Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
1.
Bioact Mater ; 43: 255-272, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39386219

ABSTRACT

Both ß-catenin and STAT3 drive colorectal cancer (CRC) growth, progression, and immune evasion, and their co-overexpression is strongly associated with a poor prognosis. However, current small molecule inhibitors have limited efficacy due to the reciprocal feedback activation between STAT3 and ß-catenin. Inspired by the PROteolysis TArgeting Chimera (PROTAC), a promising pharmacological modality for the selective degradation of proteins, we developed a strategy of nanoengineered peptide PROTACs (NP-PROTACs) to degrade both ß-catenin and STAT3 effectively. The NP-PROTACs were engineered by coupling the peptide PROTACs with DSPE-PEG via disulfide bonds and self-assembled into nanoparticles. Notably, the dual degradation of ß-catenin and STAT3 mediated by NP-PROTACs led to a synergistic antitumor effect compared to single-target treatment. Moreover, NP-PROTACs treatment enhanced CD103+ dendritic cell infiltration and T-cell cytotoxicity, alleviating the immunosuppressive microenvironment induced by ß-catenin/STAT3 in CRC. These results highlight the potential of NP-PROTACs in facilitating the simultaneous degradation of two pathogenic proteins, thereby providing a novel avenue for cancer therapy.

2.
Pathol Res Pract ; 263: 155611, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39357191

ABSTRACT

Cancer continues to threaten human health regardless of novel therapeutic options. Over the last two decades, targeted therapy has emerged as a significant advancement in treating malignancies, surpassing standard chemoradiotherapy and surgical procedures. Gynecological malignancies, including cervical, endometrial, and ovarian carcinoma, have a bad prognosis in advanced or metastatic stages and are difficult to treat. The advancements in understanding the molecular pathways behind cancer development offer valuable insights into promising targeted medicines, and researchers have always searched for a superior and safe technique to target cancer-related oncoproteins because of the limited therapeutic benefit, drug resistance, and off-target effects of current targeted treatments. Recently, proteolysis-targeting chimeras (PROTACs) have been developed to selectively degrade proteins using the natural ubiquitin-proteasome system (UPS). These approaches have garnered significant attention in the field of cancer research. The rapid progress in PROTACs has also eased the targeting of various oncoproteins in gynecological cancer. Therefore, this review aims to elucidate the mechanism and research advancements of PROTACs and provide a comprehensive overview of their use in gynecological tumors.

3.
Bioorg Chem ; 153: 107868, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39374557

ABSTRACT

Target protein degradation (TPD) is an emerging approach to mitigate disease-causing proteins. TPD contains several strategies, and one of the strategies that gained immersive importance in recent times is Proteolysis Targeting Chimeras (PROTACs); the PROTACs recruit small molecules to induce the poly-ubiquitination of disease-causing protein by hijacking the ubiquitin-proteasome system (UPS) by bringing the E3 ligase and protein of interest (POI) into appropriate proximity. The steps involved in designing and evaluating the PROTACs remain critical in optimising the PROTACs to degrade the POI. It is observed that using in-silico and biochemical methods to study the ternary complexes (TCs) of the POI-PROTAC-E3 ligase is essential to understanding the structural activity, cooperativity, and stability of formed TCs. A better understanding of the above-mentioned leads to an appropriate rationale for designing the PROTACs targeting the disease-causing proteins. In this review, we tried to summarise the approaches used to design the ternary complexes, i.e., in-silico and in-vitro methods, to understand the behaviour of the PROTAC-induced ternary complexes.

4.
Chembiochem ; : e202400682, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367518

ABSTRACT

Proteolysis-targeting chimera (PROTAC) has emerged as an attractive therapeutic modality in drug discovery. PROTACs are bifunctional molecules that effectively bridge proteins of interest (POIs) with E3 ubiquitin ligases, such that, the target proteins are tagged with ubiquitin and subsequently degraded via the proteasome. Despite significant progress in the field of targeted protein degradation (TPD), the application of conventional PROTAC degraders still faces significant challenges, including systemic toxicity induced by non-tissue-specific targeting. To address this issue, a variety of smart PROTACs that can be activated by specific stimuli, have been developed for achieving conditional and spatiotemporal modulation of protein levels. Here, on the basis of our contributions, we overview recent advances of smart PROTACs, including tumor microenvironment-, photo-, and X-ray radiation-responsive PROTACs, that enable controllable TPD. The design strategy, case studies, potential applications and challenges will be focused on.

6.
Trends Biochem Sci ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39332983

ABSTRACT

Targeted protein degradation is an innovative therapeutic modality for the degradation of disease-causing proteins. In a recent report combining high-throughput screening of small-molecule compounds and biochemical analyses, Mori et al. identified certain inhibitors of cellular pathways, such as PARylation and proteostatic pathways, which enhance proteolysis-targeting chimera (PROTAC)-induced protein degradation.

7.
Pharmacol Ther ; 263: 108725, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39322067

ABSTRACT

Targeted protein degradation (TPD) has emerged as a prominent and vital strategy for therapeutic intervention of cancers and other diseases. One such approach involves the exploration of proteolysis targeting chimeras (PROTACs) for the selective elimination of disease-causing proteins through the innate ubiquitin-proteasome pathway. Due to the unprecedented achievements of various PROTAC molecules in clinical trials, researchers have moved towards other physiological protein degradation approaches for the targeted degradation of abnormal proteins, including lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagosome-tethering compounds (ATTECs), molecular glue degraders, and other derivatives for their precise mode of action. Despite numerous advantages, these molecules face challenges in solubility, permeability, bioavailability, and potential off-target or on-target off-tissue effects. Thus, an urgent need arises to direct the action of these degrader molecules specifically against cancer cells, leaving the proteins of non-cancerous cells intact. Recent advancements in TPD have led to innovative delivery methods that ensure the degraders are delivered in a cell- or tissue-specific manner to achieve cell/tissue-selective degradation of target proteins. Such receptor-specific active delivery or nano-based passive delivery of the PROTACs could be achieved by conjugating them with targeting ligands (antibodies, aptamers, peptides, or small molecule ligands) or nano-based carriers. These techniques help to achieve precise delivery of PROTAC payloads to the target sites. Notably, the successful entry of a Degrader Antibody Conjugate (DAC), ORM-5029, into a phase 1 clinical trial underscores the therapeutic potential of these conjugates, including LYTAC-antibody conjugates (LACs) and aptamer-based targeted protein degraders. Further, using bispecific antibody-based degraders (AbTACs) and delivering the PROTAC pre-fused with E3 ligases provides a solution for cell type-specific protein degradation. Here, we highlighted the current advancements and challenges associated with developing new tumour-specific protein degrader approaches and summarized their potential as single agents or combination therapeutics for cancer.

8.
Eur J Med Chem ; 279: 116901, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39341095

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) is regarded as an emerging therapeutic strategy with unlimited potential because of its mechanism of inducing target protein degradation though harnessing ubiquitin-proteasome system (UPS). Recently, researchers are combining the advantages of PROTACs and dual-targeted drugs to explore some new types of dual PROTACs degraders. The utilization of dual PROTACs not only enhances the efficiency of selective degradation for two or more distinct proteins, but also facilitates synergistic interactions between target proteins to optimize therapeutic efficacy as well as overcome resistance. In this review, we briefly investigate the innovative strategies of dual degraders based on bivalent or trivalent "Y-type" PROTACs in recent years, outline their design principles, degradation effects, and anticancer activities. Moreover, their advantages and limitations compared with traditional PROTACs will be discussed and provide the outlook on the associated challenges. Meaningfully, the development and application of these dual-targeted PROTACs may point out new directions for replacing numerous combination regimens in the future.

9.
J Med Virol ; 96(9): e29926, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39295251

ABSTRACT

H5N1, a highly pathogenic avian influenza virus, poses an ongoing and significant threat to global public health, primarily due to its potential to cause severe respiratory illness and high mortality rates in humans. Despite extensive efforts in vaccination and antiviral therapy, H5N1 continues to exhibit high mutation rates, resulting in recurrent outbreaks and the emergence of drug-resistant strains. Traditional antiviral therapies, such as neuraminidase inhibitors and M2 ion channel blockers, have demonstrated limited efficacy, necessitating the exploration of innovative therapeutic strategies. Proteolysis-targeting chimeras (PROTACs) emerge as a novel and promising approach, leveraging the ubiquitin-proteasome system to selectively degrade pathogenic proteins. Unlike conventional inhibitors that only block protein function, PROTACs eliminate the target protein, providing a sustained therapeutic effect and potentially reducing the development of resistance. This paper offers a comprehensive examination of the current landscape of H5N1 infections, detailing the pathogenesis and challenges associated with existing treatments. It further explores the mechanism of action, design, and therapeutic potential of PROTACs in inhibiting H5N1. By targeting essential viral proteins, such as hemagglutinin and the RNA-dependent RNA polymerase complex, PROTACs hold the potential to revolutionize the treatment of H5N1 infections, offering a new frontier in antiviral therapy.


Subject(s)
Antiviral Agents , Influenza A Virus, H5N1 Subtype , Influenza, Human , Proteolysis , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/virology , Proteolysis/drug effects , Animals , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Viral Proteins/genetics , Proteolysis Targeting Chimera
10.
Acta Pharm Sin B ; 14(9): 4001-4013, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39309493

ABSTRACT

Cancer stem cells (CSCs) play a pivotal role in tumor initiation, proliferation, metastasis, drug resistance, and recurrence. Consequently, targeting CSCs has emerged as a promising avenue for cancer therapy. Recently, 3-phosphoglycerate dehydrogenase (PHGDH) has been identified as being intricately associated with the regulation of numerous cancer stem cells. Yet, reports detailing the functional regulators of PHGDH that can mitigate the stemness across cancer types are limited. In this study, the novel "molecular glue" LXH-3-71 was identified, and it robustly induced degradation of PHGDH, thereby modulating the stemness of colorectal cancer cells (CRCs) both in vitro and in vivo. Remarkably, LXH-3-71 was observed to form a dynamic chimera, between PHGDH and the DDB1-CRL E3 ligase. These insights not only elucidate the anti-CSCs mechanism of the lead compound but also suggest that degradation of PHGDH may be a more viable therapeutic strategy than the development of PHGDH inhibitors. Additionally, compound LXH-3-71 was leveraged as a novel ligand for the DDB1-CRL E3 ligase, facilitating the development of new PROTAC molecules targeting EGFR and CDK4 degradation.

11.
Bioorg Chem ; 153: 107801, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39244973

ABSTRACT

Resistance to proteasome inhibitors like Bortezomib is a major challenge in the treatment of multiple myeloma (MM). Proteolysis targeting chimeras (PROTACs), an emerging therapeutic approach that induces selective degradation of target proteins, offer a promising solution to overcome drug resistance. In this study, we designed and synthesized novel small-molecule PROTACs that induce 20S proteasome subunit ß5 degradation as a strategy to overcome Bortezomib resistance. These 20S proteasome subunit ß5 PROTACs demonstrated considerable binding affinity to 20S proteasome subunit ß5 and cereblon (CRBN), effectively induced 20S proteasome subunit ß5 degradation, and exhibited potent antiproliferative activity against a panel of cancer cell lines. Notably, PROTACs 12f and 14 displayed robust antitumor effects against both the pharyngeal carcinoma cell line FaDu and the Bortezomib-resistant MM cell line KM3/BTZ in vitro and in vivo with excellent safety profiles. Taken together, our findings highlight the potential of PROTACs 12f and 14 as novel 20S proteasome subunit ß5-degrading agents for the treatment of pharyngeal carcinoma and overcoming Bortezomib resistance in MM.

12.
Bioorg Med Chem ; 113: 117929, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39317007

ABSTRACT

Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.

13.
Acta Pharm Sin B ; 14(8): 3295-3311, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220870

ABSTRACT

Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.

14.
Biomedicines ; 12(8)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39200265

ABSTRACT

Resistance to cancer drugs is a complex phenomenon that poses a significant challenge in the treatment of various malignancies. This review comprehensively explores cancer resistance mechanisms and discusses emerging strategies and modalities to overcome this obstacle. Many factors contribute to cancer resistance, including genetic mutations, activation of alternative signaling pathways, and alterations in the tumor microenvironment. Innovative approaches, such as targeted protein degradation, immunotherapy combinations, precision medicine, and novel drug delivery systems, hold promise for improving treatment outcomes. Understanding the intricacies of cancer resistance and leveraging innovative modalities are essential for advancing cancer therapy.

15.
J Chromatogr A ; 1732: 465226, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39111181

ABSTRACT

The last few years have seen a rise in the identification and development of bio-therapeutics through the use of cutting-edge delivery methods or bio-formulations, which has created bio-analytical difficulties. Every year, new bio-pharmaceutical product innovations come out, but the analytical development of these products is challenging. Quantifying the products and components of conjugated molecular structures is essential for preclinical and clinical research in order to guide therapeutic development, given their intrinsic complexity. Furthermore, a significant amount of information is needed for the measurement of these unique modalities by LC-MS techniques. Numerous LC-MS based methods have been developed, including AEX-HPLC-MS, RP-IP-LCMS, HILIC-MS, LCHRMS, Microflow-LC-MS, ASMS, Hybrid LBA/LC-MS, and more. However, these methods continue to face problems, prompting the development of alternative approaches. Therefore, developing bio-molecules that are this complicated and, low in concentration requires a skilled LC-MS based approach and knowledgeable personnel. This review covers general novel modalities classifications, sample preparation techniques, current status and bio-analytical strategies for analyzing various novel modalities, including gene bio-therapeutics, oligonucleotides, antibody-drug conjugates, monoclonal antibodies and PROTACs. It also covers how these strategies have been used in the past and how they are being used now to address challenges in the development of LC-MS based methods, as well as improvement strategies, current advancements and recent developed methods. We additionally covered on the benefits and drawbacks of different LC-MS based techniques for the examination of bio-pharmaceutical products and the future perspectives.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Humans , Chromatography, High Pressure Liquid/methods , Liquid Chromatography-Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry/trends , Pharmaceutical Preparations/analysis
16.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119827, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187067

ABSTRACT

Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/ß-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.

17.
Eur J Med Chem ; 277: 116717, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39094274

ABSTRACT

The urgent and unmet medical demand of acute myeloid leukemia (AML) patients has driven the drug discovery process for expansion of the landscape of AML treatment. Despite the several agents developed for treatment of AML, more than 60 % of treated patients undergo relapse again after re-emission, thus, no complete cure for this complex disease has been reached yet. Targeted oncoprotein degradation is a new paradigm that can be employed to solve drug resistance, disease relapse, and treatment failure in complex diseases as AML, the most lethal hematological malignancy. AML is an aggressive blood cancer form and the most common type of acute leukemia, with bad outcomes and a very poor 5-year survival rate. FLT3 mutations occur in about 30 % of AML cases and FLT3-ITD is associated with poor prognosis of this disease. Prevalent FLT3 mutations include internal tandem duplication and point mutations (e.g., D835) in the tyrosine kinase domain, which induce FLT3 kinase activation and result in survival and proliferation of AML cells again. Currently approved FLT3 inhibitors suffer from limited clinical efficacy due to FLT3 reactivation by mutations, therefore, alternative new treatments are highly needed. Proteolysis-targeting chimera (PROTAC) is a bi-functional molecule that consists of a ligand of the protein of interest, FLT3 inhibitor in our case, that is covalently linked to an E3 ubiquitin ligase ligand. Upon FLT3-specific PROTAC binding to FLT3, the PROTAC can recruit E3 for FLT3 ubiquitination, which is subsequently subjected to proteasome-mediated degradation. In this review we tried to address the question if PROTAC technology has succeeded in tackling the disease relapse and treatment failure of AML. Next, we explored the latest FLT3-targeting PROTACs developed in the past few years such as quizartinib-based PROTACs, dovitinib-based PROTACs, gilteritinib-based PROTACs, and others. Then, we followed with a deep analysis of their advantages regarding potency improvement and overcoming AML drug resistance. Finally, we discussed the challenges facing these chimeric molecules with proposed future solutions to circumvent them.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Drug Resistance, Neoplasm/drug effects , Proteolysis/drug effects , Molecular Structure , Proteolysis Targeting Chimera
18.
Eur J Med Chem ; 277: 116789, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39208743

ABSTRACT

The transcriptional repressor B cell lymphoma 6 (BCL6) plays a critical role in driving tumorigenesis of diffuse large B-cell lymphoma (DLBCL). However, the therapeutic potential of inhibiting or degrading BCL6 for DLBCL has not been thoroughly understood. Herein, we reported the discovery of a series of novel BCL6-targeting PROTACs based on our previously reported N-phenyl-4-pyrimidinamine BCL6 inhibitors. The optimal compound DZ-837 degraded BCL6 with DC50 values around 600 nM and effectively inhibited the proliferation of several DLBCL cell lines. Further study indicated that DZ-837 induced significant G1 phase arrest and exhibited sustained reactivation of BCL6 downstream genes. In the SU-DHL-4 xenograft model, DZ-837 significantly inhibited tumor growth with TGI of 71.8 % at 40 mg/kg once daily. Furthermore, the combination of DZ-837 with BTK inhibitor Ibrutinib showed synergistic effects and overcame acquired resistance against DLBCL cells. Overall, our findings demonstrate that DZ-837 is an effective BCL6 degrader for DLBCL treatment as a monotherapy or in combination with Ibrutinib.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Discovery , Drug Screening Assays, Antitumor , Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-bcl-6 , Humans , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Cell Proliferation/drug effects , Mice , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Cell Line, Tumor , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Proteolysis Targeting Chimera
19.
Trends Pharmacol Sci ; 45(9): 811-823, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117533

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) has been widely considered as a therapeutic target for various diseases, especially tumors. Thus far, several STAT3 inhibitors have been advanced to clinical trials; however, the development of STAT3 inhibitors is hindered by numerous dilemmas. Fortunately, STAT3 degraders represent an alternative and promising strategy to block STAT3, attracting extensive research interest. Here, we analyze the recent advancements of STAT3 degraders, including proteolysis targeting chimeras (PROTACs) and small-molecule natural products, focusing on their structures, mechanisms, and biological activities. We discuss the potential opportunities and challenges for developing STAT3 degraders. It is hoped that this Review will provide insights into the discovery of potent STAT3-targeting drugs.


Subject(s)
Proteolysis , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Signal Transduction/drug effects , Biological Products/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Molecular Targeted Therapy
20.
Cell Commun Signal ; 22(1): 415, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192247

ABSTRACT

The antiapoptotic protein BCL2A1 is highly, but very heterogeneously expressed in Diffuse Large B-cell Lymphoma (DLBCL). Particularly in the context of resistance to current therapies, BCL2A1 appears to play an important role in protecting cancer cells from the induction of cell death. Reducing BCL2A1 levels may have therapeutic potential, however, no specific inhibitor is currently available. In this study, we hypothesized that the signaling network regulated by epigenetic readers may regulate the transcription of BCL2A1 and hence that inhibition of Bromodomain and Extra-Terminal (BET) proteins may reduce BCL2A1 expression thus leading to cell death in DLBCL cell lines. We found that the mechanisms of action of acetyl-lysine competitive BET inhibitors are different from those of proteolysis targeting chimeras (PROTACs) that induce the degradation of BET proteins. Both classes of BETi reduced the expression of BCL2A1 which coincided with a marked downregulation of c-MYC. Mechanistically, BET inhibition attenuated the constitutively active canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway and inhibited p65 activation. Furthermore, signal transducer of activated transcription (STAT) signaling was reduced by inhibiting BET proteins, targeting another pathway that is often constitutively active in DLBCL. Both pathways were also inhibited by the IκB kinase inhibitor TPCA-1, resulting in decreased BCL2A1 and c-MYC expression. Taken together, our study highlights a novel complex regulatory network that links BET proteins to both NFκB and STAT survival signaling pathways controlling both BCL2A1 and c-MYC expression in DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , NF-kappa B , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-myc , Signal Transduction , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/drug effects , NF-kappa B/metabolism , Cell Line, Tumor , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , Bromodomain Containing Proteins , Proteins , Minor Histocompatibility Antigens
SELECTION OF CITATIONS
SEARCH DETAIL