Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
1.
Front Neurosci ; 18: 1425032, 2024.
Article in English | MEDLINE | ID: mdl-39224574

ABSTRACT

Background: Individualized cortical functional networks parcellation has been reported as highly reproducible at 3.0 T. However, in view of the complexity of cortical networks and the greatly increased sensitivity provided by ultra-high field 5.0 T MRI, the parcellation consistency between different magnetic fields is unclear. Purpose: To explore the consistency and stability of individualized cortical functional networks parcellation at 3.0 T and 5.0 T MRI based on spatial and functional connectivity analysis. Materials and methods: Thirty healthy young participants were enrolled. Each subject underwent resting-state fMRI at both 3.0 T and 5.0 T in a random order in less than 48 h. The individualized cortical functional networks was parcellated for each subject using a previously proposed iteration algorithm. Dice coefficient was used to evaluate the spatial consistency of parcellated networks between 3.0 T and 5.0 T. Functional connectivity (FC) consistency was evaluated using the Euclidian distance and Graph-theory metrics. Results: A functional cortical atlas consisting of 18 networks was individually parcellated at 3.0 T and 5.0 T. The spatial consistency of these networks at 3.0 T and 5.0 T for the same subject was significantly higher than that of inter-individuals. The FC between the 18 networks acquired at 3.0 T and 5.0 T were highly consistent for the same subject. Positive cross-subject correlations in Graph-theory metrics were found between 3.0 T and 5.0 T. Conclusion: Individualized cortical functional networks at 3.0 T and 5.0 T showed consistent and stable parcellation results both spatially and functionally. The 5.0 T MR provides finer functional sub-network characteristics than that of 3.0 T.

2.
Alzheimers Dement ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39219112

ABSTRACT

INTRODUCTION: Brain network dynamics have been extensively explored in patients with amnestic mild cognitive impairment (aMCI); however, differences in single- and multiple-domain aMCI (SD-aMCI and MD-aMCI) remain unclear. METHODS: Using multicenter datasets, coactivation patterns (CAPs) were constructed and compared among normal control (NC), SD-aMCI, MD-aMCI, and Alzheimer's disease (AD) patients based on individual high-order cognitive network (HOCN) and primary sensory network (PSN) parcellations. Correlations between spatiotemporal characteristics and neuropsychological scores were analyzed. RESULTS: Compared to NC, SD-aMCI showed temporal alterations in HOCN-dominant CAPs, while MD-aMCI showed alterations in PSN-dominant CAPs. In addition, transitions from SD-aMCI to AD may involve PSN, while MD-aMCI to AD involves both PSN and HOCN. Results were generally consistent across datasets from Chinese and White populations. DISCUSSION: The HOCN and PSN are distinctively involved in aMCI subtypes and in the transformation between aMCI subtypes and AD, highlighting the necessity of aMCI subtype classification in AD studies. HIGHLIGHTS: Individual functional network parcellations and coactivation pattern (CAP) analysis were performed to characterize spatiotemporal differences between single- and multiple-domain amnestic mild cognitive impairment (SD-aMCI and MD-aMCI), and between distinct aMCI subtypes and Alzheimer's disease (AD). The analysis of multicenter datasets converged on four pairs of recurrent CAPs, including primary sensory networks (PSN)-dominant CAPs, high-order cognitive networks (HOCN)-dominant CAPs, and PSN-HOCN-interacting CAPs. The HOCN and PSN are distinctively involved in aMCI subtypes and in the transformation between distinct aMCI subtypes and AD.

3.
Med Image Anal ; 97: 103297, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39154619

ABSTRACT

Accurate mapping of brain functional subregions at an individual level is crucial. Task-based functional MRI (tfMRI) captures subject-specific activation patterns during various functions and behaviors, facilitating the individual localization of functionally distinct subregions. However, acquiring high-quality tfMRI is time-consuming and resource-intensive in both scientific and clinical settings. The present study proposes a two-stage network model, TS-AI, to individualize an atlas on cortical surfaces through the prediction of tfMRI data. TS-AI first synthesizes a battery of task contrast maps for each individual by leveraging tract-wise anatomical connectivity and resting-state networks. These synthesized maps, along with feature maps of tract-wise anatomical connectivity and resting-state networks, are then fed into an end-to-end deep neural network to individualize an atlas. TS-AI enables the synthesized task contrast maps to be used in individual parcellation without the acquisition of actual task fMRI scans. In addition, a novel feature consistency loss is designed to assign vertices with similar features to the same parcel, which increases individual specificity and mitigates overfitting risks caused by the absence of individual parcellation ground truth. The individualized parcellations were validated by assessing test-retest reliability, homogeneity, and cognitive behavior prediction using diverse reference atlases and datasets, demonstrating the superior performance and generalizability of TS-AI. Sensitivity analysis yielded insights into region-specific features influencing individual variation in functional regionalization. Additionally, TS-AI identified accelerated shrinkage in the medial temporal and cingulate parcels during the progression of Alzheimer's disease, suggesting its potential in clinical research and applications.


Subject(s)
Brain Mapping , Deep Learning , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Alzheimer Disease/diagnostic imaging , Image Processing, Computer-Assisted/methods , Aged , Male , Brain/diagnostic imaging , Female
4.
Article in English | MEDLINE | ID: mdl-39148448

ABSTRACT

The prevalence of white matter disease increases with age and is associated with cerebrovascular disease, cognitive decline, and risk for dementia. MRI measures of abnormal signal in the white matter (AWM) provide estimates of damage, however, regional patterns of AWM may be differentially influenced by genetic or environmental factors. With our data-driven regional parcellation approach, we created a probability distribution atlas using Vietnam Era Twin Study of Aging (VETSA) data (n = 475, mean age 67.6 years) and applied a watershed algorithm to define separate regional parcellations. We report biometrical twin modeling for five anatomically distinct regions: (1) Posterior, (2) Superior frontal and parietal, (3) Anterior and inferior frontal with deep areas, (4) Occipital, and (5) Anterior periventricular. We tested competing multivariate hypotheses to identify unique influences and to explain sources of covariance among the parcellations. Family aggregation could be entirely explained by additive genetic influences, with additive genetic variance (heritability) ranging from 0.69 to 0.79. Most genetic correlations between parcellations ranged from moderate to high (rg = 0.57-0.85), although two were small (rg = 0.35-0.39), consistent with varying degrees of unique genetic influences. This proof-of-principle investigation demonstrated the value of our novel, data-driven parcellations, with identifiable genetic and environmental differences, for future exploration.

5.
Article in English | MEDLINE | ID: mdl-39173993

ABSTRACT

BACKGROUND: Motor impairments and sensory processing abnormalities are prevalent in autism spectrum disorder (ASD), closely related to the core functions of the primary motor cortex (M1) and the primary somatosensory cortex (S1). Currently, there is limited knowledge about potential therapeutic targets in the subregions of M1 and S1 in ASD patients. This study aims to map clinically significant functional subregions of M1 and S1. METHODS: Resting-state functional magnetic resonance imaging data (NTD = 266) from Autism Brain Imaging Data Exchange (ABIDE) were used for subregion modeling. We proposed a distance-weighted sparse representation algorithm to construct brain functional networks. Functional subregions of M1 and S1 were identified through consensus clustering at the group level. Differences in the characteristics of functional subregions were analyzed, along with their correlation with clinical scores. RESULTS: We observed symmetrical and continuous subregion organization from dorsal to ventral aspects in M1 and S1, with M1 subregions conforming to the functional pattern of the motor homunculus. Significant intergroup differences and clinical correlations were found in the dorsal and ventral aspects of M1 (p < 0.05/3, Bonferroni correction) and the ventromedial BA3 of S1 (p < 0.05/5). These functional characteristics were positively correlated with autism severity. All subregions showed significant results in the ROI-to-ROI intergroup differential analysis (p < 0.05/80). LIMITATIONS: The generalizability of the segmentation model requires further evaluation. CONCLUSIONS: This study highlights the significance of M1 and S1 in ASD treatment and may provide new insights into brain parcellation and the identification of therapeutic targets for ASD.

6.
Hum Brain Mapp ; 45(12): e70008, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39185598

ABSTRACT

Parcellation of human cerebellar pathways is essential for advancing our understanding of the human brain. Existing diffusion magnetic resonance imaging tractography parcellation methods have been successful in defining major cerebellar fibre tracts, while relying solely on fibre tract structure. However, each fibre tract may relay information related to multiple cognitive and motor functions of the cerebellum. Hence, it may be beneficial for parcellation to consider the potential importance of the fibre tracts for individual motor and cognitive functional performance measures. In this work, we propose a multimodal data-driven method for cerebellar pathway parcellation, which incorporates both measures of microstructure and connectivity, and measures of individual functional performance. Our method involves first training a multitask deep network to predict various cognitive and motor measures from a set of fibre tract structural features. The importance of each structural feature for predicting each functional measure is then computed, resulting in a set of structure-function saliency values that are clustered to parcellate cerebellar pathways. We refer to our method as Deep Multimodal Saliency Parcellation (DeepMSP), as it computes the saliency of structural measures for predicting cognitive and motor functional performance, with these saliencies being applied to the task of parcellation. Applying DeepMSP to a large-scale dataset from the Human Connectome Project Young Adult study (n = 1065), we found that it was feasible to identify multiple cerebellar pathway parcels with unique structure-function saliency patterns that were stable across training folds. We thoroughly experimented with all stages of the DeepMSP pipeline, including network selection, structure-function saliency representation, clustering algorithm, and cluster count. We found that a 1D convolutional neural network architecture and a transformer network architecture both performed comparably for the multitask prediction of endurance, strength, reading decoding, and vocabulary comprehension, with both architectures outperforming a fully connected network architecture. Quantitative experiments demonstrated that a proposed low-dimensional saliency representation with an explicit measure of motor versus cognitive category bias achieved the best parcellation results, while a parcel count of four was most successful according to standard cluster quality metrics. Our results suggested that motor and cognitive saliencies are distributed across the cerebellar white matter pathways. Inspection of the final k = 4 parcellation revealed that the highest-saliency parcel was most salient for the prediction of both motor and cognitive performance scores and included parts of the middle and superior cerebellar peduncles. Our proposed saliency-based parcellation framework, DeepMSP, enables multimodal, data-driven tractography parcellation. Through utilising both structural features and functional performance measures, this parcellation strategy may have the potential to enhance the study of structure-function relationships of the cerebellar pathways.


Subject(s)
Cerebellum , Deep Learning , Diffusion Tensor Imaging , Humans , Cerebellum/physiology , Cerebellum/diagnostic imaging , Cerebellum/anatomy & histology , Diffusion Tensor Imaging/methods , Adult , Neural Pathways/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/anatomy & histology , Connectome/methods , Male , Female , Young Adult , Image Processing, Computer-Assisted/methods , Motor Activity/physiology
7.
Intell Med ; 4(2): 65-74, 2024 May.
Article in English | MEDLINE | ID: mdl-39035467

ABSTRACT

Objective: Accurate infant brain parcellation is crucial for understanding early brain development; however, it is challenging due to the inherent low tissue contrast, high noise, and severe partial volume effects in infant magnetic resonance images (MRIs). The aim of this study was to develop an end-to-end pipeline that enabled accurate parcellation of infant brain MRIs. Methods: We proposed an end-to-end pipeline that employs a two-stage global-to-local approach for accurate parcellation of infant brain MRIs. Specifically, in the global regions of interest (ROIs) localization stage, a combination of transformer and convolution operations was employed to capture both global spatial features and fine texture features, enabling an approximate localization of the ROIs across the whole brain. In the local ROIs refinement stage, leveraging the position priors from the first stage along with the raw MRIs, the boundaries o the ROIs are refined for a more accurate parcellation. Results: We utilized the Dice ratio to evaluate the accuracy of parcellation results. Results on 263 subjects from National Database for Autism Research (NDAR), Baby Connectome Project (BCP) and Cross-site datasets demonstrated the better accuracy and robustness of our method than other competing methods. Conclusion: Our end-to-end pipeline may be capable of accurately parcellating 6-month-old infant brain MRIs.

8.
bioRxiv ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39026811

ABSTRACT

The study of functional MRI data is increasingly performed after mapping from volumetric voxels to surface vertices. Processing pipelines commonly used to achieve this mapping produce meshes with uneven vertex spacing, with closer neighbours in sulci compared to gyri. Consequently, correlations between the fMRI time series of neighbouring sulcal vertices are stronger than expected. However, the causes, extent, and impacts of this bias are not well understood or widely appreciated. We explain the origins of these biases, and using in-silico models of fMRI data, illustrate how they lead to spurious results. The bias leads to leakage of anatomical cortical folding information into fMRI time series. We show that many common analyses can be affected by this "gyral bias", including test-retest reliability, fingerprinting, functional parcellations, regional homogeneity, and brain-behaviour associations. Finally, we provide recommendations to avoid or remedy this spatial bias.

9.
Hum Brain Mapp ; 45(10): e26726, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949487

ABSTRACT

Resting-state functional connectivity (FC) is widely used in multivariate pattern analysis of functional magnetic resonance imaging (fMRI), including identifying the locations of putative brain functional borders, predicting individual phenotypes, and diagnosing clinical mental diseases. However, limited attention has been paid to the analysis of functional interactions from a frequency perspective. In this study, by contrasting coherence-based and correlation-based FC with two machine learning tasks, we observed that measuring FC in the frequency domain helped to identify finer functional subregions and achieve better pattern discrimination capability relative to the temporal correlation. This study has proven the feasibility of coherence in the analysis of fMRI, and the results indicate that modeling functional interactions in the frequency domain may provide richer information than that in the time domain, which may provide a new perspective on the analysis of functional neuroimaging.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Adult , Male , Female , Machine Learning , Young Adult , Brain/physiology , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/physiology
10.
Neuroimage ; 297: 120747, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39033790

ABSTRACT

The anatomy of the human piriform cortex (PC) is poorly understood. We used a bimodal connectivity-based-parcellation approach to investigate subregions of the PC and its connectional differentiation from the amygdala. One hundred (55 % female) genetically unrelated subjects from the Human Connectome Project were included. A region of interest (ROI) was delineated bilaterally covering PC and amygdala, and functional and structural connectivity of this ROI with the whole gray matter was computed. Spectral clustering was performed to obtain bilateral parcellations at granularities of k = 2-10 clusters and combined bimodal parcellations were computed. Validity of parcellations was assessed via their mean individual-to-group similarity per adjusted rand index (ARI). Individual-to-group similarity was higher than chance in both modalities and in all clustering solutions. The amygdala was clearly distinguished from PC in structural parcellations, and olfactory amygdala was connectionally more similar to amygdala than to PC. At higher granularities, an anterior and ventrotemporal and a posterior frontal cluster emerged within PC, as well as an additional temporal cluster at their boundary. Functional parcellations also showed a frontal piriform cluster, and similar temporal clusters were observed with less consistency. Results from bimodal parcellations were similar to the structural parcellations. Consistent results were obtained in a validation cohort. Distinction of the human PC from the amygdala, including its olfactory subregions, is possible based on its structural connectivity alone. The canonical fronto-temporal boundary within PC was reproduced in both modalities and with consistency. All obtained parcellations are freely available.


Subject(s)
Amygdala , Connectome , Piriform Cortex , Humans , Female , Male , Piriform Cortex/anatomy & histology , Piriform Cortex/diagnostic imaging , Piriform Cortex/physiology , Adult , Connectome/methods , Amygdala/anatomy & histology , Amygdala/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Young Adult , Nerve Net/diagnostic imaging , Nerve Net/anatomy & histology
11.
Brain Res ; 1842: 149119, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38986829

ABSTRACT

The superior temporal sulcus (STS) has a functional topography that has been difficult to characterize through traditional approaches. Automated atlas parcellations may be one solution while also being beneficial for both dimensional reduction and standardizing regions of interest, but they yield very different boundary definitions along the STS. Here we evaluate how well machine learning classifiers can correctly identify six social cognitive tasks from STS activation patterns dimensionally reduced using four popular atlases (Glasser et al., 2016; Gordon et al., 2016; Power et al., 2011 as projected onto the surface by Arslan et al., 2018; Schaefer et al., 2018). Functional data was summarized within each STS parcel in one of four ways, then subjected to leave-one-subject-out cross-validation SVM classification. We found that the classifiers could readily label conditions when data was parcellated using any of the four atlases, evidence that dimensional reduction to parcels did not compromise functional fingerprints. Mean activation for the social conditions was the most effective metric for classification in the right STS, whereas all the metrics classified equally well in the left STS. Interestingly, even atlases constructed from random parcellation schemes (null atlases) classified the conditions with high accuracy. We therefore conclude that the complex activation maps on the STS are readily differentiated at a coarse granular level, despite a strict topography having not yet been identified. Further work is required to identify what features have greatest potential to improve the utility of atlases in replacing functional localizers.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Temporal Lobe , Humans , Temporal Lobe/physiology , Magnetic Resonance Imaging/methods , Adult , Male , Female , Brain Mapping/methods , Atlases as Topic , Young Adult , Image Processing, Computer-Assisted/methods , Machine Learning
12.
Med Image Anal ; 96: 103193, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823362

ABSTRACT

Temporally consistent and accurate registration and parcellation of longitudinal cortical surfaces is of great importance in studying longitudinal morphological and functional changes of human brains. However, most existing methods are developed for registration or parcellation of a single cortical surface. When applying to longitudinal studies, these methods independently register/parcellate each surface from longitudinal scans, thus often generating longitudinally inconsistent and inaccurate results, especially in small or ambiguous cortical regions. Essentially, longitudinal cortical surface registration and parcellation are highly correlated tasks with inherently shared constraints on both spatial and temporal feature representations, which are unfortunately ignored in existing methods. To this end, we unprecedentedly propose a novel semi-supervised learning framework to exploit these inherent relationships from limited labeled data and extensive unlabeled data for more robust and consistent registration and parcellation of longitudinal cortical surfaces. Our method utilizes the spherical topology characteristic of cortical surfaces. It employs a spherical network to function as an encoder, which extracts high-level cortical features. Subsequently, we build two specialized decoders dedicated to the tasks of registration and parcellation, respectively. To extract more meaningful spatial features, we design a novel parcellation map similarity loss to utilize the relationship between registration and parcellation tasks, i.e., the parcellation map warped by the deformation field in registration should match the atlas parcellation map, thereby providing extra supervision for the registration task and augmented data for parcellation task by warping the atlas parcellation map to unlabeled surfaces. To enable temporally more consistent feature representation, we additionally enforce longitudinal consistency among longitudinal surfaces after registering them together using their concatenated features. Experiments on two longitudinal datasets of infants and adults have shown that our method achieves significant improvements on both registration/parcellation accuracy and longitudinal consistency compared to existing methods, especially in small and challenging cortical regions.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Supervised Machine Learning , Humans , Magnetic Resonance Imaging/methods , Longitudinal Studies , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Algorithms , Image Processing, Computer-Assisted/methods
13.
Neurobiol Dis ; 199: 106577, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914171

ABSTRACT

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.


Subject(s)
Cerebral Cortex , Diffusion Tensor Imaging , Lissencephaly , Neural Pathways , Thalamus , Humans , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/embryology , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/embryology , Lissencephaly/pathology , Lissencephaly/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/diagnostic imaging , Neural Pathways/embryology , Diffusion Tensor Imaging/methods , Fetus/pathology , Fetus/diagnostic imaging , Gestational Age , Female , Male , White Matter/diagnostic imaging , White Matter/pathology , White Matter/embryology , Diffusion Magnetic Resonance Imaging/methods
14.
Front Neuroanat ; 18: 1388084, 2024.
Article in English | MEDLINE | ID: mdl-38846539

ABSTRACT

Cytoarchitecture, the organization of cells within organs and tissues, serves as a crucial anatomical foundation for the delineation of various regions. It enables the segmentation of the cortex into distinct areas with unique structural and functional characteristics. While traditional 2D atlases have focused on cytoarchitectonic mapping of cortical regions through individual sections, the intricate cortical gyri and sulci demands a 3D perspective for unambiguous interpretation. In this study, we employed fluorescent micro-optical sectioning tomography to acquire architectural datasets of the entire macaque brain at a resolution of 0.65 µm × 0.65 µm × 3 µm. With these volumetric data, the cortical laminar textures were remarkably presented in appropriate view planes. Additionally, we established a stereo coordinate system to represent the cytoarchitectonic information as surface-based tomograms. Utilizing these cytoarchitectonic features, we were able to three-dimensionally parcel the macaque cortex into multiple regions exhibiting contrasting architectural patterns. The whole-brain analysis was also conducted on mice that clearly revealed the presence of barrel cortex and reflected biological reasonability of this method. Leveraging these high-resolution continuous datasets, our method offers a robust tool for exploring the organizational logic and pathological mechanisms of the brain's 3D anatomical structure.

15.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38836835

ABSTRACT

Neocortex is a complex structure with different cortical sublayers and regions. However, the precise positioning of cortical regions can be challenging due to the absence of distinct landmarks without special preparation. To address this challenge, we developed a cytoarchitectonic landmark identification pipeline. The fluorescence micro-optical sectioning tomography method was employed to image the whole mouse brain stained by general fluorescent nucleotide dye. A fast 3D convolution network was subsequently utilized to segment neuronal somas in entire neocortex. By approach, the cortical cytoarchitectonic profile and the neuronal morphology were analyzed in 3D, eliminating the influence of section angle. And the distribution maps were generated that visualized the number of neurons across diverse morphological types, revealing the cytoarchitectonic landscape which characterizes the landmarks of cortical regions, especially the typical signal pattern of barrel cortex. Furthermore, the cortical regions of various ages were aligned using the generated cytoarchitectonic landmarks suggesting the structural changes of barrel cortex during the aging process. Moreover, we observed the spatiotemporally gradient distributions of spindly neurons, concentrated in the deep layer of primary visual area, with their proportion decreased over time. These findings could improve structural understanding of neocortex, paving the way for further exploration with this method.


Subject(s)
Deep Learning , Neocortex , Neurons , Animals , Neocortex/cytology , Mice , Mice, Inbred C57BL , Male , Imaging, Three-Dimensional/methods , Tomography, Optical/methods
16.
Front Neurosci ; 18: 1410936, 2024.
Article in English | MEDLINE | ID: mdl-38872945

ABSTRACT

Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.

17.
Neuroimage ; 293: 120616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697587

ABSTRACT

Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.


Subject(s)
Cerebral Cortex , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/anatomy & histology , Machine Learning , Female , Male , Image Processing, Computer-Assisted/methods , Adult , Algorithms , Reproducibility of Results
18.
Hum Brain Mapp ; 45(7): e26695, 2024 May.
Article in English | MEDLINE | ID: mdl-38727010

ABSTRACT

Human infancy is marked by fastest postnatal brain structural changes. It also coincides with the onset of many neurodevelopmental disorders. Atlas-based automated structure labeling has been widely used for analyzing various neuroimaging data. However, the relatively large and nonlinear neuroanatomical differences between infant and adult brains can lead to significant offsets of the labeled structures in infant brains when adult brain atlas is used. Age-specific 1- and 2-year-old brain atlases covering all major gray and white matter (GM and WM) structures with diffusion tensor imaging (DTI) and structural MRI are critical for precision medicine for infant population yet have not been established. In this study, high-quality DTI and structural MRI data were obtained from 50 healthy children to build up three-dimensional age-specific 1- and 2-year-old brain templates and atlases. Age-specific templates include a single-subject template as well as two population-averaged templates from linear and nonlinear transformation, respectively. Each age-specific atlas consists of 124 comprehensively labeled major GM and WM structures, including 52 cerebral cortical, 10 deep GM, 40 WM, and 22 brainstem and cerebellar structures. When combined with appropriate registration methods, the established atlases can be used for highly accurate automatic labeling of any given infant brain MRI. We demonstrated that one can automatically and effectively delineate deep WM microstructural development from 3 to 38 months by using these age-specific atlases. These established 1- and 2-year-old infant brain DTI atlases can advance our understanding of typical brain development and serve as clinical anatomical references for brain disorders during infancy.


Subject(s)
Atlases as Topic , Brain , Diffusion Tensor Imaging , Gray Matter , White Matter , Humans , Infant , Child, Preschool , Male , White Matter/diagnostic imaging , White Matter/anatomy & histology , White Matter/growth & development , Female , Gray Matter/diagnostic imaging , Gray Matter/growth & development , Gray Matter/anatomy & histology , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Brain/growth & development , Brain/anatomy & histology , Image Processing, Computer-Assisted/methods
19.
Sci Bull (Beijing) ; 69(14): 2241-2259, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38580551

ABSTRACT

The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.


Subject(s)
Brain , Macaca mulatta , Animals , Macaca mulatta/anatomy & histology , Brain/metabolism , Brain/anatomy & histology , Brain/diagnostic imaging , Humans , Connectome , Atlases as Topic , Male , Brain Mapping/methods , Diffusion Tensor Imaging/methods , Neural Pathways/anatomy & histology , Neural Pathways/metabolism , Neural Pathways/diagnostic imaging
20.
Biomedicines ; 12(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38540094

ABSTRACT

Schizophrenia (SZ) is a widespread psychiatric disorder that is traditionally characterized by positive and negative symptoms. However, recent focus has shifted to cognitive deficits as a crucial aspect. The cerebellum, conventionally tied to motor coordination, is now recognized as pivotal in the pathophysiology of SZ cognitive impairments. Proposed disruptions in the cortico-cerebellar-thalamic-cortico circuit contribute to these deficits. Despite evidence of cerebellar abnormalities, within-cerebellum functional connectivity is often overlooked. This study explores spontaneous functional interactions within the cerebellum and their link to cognitive deficits in SZ. Using a multi-domain task battery (MDTB) parcellation, fMRI data from SZ patients and healthy controls were analyzed. Significant differences in cerebellar connectivity emerged, particularly in regions related to attention, language, and memory processing. Correlations between connectivity values and SZ symptomatology were identified. A post hoc analysis, considering the patients' hallucination vulnerability, revealed distinct connectivity patterns. Non-hallucinating and low-hallucinating SZ patients exhibited higher cerebellar connectivity than high-hallucinating patients, especially in language and motor control regions. These findings suggest a gradient of cerebellar connectivity alterations corresponding to hallucination vulnerability in SZ patients. This study offers novel insights into cerebellar impairments in SZ, highlighting the role of within-cerebellum connectivity in cognitive deficits. The observed connectivity patterns in language-related regions contribute to understanding language development and auditory verbal hallucinations in SZ.

SELECTION OF CITATIONS
SEARCH DETAIL