Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Cell Rep ; 43(10): 114799, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39331505

ABSTRACT

The properties of cell-free DNA (cfDNA) are intensely studied for their potential as non-invasive biomarkers. We explored the effect of common genetic variants on the concentration and fragmentation properties of cfDNA using a genome-wide association study (GWAS) based on low-coverage whole-genome sequencing data of 140,000 Dutch non-invasive prenatal tests (NIPTs). Our GWAS detects many genome-wide significant loci, functional enrichments for phagocytes, liver, adipose tissue, and macrophages, and genetic correlations with autoimmune and cardiovascular disease. A common (7%) missense variant in DNASE1L3 (p.Arg206Cys) strongly affects all cfDNA properties. It increases the size of fragments, lowers cfDNA concentrations, affects the distribution of cleave-site motifs, and increases the fraction of circulating fetal DNA during pregnancy. For the application of NIPT, and potentially other cfDNA-based tests, this variant has direct clinical consequences, as it increases the odds of inconclusive results and impairs the sensitivity of NIPT by causing predictors to overestimate the fetal fraction.

2.
J Ovarian Res ; 17(1): 180, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232764

ABSTRACT

Pannexin1 (PANX1) is a highly glycosylated membrane channel-forming protein, which has been found to implicate in multiple physiological and pathophysiological functions. Variants in the PANX1 gene have been reported to be associated with oocyte death and recurrent in vitro fertilization failure. In this study, we identified a novel heterozygous PANX1 variant (NM_015368.4 c.410 C > T (p.Ser137Leu)) associated with the phenotype of oocyte death in a non-consanguineous family, followed by an autosomal dominant (AD) mode. We explored the molecular mechanism of the novel variant and the variant c.976_978del (p.Asn326del) that we reported previously. Both of the variants altered the PANX1 glycosylation pattern in cultured cells, led to aberrant PANX1 channel activation, affected ATP release and membrane electrophysiological properties, which resulted in mouse and human oocyte death in vitro. For the first time, we presented the direct evidence of the effect of the PANX1 variants on human oocyte development. Our findings expand the variant spectrum of PANX1 genes associated with oocyte death and provide new support for the genetic diagnosis of female infertility.


Subject(s)
Cell Death , Connexins , Heterozygote , Infertility, Female , Mutation, Missense , Nerve Tissue Proteins , Oocytes , Humans , Oocytes/metabolism , Female , Connexins/genetics , Connexins/metabolism , Infertility, Female/genetics , Animals , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice , Cell Death/genetics , Pedigree , Adult , Glycosylation
4.
Life Sci ; 351: 122851, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38897345

ABSTRACT

AIMS: Pannexin-1 (PANX1) is a hemichannel that releases ATP upon opening, initiating inflammation, cell proliferation, and migration. However, the role of PANX1 channels in colon cancer remains poorly understood, thus constituting the focus of this study. MAIN METHODS: PANX1 mRNA expression was analyzed using multiple cancer databases. PANX1 protein expression and distribution were evaluated by immunohistochemistry on primary tumor tissue and non-tumor colonic mucosa from colon cancer patients. PANX1 inhibitors (probenecid or 10Panx) were used to assess colon cancer cell lines viability. To study the role of PANX1 in vivo, a subcutaneous xenograft model using HCT116 cells was performed in BALB/c NOD/SCID immunodeficient mice to evaluate tumor growth under PANX1 inhibition using probenecid. KEY FINDINGS: PANX1 mRNA was upregulated in colon cancer tissue compared to non-tumor colonic mucosa. Elevated PANX1 mRNA expression in tumors correlated with worse disease-free survival. PANX1 protein abundance was increased on tumor cells compared to epithelial cells in paired samples, in a cancer stage-dependent manner. In vitro and in vivo experiments indicated that blocking PANX1 reduced cell viability and tumor growth. SIGNIFICANCE: PANX1 can be used as a biomarker of colon cancer progression and blocking PANX1 channel opening could be used as a potential therapeutic strategy against this disease.


Subject(s)
Colonic Neoplasms , Connexins , Disease Progression , Nerve Tissue Proteins , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , Connexins/metabolism , Connexins/genetics , Gene Expression Regulation, Neoplastic , HCT116 Cells , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Probenecid/pharmacology , Xenograft Model Antitumor Assays
5.
Mil Med Res ; 11(1): 41, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937853

ABSTRACT

BACKGROUND: Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet ß cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS: db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS: In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS: PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.


Subject(s)
Adenosine Triphosphate , Connexins , Gluconeogenesis , Lipogenesis , Liver , Nerve Tissue Proteins , Animals , Connexins/metabolism , Mice , Gluconeogenesis/physiology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Adenosine Triphosphate/metabolism , Lipogenesis/physiology , Liver/metabolism , Mice, Knockout , Male , Humans , Diet, High-Fat/adverse effects , Cytokines
6.
Transl Res ; 271: 26-39, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38734063

ABSTRACT

Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to ß-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.


Subject(s)
Doxorubicin , Fibroins , Lipid Metabolism , PPAR alpha , Protein Glutamine gamma Glutamyltransferase 2 , Animals , PPAR alpha/metabolism , PPAR alpha/genetics , Lipid Metabolism/drug effects , Male , Fibroins/chemistry , Fibroins/pharmacology , Signal Transduction/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Peptides/pharmacology , Peptides/chemistry , Rats , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Rats, Sprague-Dawley
7.
Front Cell Dev Biol ; 12: 1387234, 2024.
Article in English | MEDLINE | ID: mdl-38660621

ABSTRACT

Chronic kidney disease (CKD) is a prevalent health concern associated with various pathological conditions, including hypertensive nephropathy. Mesangial cells are crucial in maintaining glomerular function, yet their involvement in CKD pathogenesis remains poorly understood. Recent evidence indicates that overactivation of Pannexin-1 (Panx1) channels could contribute to the pathogenesis and progression of various diseases. Although Panx1 is expressed in the kidney, its contribution to the dysfunction of renal cells during pathological conditions remains to be elucidated. This study aimed to investigate the impact of Panx1 channels on mesangial cell function in the context of hypertensive nephropathy. Using an Ang II-infused mouse model and primary mesangial cell cultures, we demonstrated that in vivo exposure to Ang II sensitizes cultured mesangial cells to show increased alterations when they are subjected to subsequent in vitro exposure to Ang II. Particularly, mesangial cell cultures treated with Ang II showed elevated activity of Panx1 channels and increased release of ATP. The latter was associated with enhanced basal intracellular Ca2+ ([Ca2+]i) and increased ATP-mediated [Ca2+]i responses. These effects were accompanied by increased lipid peroxidation and reduced cell viability. Crucially, all the adverse impacts evoked by Ang II were prevented by the blockade of Panx1 channels, underscoring their critical role in mediating cellular dysfunction in mesangial cells. By elucidating the mechanisms by which Ang II negatively impacts mesangial cell function, this study provides valuable insights into the pathogenesis of renal damage in hypertensive nephropathy.

8.
Methods Mol Biol ; 2801: 135-145, 2024.
Article in English | MEDLINE | ID: mdl-38578419

ABSTRACT

Gap junctions, pivotal intercellular conduits, serve as communication channels between adjacent cells, playing a critical role in modulating membrane potential distribution across cellular networks. The family of Pannexin (Panx) proteins, in particular Pannexin1 (Panx1), are widely expressed in vertebrate cells and exhibit sequence homology with innexins, the invertebrate gap junction channel constituents. Despite being ubiquitously expressed, detailed functional and pharmacological properties of Panx1 intercellular cell-cell channels require further investigation. In this chapter, we introduce optimized cell culture methodologies and electrophysiology protocols to expedite the exploration of endogenous Panx1 cell-cell channels in TC620 cells, a human oligodendroglioma cell line that naturally expresses Panx1. We anticipate these refined protocols will significantly contribute to future characterizations of Panx1-based intercellular cell-cell channels across diverse cell types and offer valuable insights into both normal cellular physiology and pathophysiology.


Subject(s)
Connexins , Gap Junctions , Humans , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Cell Line , Ion Channels/metabolism , Membrane Potentials
9.
Mil Med Res ; 11(1): 27, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685116

ABSTRACT

BACKGROUND: The channel-forming protein Pannexin1 (Panx1) has been implicated in both human studies and animal models of chronic pain, but the underlying mechanisms remain incompletely understood. METHODS: Wild-type (WT, n = 24), global Panx1 KO (n = 24), neuron-specific Panx1 KO (n = 20), and glia-specific Panx1 KO (n = 20) mice were used in this study at Albert Einstein College of Medicine. The von Frey test was used to quantify pain sensitivity in these mice following complete Freund's adjuvant (CFA) injection (7, 14, and 21 d). The qRT-PCR was employed to measure mRNA levels of Panx1, Panx2, Panx3, Cx43, Calhm1, and ß-catenin. Laser scanning confocal microscopy imaging, Sholl analysis, and electrophysiology were utilized to evaluate the impact of Panx1 on neuronal excitability and morphology in Neuro2a and dorsal root ganglion neurons (DRGNs) in which Panx1 expression or function was manipulated. Ethidium bromide (EtBr) dye uptake assay and calcium imaging were employed to investigate the role of Panx1 in adenosine triphosphate (ATP) sensitivity. ß-galactosidase (ß-gal) staining was applied to determine the relative cellular expression levels of Panx1 in trigeminal ganglia (TG) and DRG of transgenic mice. RESULTS: Global or neuron-specific Panx1 deletion markedly decreased pain thresholds after CFA stimuli (7, 14, and 21 d; P < 0.01 vs. WT group), indicating that Panx1 was positively correlated with pain sensitivity. In Neuro2a, global Panx1 deletion dramatically reduced neurite extension and inward currents compared to the WT group (P < 0.05), revealing that Panx1 enhanced neurogenesis and excitability. Similarly, global Panx1 deletion significantly suppressed Wnt/ß-catenin dependent DRG neurogenesis following 5 d of nerve growth factor (NGF) treatment (P < 0.01 vs. WT group). Moreover, Panx1 channels enhanced DRG neuron response to ATP after CFA injection (P < 0.01 vs. Panx1 KO group). Furthermore, ATP release increased Ca2+ responses in DRGNs and satellite glial cells surrounding them following 7 d of CFA treatment (P < 0.01 vs. Panx1 KO group), suggesting that Panx1 in glia also impacts exaggerated neuronal excitability. Interestingly, neuron-specific Panx1 deletion was found to markedly reduce differentiation in cultured DRGNs, as evidenced by stunted neurite outgrowth (P < 0.05 vs. Panx1 KO group; P < 0.01 vs. WT group or GFAP-Cre group), blunted activation of Wnt/ß-catenin signaling (P < 0.01 vs. WT, Panx1 KO and GFAP-Cre groups), and diminished cell excitability (P < 0.01 vs. GFAP-Cre group) and response to ATP stimulation (P < 0.01 vs. WT group). Analysis of ß-gal staining showed that cellular expression levels of Panx1 in neurons are significantly higher (2.5-fold increase) in the DRG than in the TG. CONCLUSIONS: The present study revealed that neuronal Panx1 is a prominent driver of peripheral sensitivity in the setting of inflammatory pain through cell-autonomous effects on neuronal excitability. This hyperexcitability dependence on neuronal Panx1 contrasts with inflammatory orofacial pain, where similar studies revealed a prominent role for glial Panx1. The apparent differences in Panx1 expression in neuronal and non-neuronal TG and DRG cells are likely responsible for the distinct impact of these cell types in the two pain models.


Subject(s)
Connexins , Nerve Tissue Proteins , Animals , Connexins/genetics , Mice , Nerve Tissue Proteins/genetics , Disease Models, Animal , Pain/physiopathology , Pain/etiology , Neurons/metabolism , Inflammation/physiopathology , Mice, Knockout , Male
10.
J Integr Neurosci ; 23(3): 64, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38538230

ABSTRACT

BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.


Subject(s)
Hyperalgesia , Neuralgia , Rats , Mice , Animals , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Capsaicin/pharmacology , Capsaicin/therapeutic use , Paclitaxel/adverse effects , Carrageenan/adverse effects , Calcium , Neuralgia/chemically induced , Neuralgia/drug therapy , Formaldehyde/adverse effects , Ganglia, Spinal , Nerve Tissue Proteins , Connexins/genetics , Connexins/therapeutic use
11.
Cell Signal ; 117: 111113, 2024 05.
Article in English | MEDLINE | ID: mdl-38395185

ABSTRACT

The emerging role of glial cells in modulating neuronal excitability and synaptic strength is a growing field in neuroscience. In recent years, a pivotal role of gliotransmission in homeostatic presynaptic plasticity has been highlighted and glial-derived ATP arises as a key contributor. However, very little is known about the glial non-vesicular ATP-release pathway and how ATP participates in the modulation of synaptic strength. Here, we investigated the functional changes occurring in neurons upon chronic inactivity and the role of the purinergic signaling, connexin43 and pannexin1 hemichannels in this process. By using hippocampal dissociated cultures, we showed that blocking connexin43 and pannexin1 hemichannels decreases the amount of extracellular ATP. Moreover, Ca2+ imaging assays using Fluo-4/AM revealed that blocking connexin43, neuronal P2X7Rs and pannexin1 hemichannels decreases the amount of basal Ca2+ in neurons. A significant impairment in synaptic vesicle pool size was also evidenced under these conditions. Interestingly, rescue experiments where Panx1HCs are blocked showed that the compensatory adjustment of cytosolic Ca2+ was recovered after P2X7Rs activation, suggesting that Panx1 acts downstream P2X7Rs. These changes were accompanied by a modulation of neuronal permeability, as revealed by ethidium bromide uptake experiments. In particular, the permeability of neuronal P2X7Rs and pannexin1 hemichannels is increased upon 24 h of inactivity. Taken together, we have uncovered a role for connexin43-dependent ATP release and neuronal P2X7Rs and pannexin1 hemichannels in the adjustment of presynaptic strength by modulating neuronal permeability, the entrance of Ca2+ into neurons and the size of the recycling pool of synaptic vesicles.


Subject(s)
Connexin 43 , Connexins , Receptors, Purinergic P2X7 , Adenosine Triphosphate/metabolism , Connexin 43/metabolism , Connexins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Animals , Mice , Rats , Receptors, Purinergic P2X7/metabolism
12.
bioRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38168229

ABSTRACT

Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.

13.
Biomolecules ; 14(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254708

ABSTRACT

Immunogenic death (ICD) stimulates adaptive immunity and affects immunotherapeutic efficacy, an important part of which is damage-associated molecular patterns (DAMPs). However, the function of these DAMPs for lung adenocarcinoma (LUAD) remains obscure. We initially found differentially expressed genes (DEGs) with prognostic significance related to DAMPs with the TCGA database and then used the least absolute shrinkage and selection operator (LASSO) regression to create a risk signature strongly correlated with overall survival (OS) with eight DEGs. Validation was performed externally using the external data set GSE68465. Lower-risk LUAD patients were found to be more chemotherapy-resistant and enriched for more immune-related pathways than those with higher risk scores, and patients with different risks showed different levels of immune cell infiltration. PANX1, a crucial gene closely associated with lung adenocarcinoma, was identified using the weighted correlation network analysis (WGCNA), and experiments revealed that PANX1 promotes the proliferation as well as invasion of LUAD cells. Furthermore, PANX1 was found to be positively correlated with CD274, CD276, and M2 macrophage markers. We developed and validated an entirely new gene signature related to DAMPs that may be useful for LUAD patient prognosis, immune microenvironment, and chemotherapeutic drug sensitivity prediction. The results may also guide clinical immunotherapy and chemotherapy approaches for LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Genes, Regulator , Adenocarcinoma of Lung/genetics , Transcription Factors , Adaptive Immunity , Alarmins , Lung Neoplasms/genetics , Tumor Microenvironment/genetics , B7 Antigens , Nerve Tissue Proteins , Connexins
14.
Biochem J ; 480(23): 1929-1949, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38038973

ABSTRACT

The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.


Subject(s)
Melanoma , Skin Neoplasms , Mice , Animals , Connexins/genetics , Connexins/metabolism , Nerve Tissue Proteins/genetics , Protein Processing, Post-Translational
15.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958624

ABSTRACT

Glial reactivity is considered a hallmark of damage-induced innate immune responses in the central nervous system. In the visual system, unilateral optic nerve damage elicits dramatic glial reactivity in the retina directly affected by the lesion and a similar, albeit more modest, effect in the contralateral eye. Evaluation of astrocyte changes in a mouse model of optic nerve crush indicates that astrocyte reactivity, as a function of retinal coverage and cellular hypertrophy, occurs within both the experimental and contralateral retinas, although the hypertrophic response of the astrocytes in the contralateral eyes is delayed for at least 24 h. Evaluation of astrocytic reactivity as a function of Gfap expression indicates a similar, muted but significant, response in contralateral eyes. This constrained glial response is completely negated by conditional knock out of Panx1 in both astrocytes and Müller cells. Further studies are required to identify if this is an autocrine or a paracrine suppression of astroglial reactivity.


Subject(s)
Astrocytes , Optic Nerve Injuries , Mice , Animals , Astrocytes/metabolism , Neuroglia/metabolism , Retina/metabolism , Optic Nerve Injuries/metabolism , Optic Nerve/pathology , Glial Fibrillary Acidic Protein/metabolism , Nerve Tissue Proteins/metabolism , Connexins/metabolism
16.
Channels (Austin) ; 17(1): 2253102, 2023 12.
Article in English | MEDLINE | ID: mdl-37807670

ABSTRACT

Many neurological conditions exhibit synaptic impairments, suggesting mechanistic convergence. Additionally, the pannexin 1 (PANX1) channel and signaling scaffold is linked to several of these neurological conditions and is an emerging regulator of synaptic development and plasticity; however, its synaptic pathogenic contributions are relatively unexplored. To this end, we explored connections between synaptic neurodevelopmental disorder and neurodegenerative disease susceptibility genes discovered by genome-wide association studies (GWASs), and the neural PANX1 interactome (483 proteins) identified from mouse Neuro2a (N2a) cells. To identify shared susceptibility genes, we compared synaptic suggestive GWAS candidate genes amongst autism spectrum disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. To further probe PANX1 signaling pathways at the synapse, we used bioinformatics tools to identify PANX1 interactome signaling pathways and protein-protein interaction clusters. To shed light on synaptic disease mechanisms potentially linking PANX1 and these four neurological conditions, we performed additional cross-analyses between gene ontologies enriched for the PANX1 synaptic and disease-susceptibility gene sets. Finally, to explore the regional specificity of synaptic PANX1-neurological condition connections, we identified brain region-specific elevations of synaptic PANX1 interactome and GWAS candidate gene set transcripts. Our results confirm considerable overlap in risk genes for autism spectrum disorders and schizophrenia and identify potential commonalities in genetic susceptibility for neurodevelopmental disorders and neurodegenerative diseases. Our findings also pinpointed novel putative PANX1 links to synaptic disease-associated pathways, such as regulation of vesicular trafficking and proteostasis, warranting further validation.


Subject(s)
Connexins , Nerve Tissue Proteins , Neurodegenerative Diseases , Animals , Mice , Computational Biology , Connexins/genetics , Connexins/metabolism , Genome-Wide Association Study , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
17.
J Neurosci Res ; 101(12): 1814-1825, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37688406

ABSTRACT

Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play roles in purinergic signaling in the nervous system. A link between Panx1 activity and neurodegenerative disorders including Parkinson's disease (PD) has been suggested, but experimental evidence is limited. Here, a zebrafish model of PD was produced by exposing panx1a+/+ and panx1a-/- zebrafish larvae to 6-hydroxydopamine (6-OHDA). Electrical stimulation in a microfluidic chip and quantitative real-time-qPCR of zebrafish larvae tested the role of Panx1 in both pathological and normal conditions. After 72-h treatment with 6-OHDA, the electric-induced locomotor activity of 5 days post fertilization (5dpf) panx1a+/+ larvae were reduced, while the stimulus did not affect locomotor activity of age-matched panx1a-/- larvae. A RT-qPCR analysis showed an increase in the expression of genes that are functionally related to dopaminergic signaling, like the tyrosine hydroxylase (th2) and the leucine-rich repeat kinase 2 (lrrk2). Extending the 6-OHDA treatment duration to 120 h caused a significant reduction in the locomotor response of 7dpf panx1a-/- larvae compared to the untreated panx1a-/- group. The RT-qPCR data showed a reduced expression of dopaminergic signaling genes in both genotypes. It was concluded that the absence of Panx1a channels compromised dopaminergic signaling in 6-OHDA-treated zebrafish larvae and that the increase in the expression of dopaminergic genes was transient, most likely due to a compensatory upregulation. We propose that zebrafish Panx1a models offer opportunities to shed light on PD's physiological and molecular basis. Panx1a might play a role on the progression of PD, and therefore deserves further investigation.

18.
Front Immunol ; 14: 1217366, 2023.
Article in English | MEDLINE | ID: mdl-37711629

ABSTRACT

Sepsis represents a global health concern, and patients with severe sepsis are at risk of experiencing MODS (multiple organ dysfunction syndrome), which is associated with elevated mortality rates and a poorer prognosis. The development of sepsis involves hyperactive inflammation, immune disorder, and disrupted microcirculation. It is crucial to identify targets within these processes to develop therapeutic interventions. One such potential target is Panx1 (pannexin-1), a widely expressed transmembrane protein that facilitates the passage of molecules smaller than 1 KDa, such as ATP. Accumulating evidence has implicated the involvement of Panx1 in sepsis-associated MODS. It attracts immune cells via the purinergic signaling pathway, mediates immune responses via the Panx1-IL-33 axis, promotes immune cell apoptosis, regulates blood flow by modulating VSMCs' and vascular endothelial cells' tension, and disrupts microcirculation by elevating endothelial permeability and promoting microthrombosis. At the level of organs, Panx1 contributes to inflammatory injury in multiple organs. Panx1 primarily exacerbates injury and hinders recovery, making it a potential target for sepsis-induced MODS. While no drugs have been developed explicitly against Panx1, some compounds that inhibit Panx1 hemichannels have been used extensively in experiments. However, given that Panx1's role may vary during different phases of sepsis, more investigations are required before interventions against Panx1 can be applied in clinical. Overall, Panx1 may be a promising target for sepsis-induced MODS. Nevertheless, further research is needed to understand its complex role in different stages of sepsis fully and to develop suitable pharmaceutical interventions for clinical use.


Subject(s)
Endothelial Cells , Multiple Organ Failure , Humans , Multiple Organ Failure/etiology , Apoptosis , Inflammation , Membrane Proteins
19.
Purinergic Signal ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713157

ABSTRACT

Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses about the role of this interaction in physiological and pathological circumstances.

20.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511370

ABSTRACT

Cx43 hemichannels (HCs) and Panx1 channels are two genetically distant protein families. Despite the lack of sequence homology, Cx43 and Panx1 channels have been the subject of debate due to their overlapping expression and the fact that both channels present similarities in terms of their membrane topology and electrical properties. Using the mimetic peptides Gap19 and 10Panx1, this study aimed to investigate the cross-effects of these peptides on Cx43 HCs and Panx1 channels. The single-channel current activity from stably expressing HeLa-Cx43 and C6-Panx1 cells was recorded using patch-clamp experiments in whole-cell voltage-clamp mode, demonstrating 214 pS and 68 pS average unitary conductances for the respective channels. Gap19 was applied intracellularly while 10Panx1 was applied extracellularly at different concentrations (100, 200 and 500 µM) and the average nominal open probability (NPo) was determined for each testing condition. A concentration of 100 µM Gap19 more than halved the NPo of Cx43 HCs, while 200 µM 10Panx1 was necessary to obtain a half-maximal NPo reduction in the Panx1 channels. Gap19 started to significantly inhibit the Panx1 channels at 500 µM, reducing the NPo by 26% while reducing the NPo of the Cx43 HCs by 84%. In contrast 10Panx1 significantly reduced the NPo of the Cx43 HCs by 37% at 100 µM and by 83% at 200 µM, a concentration that caused the half-maximal inhibition of the Panx1 channels. These results demonstrate that 10Panx1 inhibits Cx43 HCs over the 100-500 µM concentration range while 500 µM intracellular Gap19 is necessary to observe some inhibition of Panx1 channels.


Subject(s)
Connexin 43 , Gap Junctions , Humans , Connexin 43/metabolism , Gap Junctions/metabolism , HeLa Cells , Peptides/pharmacology , Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL