metabolism , Weibel-Palade Bodies/drug effects , rac1 GTP-Binding Protein/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Signal Transduction , Weibel-Palade Bodies/metabolism , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL