Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
FASEB Bioadv ; 6(8): 223-234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114445

ABSTRACT

Global warming is a major challenge to the sustainable and humane production of food because of the increased risk of livestock to heat stress. Here, the example of the prolactin receptor (PRLR) gene is used to demonstrate how gene editing can increase the resistance of cattle to heat stress by the introduction of mutations conferring thermotolerance. Several cattle populations in South and Central America possess natural mutations in PRLR that result in affected animals having short hair and being thermotolerant. CRISPR/Cas9 technology was used to introduce variants of PRLR in two thermosensitive breeds of cattle - Angus and Jersey. Gene-edited animals exhibited superior ability to regulate vaginal temperature (heifers) and rectal temperature (bulls) compared to animals that were not gene-edited. Moreover, gene-edited animals exhibited superior growth characteristics and had larger scrotal circumference. There was no evidence for deleterious effects of the mutation on carcass characteristics or male reproductive function. These results indicate the potential for reducing heat stress in relevant environments to enhance cattle productivity.

2.
Int J Mol Sci ; 25(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39201769

ABSTRACT

African swine fever (ASF) has become a global pandemic due to inadequate prevention and control measures, posing a significant threat to the swine industry. Despite the approval of a single vaccine in Vietnam, no antiviral drugs against the ASF virus (ASFV) are currently available. Aloperine (ALO), a quinolizidine alkaloid extracted from the seeds and leaves of bitter beans, exhibits various biological functions, including anti-inflammatory, anti-cancer, and antiviral activities. In this study, we found that ALO could inhibit ASFV replication in MA-104, PK-15, 3D4/21, and WSL cells in a dose-dependent manner without cytotoxicity at 100 µM. Furthermore, it was verified that ALO acted on the co- and post-infection stages of ASFV by time-of-addition assay, and inhibited viral internalization rather than directly inactivating the virus. Notably, RT-qPCR analysis indicated that ALO did not exert anti-inflammatory activity during ASFV infection. Additionally, gene ontology (GO) and KEGG pathway enrichment analyses of transcriptomic data revealed that ALO could inhibit ASFV replication via the PRLR/JAK2 signaling pathway. Together, these findings suggest that ALO effectively inhibits ASFV replication in vitro and provides a potential new target for developing anti-ASFV drugs.


Subject(s)
African Swine Fever Virus , Antiviral Agents , Janus Kinase 2 , Piperidines , Quinolizidines , Signal Transduction , Virus Replication , Janus Kinase 2/metabolism , Animals , Signal Transduction/drug effects , Virus Replication/drug effects , Quinolizidines/pharmacology , Swine , Piperidines/pharmacology , African Swine Fever Virus/drug effects , African Swine Fever Virus/metabolism , Antiviral Agents/pharmacology , Cell Line , African Swine Fever/virology , African Swine Fever/metabolism
3.
Animals (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929397

ABSTRACT

Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a bromocriptine (BCR, a prolactin inhibitor, 0.06 mg/kg body weight (BW)) treatment group. The experiment was conducted from September to October 2020 in Qinhuangdao City, China, and lasted for 30 days. Blood was collected on the last day before the BCR treatment (day 0) and on the 15th and 30th days after the BCR treatment (days 15 and 30). On the 30th day, all bucks were transported to the local slaughterhouse, where epididymal samples were collected immediately after slaughter. The left epididymis was preserved in 4% paraformaldehyde for histological observation, and the right epididymis was immediately preserved in liquid nitrogen for RNA sequencing (RNA-seq). The results show that the PRL inhibitor reduced the serum PRL and estradiol (E2) concentrations (p < 0.05) and tended to decrease luteinizing hormone (LH) concentrations (p = 0.052) by the 30th day, but no differences (p > 0.05) occurred by either day 0 or 15. There were no differences (p > 0.05) observed in the follicle-stimulating hormone (FSH), testosterone (T), and dihydrotestosterone (DHT) concentrations between the two groups. The PRL receptor (PRLR) protein was mainly located in the cytoplasm and intercellular substance of the epididymal epithelial cells. The PRL inhibitor decreased (p < 0.05) the expression of the PRLR protein in the epididymis. In the BCR group, the height of the epididymal epithelium in the caput and cauda increased, as did the diameter of the epididymal duct in the caput (p < 0.05). However, the diameter of the cauda epididymal duct decreased (p < 0.05). Thereafter, a total of 358 differentially expressed genes (DEGs) were identified in the epididymal tissues, among which 191 were upregulated and 167 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that ESR2, MAPK10, JUN, ACTL7A, and CALML4 were mainly enriched in the estrogen signaling pathway, steroid binding, calcium ion binding, the GnRH signaling pathway, the cAMP signaling pathway, and the chemical carcinogenesis-reactive oxygen species pathway, which are related to epididymal function. In conclusion, the inhibition of PRL may affect the structure of the epididymis by reducing the expression of the PRLR protein and the secretion of E2. ESR2, MAPK10, JUN, ACTL7A, and CALML4 could be the key genes of PRL in its regulation of epididymal reproductive function.

4.
Mol Nutr Food Res ; 68(14): e2300777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880772

ABSTRACT

Organisms maintain their cellular homeostatic balance by interacting with their environment through the use of their cell surface receptors. Membrane based receptors such as the transforming growth factor ß receptor (TGFR), the prolactin receptor (PRLR), and hepatocyte growth factor receptor (HGFR), along with their associated signaling cascade, play significant roles in retaining cellular homeostasis. While these receptors and related signaling pathways are essential for health of cell and organism, their dysregulation can lead to imbalance in cell function with severe pathological conditions such as cell death or cancer. Ochratoxin A (OTA) can disrupt cellular homeostasis by altering expression levels of these receptors and/or receptor-associated intracellular downstream signaling modulators and/or pattern and levels of their phosphorylation/dephosphorylation. Recent studies have shown that the activity of the TGFR, the PRLR, and HGFR and their associated signaling cascades change upon OTA exposure. A critical evaluation of these findings suggests that while increased activity of the HGFR and TGFR signaling pathways leads to an increase in cell survival and fibrosis, decreased activity of the PRLR signaling pathway leads to tissue damage. This review explores the roles of these receptors in OTA-related pathologies and effects on cellular homeostasis.


Subject(s)
Homeostasis , Ochratoxins , Receptors, Prolactin , Signal Transduction , Ochratoxins/toxicity , Humans , Signal Transduction/drug effects , Homeostasis/drug effects , Animals , Receptors, Prolactin/metabolism , Proto-Oncogene Proteins c-met/metabolism , Receptors, Transforming Growth Factor beta/metabolism
5.
BMC Genomics ; 25(1): 494, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764031

ABSTRACT

BACKGROUND: Mammary gland development is a critical process in mammals, crucial for their reproductive success and offspring nourishment. However, the functional roles of key candidate genes associated with teat number, including ABCD4, VRTN, PROX2, and DLST, in this developmental process remain elusive. To address this gap in knowledge, we conducted an in-depth investigation into the dynamic expression patterns, functional implications, and regulatory networks of these candidate genes during mouse mammary gland development. RESULTS: In this study, the spatial and temporal patterns of key genes were characterized in mammary gland development. Using time-series single-cell data, we uncovered differences in the expression of A bcd4, Vrtn, Prox2, and Dlst in cell population of the mammary gland during embryonic and adult stages, while Vrtn was not detected in any cells. We found that only overexpression and knockdown of Abcd4 could inhibit proliferation and promote apoptosis of HC11 mammary epithelial cells, whereas Prox2 and Dlst had no significant effect on these cells. Using RNA-seq and qPCR, further analysis revealed that Abcd4 can induce widespread changes in the expression levels of genes involved in mammary gland development, such as Igfbp3, Ccl5, Tlr2, and Prlr, which were primarily associated with the MAPK, JAK-STAT, and PI3K-AKT pathways by functional enrichment. CONCLUSIONS: These findings revealed ABCD4 as a candidate gene pivotal for regulating mammary gland development and lactation during pregnancy by influencing PRLR expression.


Subject(s)
ATP-Binding Cassette Transporters , Mammary Glands, Animal , Animals , Female , Mice , Apoptosis/genetics , Cell Proliferation , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Signal Transduction , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism
6.
Anim Biosci ; 37(10): 1712-1725, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38665071

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the effects of prolactin (PRL) on the proliferation and apoptosis of ovine ovarian granulosa cells (GCs) and the secretion of estrogen (E2) and progesterone (P4), as well as to explore the effects of PRL on related genes and proteins. METHODS: We isolated ovarian GCs from 1-year-old small-tail Han sheep and identified PRL receptor (PRLR) on ovaries and follicle stimulating hormone receptor (FSHR) on ovarian GCs, respectively, using immunohistochemistry. PRL (0, 0.05, 0.50, 5.00 µg/mL) were added to GCs in vitro along with FSH, cell proliferation was measured by cell counting Kit-8 (CCK-8) and apoptosis by flow cytometry. The measurement of E2 and P4 content by enzyme-linked immunosorbent assays after 48 h and 72 h. The expression of functional genes and proteins was identified by real-time quantitative polymerase chain reaction (RTqPCR) and Western-blot after 48 h. RESULTS: PRLR was expressed in both follicular GCs and corpus luteum, whereas FSHR was expressed specifically. The proliferative activity was lower on day 1 while higher on day 4 and day 5. The apoptosis rate of GCs in the 0.05 µg/mL group was significantly higher than that in the control group after treatment with PRL for 24 h (p<0.05). Compared with the control group, the secretion of E2 in GCs was reduced significantly (p<0.05) in PRL treatment for 48 h and 72 h, while the secretion of P4 was significantly increased (p<0.05). The mRNA expression levels of PRLR, FSHR, LHR, CYP11A1, HSD3B7, and STAR were significantly higher than those in the control group (p<0.01), and the relative abundance of BCL2 in all PRL group were increased after PRL treatment. CONCLUSION: PRL promoted the proliferation of GCs and supraphysiological concentrations inhibited apoptosis caused by down-regulation of BAX and up-regulation of BCL2. PRL inhibited E2 by down-regulating CYP19A1 and promoted P4 by up-regulating CYP11A1, STAR, and HSD3B7.

7.
Endocrinology ; 164(12)2023 11 02.
Article in English | MEDLINE | ID: mdl-37934803

ABSTRACT

Prolactin (PRL) and its receptor, PRLR, are closely related to the occurrence and development of breast cancer. hPRL-G129R, an hPRLR antagonist, has been found to induce apoptosis in breast cancer cells via mechanisms currently unknown. Recent studies have indicated that PRLR exhibits dual functions based on its membrane/nucleus localization. In that context, we speculated whether hPRL-G129R is a dual-function antagonist. We studied the internalization of the hPRLR-G129R/PRLR complex using indirect immunofluorescence and Western blot assays. We found that hPRL-G129R not only inhibited PRLR-mediated intracellular signaling at the plasma membrane, but also blocked nuclear localization of the receptor in T-47D and MCF-7 cells in a time-dependent manner. Clone formation and transwell migration assays showed that hPRL-G129R inhibited PRL-driven proliferation and migration of tumor cells in vitro. Further, we found that increasing concentrations of hPRL-G129R inhibited the nuclear localization of PRLR and the levels of signal transducer and activator of transcription (STAT) 5 in tumor-bearing mice and hPRL-G129R also exerted an antiproliferative effect in vivo. These results indicate that hPRL-G129R is indeed a dual-function antagonist. This study lays a foundation for exploring and developing highly effective agents against the proliferation and progression of breast malignancies.


Subject(s)
Breast Neoplasms , Prolactin , Animals , Female , Humans , Mice , Breast Neoplasms/metabolism , Cell Proliferation , Prolactin/pharmacology , Receptors, Prolactin/antagonists & inhibitors , Tumor Cells, Cultured
8.
J Ovarian Res ; 16(1): 222, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993904

ABSTRACT

The prolactin receptor gene (PRLR) may contribute to polycystic ovarian syndrome (PCOS) since it plays important roles in physiological ovarian functions. PRLR-knockout mice have irregular cycles and subfertility and variants in or around the PRLR gene were associated in humans with female testosterone levels and recurrent miscarriage. We tested 40 variants in the PRLR gene in 212 Italian families phenotyped by type 2 diabetes (T2D) and PCOS and found two intronic PRLR-variants (rs13436213 and rs1604428) significantly linked to and/or associated with the risk of PCOS. This is the first study to report PRLR as a novel risk gene in PCOS. Functional studies are needed to confirm these results.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperandrogenism , Infertility , Polycystic Ovary Syndrome , Humans , Female , Animals , Mice , Polycystic Ovary Syndrome/complications , Receptors, Prolactin/genetics , Prolactin/genetics , Diabetes Mellitus, Type 2/complications
9.
Front Immunol ; 14: 1181370, 2023.
Article in English | MEDLINE | ID: mdl-37600770

ABSTRACT

Background: Cuproptosis plays a crucial role in cancer, and different subtypes of cuproptosis have different immune profiles in prostate adenocarcinoma (PRAD). This study aimed to investigate immune genes associated with cuproptosis and develop a risk model to predict prognostic characteristics and chemotherapy/immunotherapy responses of patients with PRAD. Methods: The CIBERSORT algorithm was used to evaluate the immune and stromal scores of patients with PRAD in The Cancer Genome Atlas (TCGA) cohort. Validation of differentially expressed genes DLAT and DLD in benign and malignant tissues by immunohistochemistry, and the immune-related genes of DLAT and DLD were further screened. Univariable Cox regression were performed to select key genes. Least absolute shrinkage and selection operator (LASSO)-Cox regression analyse was used to develop a risk model based on the selected genes. The model was validated in the TCGA, Memorial Sloan-Kettering Cancer Center (MSKCC) and Gene Expression Omnibus (GEO) datasets, as well as in this study unit cohort. The genes were examined via functional enrichment analysis, and the tumor immune features, tumor mutation features and copy number variations (CNVs) of patients with different risk scores were analysed. The response of patients to multiple chemotherapeutic/targeted drugs was assessed using the pRRophetic algorithm, and immunotherapy was inferred by the Tumor Immune Dysfunction and Exclusion (TIDE) and immunophenoscore (IPS). Results: Cuproptosis-related immune risk scores (CRIRSs) were developed based on PRLR, DES and LECT2. High CRIRSs indicated poor overall survival (OS), disease-free survival (DFS) in the TCGA-PRAD, MSKCC and GEO datasets and higher T stage and Gleason scores in TCGA-PRAD. Similarly, in the sample collected by the study unit, patients with high CRIRS had higher T-stage and Gleason scores. Additionally, higher CRIRSs were negatively correlated with the abundance of activated B cells, activated CD8+ T cells and other stromal or immune cells. The expression of some immune checkpoints was negatively correlated with CRIRSs. Tumor mutational burden (TMB), mutant-allele tumor heterogeneity (MATH) and copy number variation (CNV) scores were all higher in the high-CRIRS group. Multiple chemotherapeutic/targeted drugs and immunotherapy had better responsiveness in the low-CRIRS group. Conclusion: Overall, lower CRIRS indicated better response to treatment strategies and better prognostic outcomes.


Subject(s)
Adenocarcinoma , Apoptosis , Prostatic Neoplasms , Humans , Male , Adenocarcinoma/genetics , CD8-Positive T-Lymphocytes , DNA Copy Number Variations , Intercellular Signaling Peptides and Proteins , Prognosis , Prostate , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Tumor Microenvironment/genetics , Copper
10.
Aging (Albany NY) ; 15(14): 7124-7145, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37490712

ABSTRACT

Periodontitis is a microbial-related chronic inflammatory disease associated with imbalanced differentiation of Th17 cells and Treg cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) possess wide immunoregulatory properties. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) contribute to the immunomodulation in the pathological mechanisms of inflammatory diseases. However, critical lncRNAs/miRNAs involved in immunomodulation of mandibular BM-MSCs largely remain to be identified. Here, we explored the molecular mechanisms behind the defective immunomodulatory ability of mandibular BM-MSCs under the periodontitis settings. We found that mandibular BM-MSCs from P. gingivalis-induced periodontitis mice had significantly reduced expression of LncRNA SPIRE1 than that from normal control mice. LncRNA SPIRE1 knockdown in normal BM-MSCs caused Th17/Treg cell differentiation imbalance during the coculturing of BM-MSCs and CD4 T cells. In addition, LncRNA SPIRE1 was identified as a competitive endogenous RNA that sponges miR-181a-5p in BM-MSCs. Moreover, miR-181a-5p inhibition attenuated the impact of LncRNA SPIRE1 knockdown on the ability of BM-MSCs in modulating Th17/Treg balance. Prolactin receptor (PRLR) was validated as a downstream target of miR-181a-5p. Notably, targeted knockdown of LncRNA SPIRE1 or PRLR or transfection of miR-181a-5p mimics activated the JAK/STAT3 signaling in normal BM-MSCs, while treatment with STAT3 inhibitor C188-9 restored the immunomodulatory properties of periodontitis-associated BM-MSCs. Furthermore, BM-MSCs with miR-181a-5p inhibition or PRLR-overexpression showed enhanced in vivo immunosuppressive properties in the periodontitis mouse model. Our results indicate that the JAK/STAT3 pathway is involved in the immunoregulation of BM-MSCs, and provide critical insights into the development of novel targeted therapies against periodontitis.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Periodontitis , RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Receptors, Prolactin/metabolism , Bone Marrow/metabolism , T-Lymphocytes, Regulatory/metabolism , Th17 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Periodontitis/genetics , Periodontitis/metabolism , Mesenchymal Stem Cells/metabolism
11.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37373417

ABSTRACT

Prolactin (PRL) has been reported to influence reproductive performance and cell apoptosis. However, its mechanism remains unclear. Hence, in the present study, ovine ovarian granulosa cells (GCs) were used as a cell model to investigate the relationship between PRL concentration and GC apoptosis, as well as its possible mechanisms. We examined the relationship between serum PRL concentration and follicle counts in sexually mature ewes. GCs were isolated from adult ewes and treated with different concentrations of PRL, while 500 ng/mL PRL was selected as the high concentration of prolactin (HPC). Then, we applied the transcriptome sequencing (RNA-Seq) combined with a gene editing approach to explore the HPC contributing to cell apoptosis and steroid hormones. The apoptosis of GCs gradually increased at PRL concentrations above 20 ng/mL, while 500 ng/mL PRL significantly decreased the secretion of steroid hormones and the expression of L-PRLR and S-PRLR. The results indicated that PRL regulates GC development and steroid hormones mainly through the target gene MAPK12. The expression of MAPK12 was increased after knocked-down L-PRLR and S-PRLR, while it decreased after overexpressed L-PRLR and S-PRLR. Cell apoptosis was inhibited and the secretion of steroid hormones increased after interfering with MAPK12, while the overexpression of MAPK12 showed the opposite trend. Overall, the number of follicles gradually decreased with increasing PRL concentration. HPCs promoted apoptosis and inhibited steroid hormone secretion in GCs by upregulating MAPK12 through reducing L-PRLR and S-PRLR.


Subject(s)
Prolactin , Receptors, Prolactin , Sheep , Animals , Female , Prolactin/metabolism , Receptors, Prolactin/genetics , Ovary/metabolism , Granulosa Cells/metabolism , Apoptosis/genetics
12.
Saudi J Biol Sci ; 30(3): 103570, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36860759

ABSTRACT

Hexavalent chromium, toxic heavy metal, among the top-rated environmental contaminants, is declared a potent endocrine disruptor in humans and animals. The present study was planned to find harmful effects on the reproductive system caused by Cr (VI) and the ameliorative effect of Nigella sativa and Nigella sativa-mediated AgNP on male mice (Mus musculus). In the present study, known infertility medicine, clomiphene citrate is also used as a positive control. The main objective of the present study was to assess the ameliorative potential of oral administration of a dose of 50 mg/kg BW clomiphene citrate (control), AgNP via chemical synthesis, Nigella sativa seed extract, and Nigella sativa-mediated AgNP against the Cr (VI) at the dose of 1.5 mg/kg BW from K2Cr2O7 orally induced toxicity over eight weeks on the reproductive performance of male albino mice. Nigella sativa mediated AgNPs were characterized by UV, SEM, FTIR, and XRD. The histological analysis, smear study, antioxidant capacity test, and hormone analysis were conducted by blood samples of albino mice. Cr exposed groups showed a significant decrease in sperm head breadth (5.29 ±â€¯0.54 µ) and length (19.54 ±â€¯1.18 µ), middle piece length, tail length, LH (1.65 ±â€¯0.15 ng/mL), testosterone (2.63 ±â€¯0.29 ng/mL), SOD (61.40 ±â€¯2.48 mmol/mL), CAT (87.40 ±â€¯6.01 mmol/mL), GSH (1.54 ±â€¯0.09 µmol/mL), and no of spermatogonia (1.22 ±â€¯0.25), and spermatocytes (2.33 ±â€¯0.943). However, FSH level (160.00 ±â€¯4.98 ng/mL), seminiferous tubule CSA (1094.69 ±â€¯49.76 mm2), size of spermatogonia (41.30 ±â€¯1.24 µ), and spermatocytes (26.07 ±â€¯1.34 µ) were significantly increased. Administration of Nigella sativa and Nigella sativa-mediated AgNPs reduced the toxicity.

13.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982391

ABSTRACT

In euryhaline teleost black porgy, Acanthopagrus schlegelii, the glucocorticoid receptor (gr), growth hormone receptor (ghr), prolactin (prl)-receptor (prlr), and sodium-potassium ATPase alpha subunit (α-nka) play essential physiological roles in the osmoregulatory organs, including the gill, kidney, and intestine, during osmotic stress. The present study aimed to investigate the impact of pituitary hormones and hormone receptors in the osmoregulatory organs during the transfer from freshwater (FW) to 4 ppt and seawater (SW) and vice versa in black porgy. Quantitative real-time PCR (Q-PCR) was carried out to analyze the transcript levels during salinity and osmoregulatory stress. Increased salinity resulted in decreased transcripts of prl in the pituitary, α-nka and prlr in the gill, and α-nka and prlr in the kidney. Increased salinity caused the increased transcripts of gr in the gill and α-nka in the intestine. Decreased salinity resulted in increased pituitary prl, and increases in α-nka and prlr in the gill, and α-nka, prlr, and ghr in the kidney. Taken together, the present results highlight the involvement of prl, prlr, gh, and ghr in the osmoregulation and osmotic stress in the osmoregulatory organs (gill, intestine, and kidney). Pituitary prl, and gill and intestine prlr are consistently downregulated during the increased salinity stress and vice versa. It is suggested that prl plays a more significant role in osmoregulation than gh in the euryhaline black porgy. Furthermore, the present results highlighted that the gill gr transcript's role was solely to balance the homeostasis in the black porgy during salinity stress.


Subject(s)
Receptors, Glucocorticoid , Receptors, Somatotropin , Animals , Receptors, Somatotropin/metabolism , Osmotic Pressure , Receptors, Glucocorticoid/metabolism , Osmoregulation/genetics , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Salinity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gills/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
14.
J Headache Pain ; 24(1): 31, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36967387

ABSTRACT

Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.


Subject(s)
Migraine Disorders , Oxytocin , Prolactin , Female , Humans , Male , Analgesics/therapeutic use , Gonadal Steroid Hormones , Oxytocin/physiology , Pain/drug therapy , Prolactin/physiology , Receptors, Oxytocin , Receptors, Prolactin
15.
Br Poult Sci ; 64(3): 419-428, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36628626

ABSTRACT

1. Although PRL-PRLR signalling plays important roles in regulating avian reproduction, there is a paucity of information regarding the functional significance of PRLR in goose ovarian follicle development.2. The full-length 2,496 bp coding sequence of PRLR was obtained from Sichuan White goose (Anser cygnoides) for the first time and was seen to encode a polypeptide containing 831 amino acids. Goose PRLR shares similar sequence characteristics and conserved functional domains to other avian species and was phylogenetically clustered into the avian clade.3. The qPCR results suggested that the mRNA levels of PRLR significantly increased in primary follicles during weeks 3 to 4 of age and were higher in secondary- than in primordial follicles at week 5 post-hatching, which suggested that the PRLR-mediated signalling could be involved in regulation of early folliculogenesis.4. The PRLR mRNA was expressed at the highest levels in the prehierarchical 8-10 mm granulosa layers throughout goose ovarian follicle development, indicating a role for PRLR in the process of follicle selection.5. PRLR mRNA was differentially expressed in the three cohorts of in vitro cultured granulosa cells harvested from different sized goose ovarian follicles, which suggested that PRLR was involved in regulating granulosa cell functions depending on the stage of follicle development. These data provide novel insights into the role of PRLR during goose ovarian follicle development, although the underlying mechanisms await further investigations.


Subject(s)
Chickens , Geese , Female , Animals , Geese/physiology , Chickens/genetics , Ovarian Follicle/physiology , Granulosa Cells/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
J Pers Med ; 12(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36556307

ABSTRACT

Phosphatase and tensin homolog (PTEN) is one of the highly susceptible genes to breast cancer (BC); however, the role of PTEN-related RNAs in BC remains poorly understood. Understanding the effect of PTEN-related RNAs and their mechanisms may be helpful to clinicians. We screened the differentially expressed RNAs (deRNAs) related to PTEN and established the competitive endogenous RNA (ceRNA) network by integrating several databases. After that, the RNA model, prolactin receptor (PRLR)/calcium voltage-gated channel auxiliary subunit alpha2delta 1 (CACNA2D1), was obtained by KM survival analysis and logistic regression analysis. Finally, mutation, methylation, functional enrichment, and immune correlation were analyzed to explore the roles of these RNAs. Our results showed that PRLR might be harmful to BC, while CACNA2D1 might be beneficial to BC. Furthermore, the abnormal expression of PRLR in BC might result from mutation and hypomethylation, while the aberrant expression of CACNA2D1 might be ascribed to methylation. Mechanistically, PRLR might affect the prognosis of BC by inhibiting the expression of immune checkpoints, while CACNA2D1 might improve the prognosis of BC by increasing the immune cells infiltrating into BC and up-regulating the expression of immune checkpoints. The abnormal expression of PRLR and CACNA2D1 in BC is closely related to the prognosis of BC, and they may serve as targets for the treatment of BC.

17.
Front Endocrinol (Lausanne) ; 13: 949396, 2022.
Article in English | MEDLINE | ID: mdl-36187116

ABSTRACT

The prolactin receptor (PRLR) is a member of the lactogen/cytokine receptor family, which mediates multiple actions of prolactin (PRL). PRL is a major hormone in the proliferation/differentiation of breast epithelium that is essential for lactation. It is also involved in breast cancer development, tumor growth and chemoresistance. Human PRLR expression is controlled at the transcriptional level by multiple promoters. Each promoter directs transcription/expression of a specific non-coding exon 1, a common non-coding exon 2 and coding exons E3-11. The identification of exon 11 of PRLR led to finding of alternative spliced products and two novel short forms (SF) that can inhibit the long form (LF) of PRLR activity with relevance in physiological regulation and breast cancer. Homo and heterodimers of LF and SF are formed in the absence of PRL that acts as a conformational modifier. Heterodimerization of SF with LF is a major mechanism through which SF inhibits some signaling pathways originating at the LF. Biochemical/molecular modeling approaches demonstrated that the human PRLR conformation stabilized by extracellular intramolecular S-S bonds and several amino acids in the extracellular D1 domain of PRLR SF are required for its inhibitory actions on PRLR LF-mediated functions. Studies in breast cancer cells demonstrated that the transcription of PRLR was directed by the preferentially utilized PIII promoter, which lacks an estrogen responsive element. Complex formation of non-DNA bound ERα dimer with Sp1 and C/EBPß dimers bound to their sites at the PRLR promoter is required for basal activity. Estradiol induces transcriptional activation/expression of the PRLR gene, and subsequent studies revealed the essential role of autocrine PRL released by breast cancer cells and CDK7 in estradiol-induced PRLR promoter activation and upregulation. Other studies revealed stimulation of the PRLR promoter activity and PRLR LF protein by PRL in the absence of estrogen via the STAT5/phospho-ERα activation loop. Additionally, EGF/ERBB1 can induce the transcription of PRLR independent of estrogen and prolactin. The various regulatory modalities contributing to the upregulation of PRLR provide options for the development of therapeutic approaches to mitigate its participation in breast cancer progression and resistance.


Subject(s)
Breast Neoplasms , Receptors, Prolactin , Amino Acids , Breast Neoplasms/pathology , Epidermal Growth Factor/metabolism , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogens/pharmacology , Female , Humans , Prolactin/genetics , Prolactin/metabolism , Receptors, Cytokine/metabolism , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , STAT5 Transcription Factor
18.
Trop Anim Health Prod ; 54(5): 321, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36155857

ABSTRACT

Studying variation in genes responsible for physiological characters is important to enhance goat productive and reproductive efficiency. This study aimed to detect specific nucleotide polymorphisms in prolactin receptor (PRLR), insulin-like growth factor (IGF1), and leptin (LEP) genes and their correlation with milk production (MP) and litter size (LS) traits in Zaraibi goat. PCR-SSCP products of different patterns of each gene were sequenced and aligned to reveal two mutations (T > C) and (G > A) in 3'UTR of PRLR gene and registered on NCBI with accession numbers OM418863 for TT and OM418864 for CT, while (G > A) variation was registered as OM418861 for GG and OM418862 for AG in exon 10. TT, CT, AG, and GG genotypes were distributed in the studied animals with frequencies 0.43, 0.57, 0.65, and 0.35, respectively. While alleles C, T, A, and G frequencies were 0.28, 0.72, 0.32, and 0.68, respectively. CT and AG genotypes associated significantly (P < 0.05) with higher MP and LS, respectively. By studying the haplotypes of PRLR, C-A and T-A were associated with the highest and the lowest level of MP, respectively. For LS, T-A and C-G showed significant correlation with the highest and the lowest rate, respectively. Regarding IGF1 gene, two polymorphisms were detected; T74C at exon 4 which registered on NCBI as OM418860, and combined mutations as ins. G470, A531G, and T534C (PP genotype) at 5' flanking region that registered as OM418859. For LEP, only one polymorphism was found in intron 2 (G281A) which submitted to NCBI as OM418855. All detected polymorphisms have shown to be involved in regulating the MP or LS as reproductive traits in goat.


Subject(s)
Goats , Receptors, Prolactin , 3' Untranslated Regions , Animals , Egypt , Female , Genotype , Goats/genetics , Leptin/genetics , Litter Size/genetics , Milk/metabolism , Nucleotides , Polymorphism, Single Nucleotide , Pregnancy , Receptors, Prolactin/genetics
19.
Animals (Basel) ; 12(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36078009

ABSTRACT

Prolactin (PRL) is a hormone expressed in lactotrophs cells of the pituitary gland in primates. Extra pituitary expression of PRL has been reported, including the eye; however, expression in the developing eye of primates is limited. The aim of the study was determining the expression of PRL and PRL receptor (PRLR) (mRNAs and proteins) in adult and fetal baboon (Papio hamadryas) ocular tissues. METHODS: We analyzed PRL and PRLR in baboon eyes tissues by immunofluorescence. The mRNAs of PRL and PRLR were detected by RT-PCR, cDNA was cloned, and sequenced. Furthermore, we performed a phylogenetic analysis to identify the evolutionary forces that underlie the divergence of PRL and PRLR primate genes. RESULTS: We observed the expression of PRL and PRLR (mRNAs and proteins) in all retinal cell lineages of fetal and adult baboon. PRL and PRLR fit the hypothesis of evolutionary purifying gene selection. CONCLUSIONS: mRNA and protein of PRL and PRLR are expressed in fetal and adult baboon retinal tissue. PRL may trigger autocrine and paracrine-specific actions in retinal cell lines.

20.
Cell Commun Signal ; 20(1): 123, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978432

ABSTRACT

Medulloblastoma is the most common pediatric embryonal brain tumor, and may occur in cancer predisposition syndromes. We describe novel associations of medulloblastoma with atypical prolactinoma and dural high-grade sarcoma in Li-Fraumeni syndrome (LFS), and epidural desmoid fibromatosis in familial adenomatous polyposis (FAP)/Turcot syndrome. Genomic analysis showing XRCC3 alterations suggested radiotherapy as contributing factor to the progression of LFS-associated medulloblastoma, and demonstrated different mechanisms of APC inactivation in the FAP-associated tumors. The integrated genomic-transcriptomic analysis uncovered the growth pathways driving tumorigenesis, including the prolactin-prolactin receptor (PRLR) autocrine loop and Shh pathway in the LFS-associated prolactinoma and medulloblastoma, respectively, the Wnt pathway in both FAP-associated neoplasms, and the TGFß and Hippo pathways in the soft tissue tumors, regardless of germline predisposition. In addition, the comparative analysis of paired syndromic neoplasms revealed several growth pathways susceptible to therapeutic intervention by PARP, PRLR, and selective receptor tyrosine kinase (RTK) inhibitors. These could target the defective DNA damage repair in the LFS-associated medulloblastoma, the prolactin autocrine loop in the atypical prolactinoma, the EPHA3/7 and ALK overexpression in the FAP-associated medulloblastoma, and the multi-RTK upregulation in the soft tissue neoplasms. This study presents the spatiotemporal evolution of novel neoplastic associations in syndromic medulloblastoma, and discusses the post-radiotherapy risk for secondary malignancies in syndromic pediatric patients, with important implications for the biology, diagnosis, and therapy of these tumors. Video Abstract.


Subject(s)
Adenomatous Polyposis Coli , Cerebellar Neoplasms , Medulloblastoma , Pituitary Neoplasms , Prolactinoma , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Cerebellar Neoplasms/genetics , Child , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Prolactin
SELECTION OF CITATIONS
SEARCH DETAIL