Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Food Chem X ; 23: 101642, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39113743

ABSTRACT

Panax notoginseng and Panax quinquefolium are important economic plants that utilize dried roots for medicinal and food dual purposes; there is still insufficient research of their stems and leaves, which also contain triterpenoid saponins. The extraction process was developed with a total saponin content of 12.30 ± 0.34% and 12.19 ± 0.64% for P. notoginseng leaves (PNL) and P. quinquefolium leaves (PQL) extracts, respectively. PNL and PQL saponin extracts showed good antioxidant, antihypertensive, hypoglycemic, and anti-inflammatory properties in vitro and RAW264.7 cells. A total of 699 metabolites were identified in PNL and PQL saponin extracts, with the majority being triterpenoid saponins, flavonoids and amino acids. Fourteen ginsenosides, 18 flavonoids or alkaloids, and 16 amino acids were enriched in both saponin extracts. Overall, the utilization of saponins from medicinal plants PNL and PQL has been developed to facilitate systematic research in the functional food and natural product industries.

2.
Food Sci Biotechnol ; 33(7): 1685-1696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623439

ABSTRACT

American ginseng (Panax quinquefolium L.) is used as tonic plant and high-grade nourishment. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method was established for identifying the chemical constituent in three morphological regions of American ginseng, including main root (MR), rhizome (RH) and lateral root (LR). The 63 saponins was identified in different morphological regions of 10 American ginseng samples. The chemical maker compounds in corresponding morphological region, while the major compounds of MR (malonyl-ginsenoside Rb1, ginsenoside Rd, Rs2 and pseudo-RC1), LR (stipuleanoside R2, ginsenoside Re and malonyl-ginsenoside Rc), and RH (malonyl-ginsenoside Rd, Rb3, and chikusetsu saponin II) were discovered. Correlation analysis showed that 11 compounds were positively correlated with the antioxidant activity of American ginseng. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01453-4.

3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1526-1539, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621936

ABSTRACT

This study aims to investigate the component variations and spatial distribution of ginsenosides in Panax quinquefolium roots during repeated steaming and drying. Ultra performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to identify the ginsenosides in the root extract. Matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI) was employed to visualize the spatial distribution and spatiotemporal changes of prototype ginsenosides and metabolites in P. quinquefolium roots. The UPLC results showed that 90 ginsenosides were identified during the steaming process of the roots, and polar ginsenosides were converted into low polar or non-polar ginsenosides. The content of prototype ginsenosides decreased, while that of rare ginsenosides increased, which included 20(S/R)-ginsenoside Rg_3, 20(S/R)-ginsenoside Rh_2, and ginsenosides Rk_1, Rg_5, Rs_5, and Rs_4. MALDI-MSI results showed that ginsenosides were mainly distributed in the epidermis and phloem. As the steaming times increased, ginsenosides were transported to the xylem and medulla. This study provides fundamental information for revealing the changes of biological activity and pharmacological effect of P. quinquefolium roots that are caused by repeated steaming and drying and gives a reference for expanding the application scope of this herbal medicine.


Subject(s)
Ginsenosides , Panax , Ginsenosides/analysis , Tandem Mass Spectrometry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Panax/chemistry , Chromatography, High Pressure Liquid/methods , Plant Roots/chemistry
4.
Sci Total Environ ; 915: 170005, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38232852

ABSTRACT

Cadmium (Cd) accumulation in American ginseng (Panax quinquefolium L.) can negatively impact its yield and safety. Our previous study found that biochar could reduce cadmium content of P. quinquefolius, however, the mechanism was yet to be elucidated. In the present study, we tested four treatments in order to reveal the mechanism by which this phenomenon occurs: control, Cd, Cd + biochar and biochar. The results showed that the following responses were induced by the addition of biochar under Cd stress. Firstly, the soil physicochemical properties were improved, this is especially true for the soil pH value and soil organic matter content, which were increased by 20.42 % and 15.57 %, respectively. Secondly, the relative abundances of several beneficial microorganism phyla; such as Proteobacteria, Bacteroidota and Actinobacteria; were increased by 10.69 %, 20.11 % and 60.86 %, respectively. Thirdly, treatment with biochar reduced the Cd content by increasing cadmium-chelated metabolites within the soil (e.g., naringenin, caffeic acid, and valine) and increasing detoxification substances in plants (e.g., malic acid, flavonoids, and fumaric acid). Changes in these metabolites were significantly correlated with rhizosphere microecology. In summary, biochar treatment reduced the Cd content in seedlings by improving the soil properties, rhizosphere community, soil metabolites, and plant metabolites.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Rhizosphere , Soil Pollutants/analysis , Charcoal/chemistry , Soil/chemistry
5.
Phytochem Anal ; 35(2): 409-418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37872850

ABSTRACT

INTRODUCTION: Panax ginseng and Panax quinquefolium are traditional Chinese herb medicines and similar in morphology and some chemical components but differ in drug properties, so they cannot be mixed. However, the processed products of them are often sold in the form of slices, powder, and capsules, which are difficult to identify by traditional morphological methods. Furthermore, an accurate evaluation of P. ginseng, P. quinquefolium and the processed products have not been conducted. OBJECTIVE: This study aimed to establish a catalysed hairpin assembly (CHA) identification method for authenticating products made from P. ginseng and P. quinquefolium based on single nucleotide polymorphism (SNP) differences. METHOD: By analysing the differences of SNP in internal transcribed spacer 2 (ITS2) in P. ginseng and P. quinquefolium to design CHA-specific hairpins. Establish a sensitive and efficient CHA method that can identify P. ginseng and P. quinquefolium, use the sequencing technology to verify the accuracy of this method in identifying Panax products, and compare this method with high-resolution melting (HRM). RESULTS: The reaction conditions of CHA were as follows: the ratio of forward and reverse primers, 20:1; hairpin concentration, 5 ng/µL. Compared with capillary electrophoresis, this method had good specificity and the limit of detection was 0.5 ng/µL. The result of Panax product identification with CHA method were coincidence with that of the sequencing method; the positive rate of CHA reaction was 100%. CONCLUSION: This research presents an effective identification method for authenticating P. ginseng and P. quinquefolium products, which is helpful to improve the quality of Panax products.


Subject(s)
Panax , Panax/genetics , Panax/chemistry , Medicine, Chinese Traditional , Polymorphism, Single Nucleotide , Technology
6.
Drug Des Devel Ther ; 17: 3249-3267, 2023.
Article in English | MEDLINE | ID: mdl-37954484

ABSTRACT

Background: Combination of Panax quinquefolium L and Salvia miltiorrhiza Bunge. (PS) has been widely used in the clinical treatment of ischemic heart disease. The purpose of this study was to explore the therapeutic effect and mechanism of PS on angiogenesis in rats after acute myocardial infarction (AMI). Methods: A rat model of AMI was established by ligating the left anterior descending (LAD) artery. The grouping and administration scheme were as follows: sham group, model group, PS low-dose (PS-L) group, PS high-dose (PS-H) group, PX-478 group and angiotensin converting enzyme inhibitor (ACEI) group. After 28 days of treatment, echocardiography, myocardial infarct size, some angiogenesis markers and the miR-155-5p/HIF-1α/VEGF axis were measured. Results: PS improved cardiac structure and function, reduced infarct size, and alleviated myocardial fibrosis and inflammatory cell infiltration in AMI rats. Mechanistically, PS enhanced the expression of HGF and bFGF in serum, increased the levels of MVD and CD31 in myocardial tissues, and inhibited the activation of the miR-155-5p/HIF-1α/VEGF pathway, which ultimately promoted angiogenesis. In addition, the regulatory effect of PS on angiogenesis was partly abolished by PX-478. Conclusion: PS increased the expression of MVD and CD31 in the myocardium and stimulated angiogenesis. The above effects of PS may be associated with the inhibition of the miR-155-5p/HIF-1α/VEGF axis.


Subject(s)
MicroRNAs , Myocardial Infarction , Panax , Salvia miltiorrhiza , Animals , Rats , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Vascular Endothelial Growth Factor A/metabolism
7.
Asian Biomed (Res Rev News) ; 17(4): 163-172, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37860679

ABSTRACT

Background: American ginseng has an obvious anti-fatigue effect, but the effective material basis is still unclear. The spectrum-effect relationship is a scientific method that studies the correlations between chemical spectra and pharmacological effect. Objective: To reveal the real bioactive compounds in American ginseng saponin (AGS) based on a study of the underlying correlations between these compounds' occurrence in rat serum after their intake of AGS and the anti-fatigue effect of AGS. Methods: We utilized ultra-performance liquid chromatography (UPLC) with quadrupole and time-of-flight mass spectrometry (Q-TOF-MS) to analyze the extract of AGS and its constituents in serum after oral administration in rats. The anti-fatigue effect of AGS in rats was measured using the time weight-bearing swimming technique, the content of blood urea nitrogen, hepatic glycogen, and blood lactic acid. The relationship between the peak area values in fingerprints from rat serum and pharmacodynamic parameters of AGS was established using correlation analysis with partial least square regression (PLSR) method and gray correlation method. Results: We detected and identified 22 compounds from extract, and 8 prototype components from serum. Through PLSR and gray correlation method, it was found that the ginsenosides Re, Rb1, and Rb2 were significantly positively related to the pharmacodynamic data. Conclusions: Based on the spectrum-effect relationship, PLSR and gray correlation method can be used to screen for the anti-fatigue components available in AGS. Such an approach is of practical significance as it provides an effective means for exploring the material basis for the efficacy of American ginseng, particularly as an anti-fatigue agent.

8.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836715

ABSTRACT

This study aims to establish a rapid identification method based on the Proofman-LMTIA technique for distinguishing between Panax quinquefolium and Panax ginseng. By targeting specific 18S rDNA sequences, suitable primers and Proofman probes labeled FAM or JOE were designed for LMTIA. Initially, single-species-primer Proofman-LMTIA assays were performed separately for each ginseng type to optimize reaction temperature, assess sensitivity and specificity, and determine the detection limit. Subsequently, both sets of primers and their corresponding probes were combined in the same reaction system to further optimize reaction conditions, evaluate sensitivity, and assess stability. Finally, the developed Proofman-duplex-LMTIA technique was employed to detect P. quinquefolium and P. ginseng slices available in the market. Single-plex Proofman-LMTIA assays revealed that the optimal reaction temperature for both P. quinquefolium and P. ginseng was 62 °C. The sensitivity was as low as 1 pg/µL, with a detection limit of 0.1%, and both showed excellent specificity. The optimal temperature for Proofman-duplex-LMTIA assays was 58 °C. This method could simultaneously identify P. quinquefolium and P. ginseng. Testing 6 samples of P. ginseng and 11 samples of P. quinquefolium from the market resulted in a 100% positive rate for all samples. This study successfully established a rapid, simple, sensitive, and specific Proofman-duplex-LMTIA identification method for P. quinquefolium and P. ginseng. It provides an effective means for quality control of P. quinquefolium, P. ginseng, and related products.


Subject(s)
Panax , Temperature , Quality Control
9.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4097-4105, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802777

ABSTRACT

To explore the resource components and availability of different parts of Panax quinquefolium in Shandong province, the paper employed the non-targeted metabolomics technology based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) to analyze the metabolites and their metabolic pathways in the root, fibril, stem, and leaf of P. quinquefolium. The content of seven ginsenosides and polysaccharides in different parts was determined by high performance liquid chromatography(HPLC) and ultraviolet-visible spectrophotometry(UV-Vis). The results showed that the metabolites were mainly sugars, glycosides, organic acids, amino acids and their derivatives, terpenoids, etc. The total abundance of metabolites followed the trend of leaf > root > fibril > stem. Most of the differential metabolites were concentrated in phenylpropane biosynthesis, flavonoid biosynthesis, citric acid cycle, and amino acid biosynthesis. The leaf contained high levels of sugars, glycosides, amino acids and their derivatives, and flavonoids; the root was rich in terpenoids, volatile oils, vitamins, and lignin; the fibril contained rich organic acids; and the stem had high content of nucleotides and their derivatives. The content of ginsenosides Re and Rb_1 was significantly higher in the root; the content of ginsenosides Rg_1, Rg_2, Rd, F_(11), and polysaccharide was significantly higher in the leaf; and the content of ginsenoside Rb_2 was significantly higher in the stem. We analyzed the resource components and availability of different parts of P. quinquefolium, aiming to provide basic information for the comprehensive development and utilization of P. quinquefolium resources in Shandong province.


Subject(s)
Ginsenosides , Panax , Ginsenosides/analysis , Plant Roots/chemistry , Tandem Mass Spectrometry/methods , Panax/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Sugars
10.
Anal Biochem ; 679: 115298, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37619904

ABSTRACT

Panax ginseng and Panax quinquefolium are two valuable Chinese herbal medicines that should not be mixed because they differ in drug properties and efficacy. The traditional identification method is easily affected by subjective factors and cannot effectively distinguish between ginseng products. This study aimed to develop a new chemical analysis method to visually identify P. ginseng and P. quinquefolium. In this method, a large number of sequences containing G-quadruplex were generated by loop-mediated isothermal amplification, and the combination of G-quadruplex and hemin was used to form deoxyribozyme, which catalyzed the color change of H2O2. Artificial simulation of adulteration experiments revealed that this method could detect more than 20% adulterated P. quinquefolium. Compared with the traditional identification methods, this technology was simpler and more efficient, providing a reference for developing rapid visual identification methods and reagents for P. ginseng and P. quinquefolium.


Subject(s)
DNA, Catalytic , Panax , Hydrogen Peroxide , Chromatography, Gas , Computer Simulation
11.
Plant Dis ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142966

ABSTRACT

American ginseng (Panax quinquefolium L.) is one of the most valuable herb crops because of its unique pharmacological effects. In 2019, American ginseng plants withered and root rot with incidences of 20-45% were observed in about 70000m2 of ginseng production field located in mountainous valley of Benxi city (41º23'32" N, 124º04'27" E), Liaoning Province in China. Disease symptoms included chlorotic leaves with dark brown discoloration extending gradually from the basal to the apical part of the leaves. Water-soaked, irregular lesions appeared on the surface of roots and rotten at later stage. Twenty-five symptomatic roots were surface-sterilized by immersion in 2% sodium hypochlorite (NaOCl) for 3 min, followed by rinsing three times in sterilized water. The sections healthy tissues bordered rotten tissues, i.e. the leading edge, were cut into 4-5 mm pieces with a sterile scalpel and 4 pieces were placed on each PDA plate. After 5 days incubation at 26°C, total of 68 single spores were obtained from the colonies with an inoculation needle under stereomicroscope. Colonies from single conidia were white to greyish white, densely floccose to fluffy, and the reverse grayish yellow with dull violet pigmentation. Single-celled and ovoid microconidia in false heads were borne on aerial monophialidic or polyphialidic conidiophores on Carnation Leaf Agar (CLA) media, and measured 5.0 -14.5 × 3.0 -4.8 µm (n=25). Macroconidia were two to four septa, slightly curved, apical and basal cells were also curved, and they measured 22.5 - 45.5 × 4.5 - 6.3 µm (n=25). Chlamydospores were singly or in pairs, circular or subcircular, smooth, and measuring 5 - 10.5 µm (n=25) in diameter. Morphologically, the isolates were identified as Fusarium commune (Skovgaard et al. 2003; Leslie and Summerell 2006 ). To confirm the identity, the rDNA partial translation elongation factor1 alpha (TEF-a) gene and the internal transcribed spacer (ITS) region of ten isolates were amplified and sequenced (O'Donnell et al. 2015; White et al. 1990). Identical sequences were obtained, and one representative sequence of isolate BGL68 was submitted to GenBank. BLASTn analysis of both the TEF-α (MW589548) and the ITS (MW584396) sequences, revealed 100% and 99.46 % sequence identity to F. commune MZ416741 and KU341322, respectively. The pathogenicity test was conducted under greenhouse conditions. The surface of healthy 2-year-old American ginseng roots was washed and disinfested in 2% NaOCl for 3 min before rinsing in sterilized water. Twenty roots were wounded with a toothpick, resulting in tiny perforations (1.0 × 1.0×3.0 mm), 3 perforations were wounded on each root. Inoculums was prepared from the culture of isolate BGL68 incubate in potato dextrose broth (PD) for 5 days at 26°C,140 rpm. Ten wounded roots were immersed in a conidial suspension (2 × 105 conidia/ml) for four hours in a plastic bucket, and planted in five containers (two roots per container) filled with sterile soil. Another ten wounded roots were immersed in sterilized distilled water and planted in five containers as controls. The containers were incubated for four weeks in a greenhouse at temperature between 23°C and 26°C, under a 12-hr light and dark regime, and irrigate with sterile water every 4 days. Three weeks after inoculation, all inoculated plants exhibited chlorotic leaves, wilting and root rot. The taproot and the fibrous roots showed brown to black root rot and no symptoms in non-inoculated controls. The fungus was reisolated from the inoculated plants, but not from any of the control plants. The experiment was repeated two times with similar results. This is the first report of root rot caused by F. commune on American ginseng in China. The disease might bring a threat to this ginseng production and should be implemented effective control measures to reduce losses.

12.
Exp Ther Med ; 25(6): 292, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37206567

ABSTRACT

Timely treatment of viral myocarditis (VMC), a form of cardiac inflammation caused by viral infections, can reduce the occurrence of dilated cardiomyopathy and sudden death. Our previous study demonstrated the anti-inflammatory and anti-fibrotic effects of KX, a combination of Sophora flavescens alkaloids and Panax quinquefolium saponins, on an autoimmune myocarditis model in vivo. The present study explored the effects of KX on coxsackievirus B3 (CVB3)-induced acute VMC in mice. Mice were randomly divided into four groups: Control, VMC, KX-high (275 mg/kg) and KX-low (138 mg/kg). Mice in the VMC, KX-high and KX-low groups received injections of CVB3 to establish the VMC model, and those in the KX-high and KX-low groups also received KX by gavage (10 ml/kg) 2 h after virus injection until euthanasia was performed on day 7 or 21. Mice in the control group received an equal KX volume of purified water. The levels of lactate dehydrogenase (LDH), creatine kinase-myocardial band (CK-MB), cardiac troponin I (cTn-I), IL-1ß, IL-6, TNF-α and high-sensitive C-reactive protein (hs-CRP) in mouse serum was measured using ELISA. Myocardial tissue structure and degree of injury were observed using hematoxylin and eosin staining. Western blotting and reverse transcription-quantitative PCR were performed to detect the expression levels of NF-κB pathway-related mRNA and protein in myocardial tissue. The results showed that the inflammation and myocardial damage levels of the mice in the VMC group were higher at 7 days than those at 21 days. At both 7 and 21 days, KX decreased the serum CK-MB, LDH, cTn-I, IL-6, TNF-α and hs-CRP levels, and inhibited NF-κB pathway-related mRNA and protein expression in the myocardium of mice. These findings indicated that KX may reduce the inflammatory response and attenuate the pathological damage in the acute and subacute phases of CVB3-induced VMC through the NF-κB pathway.

13.
J Sep Sci ; 46(9): e2300046, 2023 May.
Article in English | MEDLINE | ID: mdl-36853146

ABSTRACT

As a famous health food, roots of Panax quinquefolium L. possessed immune regulation and enhancement of the central nervous system, in which ginsenosides are the main active component with different numbers and positions of sugars, causing different chemical polarities with a challenge for the separation and isolation. In this study, a fast and effective bilinear gradient counter-current chromatography was proposed for preparative isolation ginsenosides with a broad partition coefficient range from roots of Panax quinquefolium L. In terms of the established method, the mobile phases comprising n-butanol and ethyl acetate were achieved by adjusting the proportion. Coupled with the preparative HPLC, eleven main ginsenosides were successfully separated, including ginsenoside Rg1 (1), Re (2), acetyl ginsenoside Rg1 (3), Rb1 (4), Rc (5), Rg2 (6), Rb3 (7), quinquefolium R1 (8), Rd (9), gypenoside X VII (10) and notoginsenoside Fd (11), with purities exceeding 95% according to the HPLC results. Tandem mass spectrometry and electrospray ionization mass spectrometry were adopted for recognizing the isolated compound architectures. Our study suggests that linear gradient counter-current chromatography effectively separates the broad partition coefficient range of ginsenosides compounds from the roots of Panax quinquefolium L. In addition, it can apply to active compound isolation from other complicated natural products.


Subject(s)
Ginsenosides , Panax , Ginsenosides/chemistry , Chromatography, High Pressure Liquid/methods , Panax/chemistry , Countercurrent Distribution/methods , Plant Roots/chemistry
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-962637

ABSTRACT

ObjectiveTo analyze the community structure of endophytes in Panax quinquefolium root and explore the dominant endophytic bacteria and fungi, to provide scientific basis for the establishment of endophytic microbial bank in P. quinquefolium root. MethodInternal Transcribed Spacer (ITS) sequencing and 16S sequencing were performed on six P. quinquefolium root samples collected from Wendeng, Shandong province on PacBio Sequel Ⅱ. ResultA total of 8 phyla, 11 classes, 23 orders, 27 families and 53 genera of endophytic bacteria were identified in P. quinquefolium root, among which an unidentified Burkholderiaceae and an unidentified Rhizobiaceae were dominant. A total of 9 phyla, 23 classes, 35 orders, 43 families and 48 genera of endophytic fungi were identified in P. quinquefolium root, among which an unclassified Helotiales and Pseudogymnoascus were dominant. The community structure of endophytic bacteria revealed that the roots were selectively enriched with nitrogen-fixing bacteria such as unidentified Rhizobiaceae, Bradyrhizobium and Herbaspirillum, which suggested that nitrogen is important for the growth of P. quinquefolium root. The community structure of endophytic fungi indicated that P. quinquefolium in Shandong province might be infected by unclassified Helotiales. ConclusionThere is a rich diversity of endophytic bacteria and fungi in P. quinquefolium root, which provides scientific basis for studying the interaction of the plant with endophytic microorganisms and screening the endophytes to promote the growth of P. quinquefolium root.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008605

ABSTRACT

To explore the resource components and availability of different parts of Panax quinquefolium in Shandong province, the paper employed the non-targeted metabolomics technology based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) to analyze the metabolites and their metabolic pathways in the root, fibril, stem, and leaf of P. quinquefolium. The content of seven ginsenosides and polysaccharides in different parts was determined by high performance liquid chromatography(HPLC) and ultraviolet-visible spectrophotometry(UV-Vis). The results showed that the metabolites were mainly sugars, glycosides, organic acids, amino acids and their derivatives, terpenoids, etc. The total abundance of metabolites followed the trend of leaf > root > fibril > stem. Most of the differential metabolites were concentrated in phenylpropane biosynthesis, flavonoid biosynthesis, citric acid cycle, and amino acid biosynthesis. The leaf contained high levels of sugars, glycosides, amino acids and their derivatives, and flavonoids; the root was rich in terpenoids, volatile oils, vitamins, and lignin; the fibril contained rich organic acids; and the stem had high content of nucleotides and their derivatives. The content of ginsenosides Re and Rb_1 was significantly higher in the root; the content of ginsenosides Rg_1, Rg_2, Rd, F_(11), and polysaccharide was significantly higher in the leaf; and the content of ginsenoside Rb_2 was significantly higher in the stem. We analyzed the resource components and availability of different parts of P. quinquefolium, aiming to provide basic information for the comprehensive development and utilization of P. quinquefolium resources in Shandong province.


Subject(s)
Ginsenosides/analysis , Plant Roots/chemistry , Tandem Mass Spectrometry/methods , Panax/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Sugars
16.
Chin Herb Med ; 14(1): 58-69, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36120127

ABSTRACT

Objective: To find a suitable ecological cultivation measure to solve the problem of root-knot nematode disease of Panax quinquefolium (Panacis Quinquefolii Radix) and the heavy metals accumulating in its roots. Methods: Three-year-old P. quinquefolium was treated with four different combinations of microbial inoculant (MI) and garbage fermentation liquid (GFL) [the joint application of 'TuXiu' MI and Fifty potassium MI (TF), the combination use of 'No. 1' MI and Fifty potassium MI (NF), 'Gulefeng' poly-γ-glutamic acid MI (PGA), GFL], and the untreated control (CK). Here, high-throughput sequencing, ICP-MS and UPLC were employed to systematically characterize changes of microbial diversity and structure composition, heavy metals (As, Cd and Pb) content and ginsenoside content among different treatments. Results: The results revealed that different MIs and GFL could increase the root dry weight of P. quinquefolium, PGA enhanced it by 83.24%, followed by GFL (49.93%), meanwhile, PGA and GFL were able to lessen root-knot nematode disease incidence by 57.25% and 64.35%. The treatment of PGA and GFL can also effectively reduce heavy metals in roots. The As content in GFL and PGA was decreased by 52.17% and 43.48% respectively, while the Cd and Pb contents of GFL and PGA was decreased somewhat. Additionally, the content of total ginsenosides was increased by 42.14% and 42.07%, in response to TF and NF, respectively. Our metagenomic analysis showed that the relative abundance of particular soil microbial community members related to the biocontrol of root-knot nematode disease and plant pathogen (i.e., Chaetomium in NF, Xylari in GFL, and Microascus in PGA), heavy metal bioremediation (Hyphomacrobium in PGA and Xylaria in GFL), and nitrogen fixation (Nordella and Nitrospira in TF) was significantly increased; notably, potential harmful microflora, such as Plectosaphaerella and Rhizobacter, were more abundant in the control group. Conclusion: MI and GFL could improve the quality of P. quinquefolium by modifying its rhizosphere microbial community structure and composition, both of them are beneficial to the development of ecological cultivation of P. quinquefolium.

17.
Chin J Nat Med ; 20(8): 614-626, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36031233

ABSTRACT

Panax quinquefolium is one of the most common medicinal plants worldwide. Ginsenosides are the major pharmaceutical components in P. quinquefolium. The biosynthesis of ginsenosides in different tissues of P. quinquefolium remained largely unknown. In the current study, an integrative method of transcriptome and metabolome analysis was used to elucidate the ginsenosides biosynthesis pathways in different tissues of P. quinquefolium. Herein, 22 ginsenosides in roots, leaves, and flower buds showed uneven distribution patterns. A comprehensive P. quinquefolium transcriptome was generated through single molecular real-time (SMRT) and second-generation sequencing (NGS) technologies, which revealed the ginsenoside pathway genes and UDP-glycosyltransferases (UGT) family genes explicitly expressed in roots, leaves, and flower buds. The weighted gene co-expression network analysis (WGCNA) of ginsenoside biosynthesis genes, UGT genes and ginsenoside contents indicated that three UGT genes were positively correlated to pseudoginsenoside F11, notoginsenoside R1, notoginsenoside R2 and pseudoginsenoside RT5. These results provide insights into ginsenoside biosynthesis in different tissues ofP. quinquefolium.


Subject(s)
Ginsenosides , Panax , Plants, Medicinal , Plant Roots , Transcriptome
18.
Exp Ther Med ; 24(3): 570, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36034755

ABSTRACT

Chronic cardiac inflammation and fibrosis can progress into severe forms of cardiomyopathy. Sophora flavescens alkaloids (KuShen) have been previously reported to exert anti-inflammatory effects, whereas Panax quinquefolium saponins (XiYangShen) has been shown to alleviate cardiac fibrosis. Therefore, the potential effects of their combination (KX) on different stages of autoimmune myocarditis were investigated in the present study. Mice were randomly divided into the following four groups: Control; experimental autoimmune myocarditis (EAM); KX-High (275 mg/kg); and KX-Low (138 mg/kg). A 21-day and a 60-day EAM model was established through multi-site subcutaneous injections of cardiac myosin mixed with complete Freund's adjuvant on days 0, 7, 21 and 42. Mice in the High and Low KX groups were treated by gavage (10 ml/kg) daily from day 0 (1 day before treatment) until sacrifice (day 21 or 60). Mice in the control and EAM groups received an equivalent volume of distilled water. The levels of lactate dehydrogenase (LDH), creatine kinase-myocardial band (CK-MB), cardiac troponin I (cTn-I), IL-1ß, IL-6, TNF-α, TGF-ß1, collagen type I (Col Ⅰ) and collagen type III (Col Ⅲ) were measured by ELISA in the mouse myocardial tissues or serum. Myocardial tissue structure and extent of fibrosis were visualized using H&E and Masson's staining. Western blotting and immunohistochemistry were used to measure the expression levels NF-κB and TGF-ß1 pathway proteins in the myocardial tissues. The degree of inflammation in the 21-day EAM model was found to be significantly higher compared with that in the 60-day EAM model. KX significantly reduced the inflammatory response at 21 days by decreasing the expression levels of CK-MB, LDH, cTn-I, IL-1ß, IL-6, TNF-α and TGF-ß-activated kinase 1-binding protein 1/NF-κB pathway proteins. Myocardial fibrosis in the 60-day EAM model was also significantly worse compared with that in the 21-day EAM model. However, fibrosis was significantly delayed by treatment with KX. In addition, KX significantly decreased the expression levels of TGF-ß1, Smad2, Smad4, Col I and Col III. Therefore, these data suggest that KX is beneficial for treating myocarditis by targeting multiple pathways.

19.
Front Nutr ; 9: 833859, 2022.
Article in English | MEDLINE | ID: mdl-35445056

ABSTRACT

The mechanism by which ginsenosides from Panax quinquefolium L. transform into rare saponins by different processing methods and their antitumour effects have yet to be fully elucidated. Our study aimed to detect the effect of amino acids and processing methods on the conversion of ginsenosides in American ginseng to rare ginsenosides, using 8 monomeric ginsenosides as substrates to discuss the reaction pathway and mechanism. S180 tumour-bearing mice were established to study the antitumour effects of American ginseng total saponins (AGS-Q) or American ginseng total saponins after transformation (AGS-H) synergistic CTX. The results showed that aspartic acid was the best catalyst, and the thermal extraction method had the best effect. Under the optimal conditions, including a reaction temperature of 110°C, an aspartic acid concentration of 5%, a reaction time of 2.5 h and a liquid-solid ratio of 30 mL/g, the highest conversion of Rk1 and Rg5 was 6.58 ± 0.11 mg/g and 3.74 ± 0.05 mg/g, respectively. In the reaction pathway, the diol group saponins participated in the transformation process, and the triol group saponins basically did not participate in the transformation process. AGS-Q or AGS-H synergistic CTX, or AGS-H synergistic CTX/2 could significantly increase the tumour inhibition rate, spleen index and white blood cell count, had a significant upregulation effect on IL-2 and IL-10 immune cytokines; significantly restored the ratio of CD4+/CD8+; and significantly inhibited the level of CD4+CD25+. AGS-Q or AGS-H synergistic with CTX or CTX/2 can significantly upregulate the expression of Bax and cleaved-Caspase-3 and inhibit the expression of antiapoptotic protein Bcl-2. AGS synergistic CTX in the treatment of S180 tumour-bearing mice can improve the efficacy and reduce toxicity.

20.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1205-1214, 2022 Mar.
Article in Chinese | MEDLINE | ID: mdl-35343146

ABSTRACT

This study aims to investigate the effects of different magnesium supply levels on the growth, nutrient absorption and distribution, and quality of Panax quinquefolium, and to determine the optimum content of exchangeable magnesium in soil. Three-year-old plants of P. quinquefolium were used in this study, and eight magnesium supply gradients(CK, Mg1-Mg7) were designed for indoor pot experiment(cultivation in soil). The plant growth indexes, nutrient element content in soil and plant, and root saponin content were determined at the end of the growth period. The correlation analysis of nutrient element content in aboveground and underground parts of P. quinquefolium showed significantly negative correlations of magnesium-calcium, magnesium-potassium, and magne-sium-manganese. With the increase in magnesium supply level, the biological absorption coefficient of magnesium increased, while that of total nitrogen, potassium, iron, and manganese decreased; the biological transfer coefficient of magnesium decreased, while that of nitrogen, phosphorus, calcium, iron, and manganese increased. The saponin content was analyzed by principal component analysis, which showed the comprehensive score in the order of Mg4(2.537), Mg2(1.001), Mg3(0.600), Mg1(0), Mg7(-0.765), CK(-0.825), Mg6(-0.922), and Mg5(-1.663). The partial least squares-path modeling(PLS-PM) showed that the correlation coefficients of exchangeable magnesium and pH with quality were-0.748 and-0.755, respectively, which were significant. Magnesium-calcium, magnesium-potassium, and magnesium-manganese showed antagonism in the nutritional physiology of P. quinquefolium. Excessive application of magnesium can lead to the imbalance of nutrient elements in P. quinquefolium. The content of exchangeable magnesium in soil suitable for the quality formation of P. quinquefolium was 193.34-293.34 mg·kg~(-1). In addition to exchangeable magnesium, pH was also important to the quality formation of P. quinquefolium. Therefore, exchangeable magnesium and pH could be regarded as monitoring factors for the quality formation of P. quinquefolium.


Subject(s)
Panax , Magnesium , Nutrients , Panax/chemistry , Phosphorus , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL